e1000_nvm.c 16.9 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/if_ether.h>
#include <linux/delay.h>

#include "e1000_mac.h"
#include "e1000_nvm.h"

/**
35
 *  igb_raise_eec_clk - Raise EEPROM clock
36 37 38 39 40 41 42 43 44 45 46 47 48 49
 *  @hw: pointer to the HW structure
 *  @eecd: pointer to the EEPROM
 *
 *  Enable/Raise the EEPROM clock bit.
 **/
static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
	*eecd = *eecd | E1000_EECD_SK;
	wr32(E1000_EECD, *eecd);
	wrfl();
	udelay(hw->nvm.delay_usec);
}

/**
50
 *  igb_lower_eec_clk - Lower EEPROM clock
51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *  @hw: pointer to the HW structure
 *  @eecd: pointer to the EEPROM
 *
 *  Clear/Lower the EEPROM clock bit.
 **/
static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
	*eecd = *eecd & ~E1000_EECD_SK;
	wr32(E1000_EECD, *eecd);
	wrfl();
	udelay(hw->nvm.delay_usec);
}

/**
65
 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 *  @hw: pointer to the HW structure
 *  @data: data to send to the EEPROM
 *  @count: number of bits to shift out
 *
 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
 *  In order to do this, "data" must be broken down into bits.
 **/
static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = rd32(E1000_EECD);
	u32 mask;

	mask = 0x01 << (count - 1);
81
	if (nvm->type == e1000_nvm_eeprom_spi)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
		eecd |= E1000_EECD_DO;

	do {
		eecd &= ~E1000_EECD_DI;

		if (data & mask)
			eecd |= E1000_EECD_DI;

		wr32(E1000_EECD, eecd);
		wrfl();

		udelay(nvm->delay_usec);

		igb_raise_eec_clk(hw, &eecd);
		igb_lower_eec_clk(hw, &eecd);

		mask >>= 1;
	} while (mask);

	eecd &= ~E1000_EECD_DI;
	wr32(E1000_EECD, eecd);
}

/**
106
 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
 *  @hw: pointer to the HW structure
 *  @count: number of bits to shift in
 *
 *  In order to read a register from the EEPROM, we need to shift 'count' bits
 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
 *  the EEPROM (setting the SK bit), and then reading the value of the data out
 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
 *  always be clear.
 **/
static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
{
	u32 eecd;
	u32 i;
	u16 data;

	eecd = rd32(E1000_EECD);

	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
	data = 0;

	for (i = 0; i < count; i++) {
		data <<= 1;
		igb_raise_eec_clk(hw, &eecd);

		eecd = rd32(E1000_EECD);

		eecd &= ~E1000_EECD_DI;
		if (eecd & E1000_EECD_DO)
			data |= 1;

		igb_lower_eec_clk(hw, &eecd);
	}

	return data;
}

/**
144
 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
 *  @hw: pointer to the HW structure
 *  @ee_reg: EEPROM flag for polling
 *
 *  Polls the EEPROM status bit for either read or write completion based
 *  upon the value of 'ee_reg'.
 **/
static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
{
	u32 attempts = 100000;
	u32 i, reg = 0;
	s32 ret_val = -E1000_ERR_NVM;

	for (i = 0; i < attempts; i++) {
		if (ee_reg == E1000_NVM_POLL_READ)
			reg = rd32(E1000_EERD);
		else
			reg = rd32(E1000_EEWR);

		if (reg & E1000_NVM_RW_REG_DONE) {
			ret_val = 0;
			break;
		}

		udelay(5);
	}

	return ret_val;
}

/**
175
 *  igb_acquire_nvm - Generic request for access to EEPROM
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
 *  @hw: pointer to the HW structure
 *
 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 *  Return successful if access grant bit set, else clear the request for
 *  EEPROM access and return -E1000_ERR_NVM (-1).
 **/
s32 igb_acquire_nvm(struct e1000_hw *hw)
{
	u32 eecd = rd32(E1000_EECD);
	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
	s32 ret_val = 0;


	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
	eecd = rd32(E1000_EECD);

	while (timeout) {
		if (eecd & E1000_EECD_GNT)
			break;
		udelay(5);
		eecd = rd32(E1000_EECD);
		timeout--;
	}

	if (!timeout) {
		eecd &= ~E1000_EECD_REQ;
		wr32(E1000_EECD, eecd);
203
		hw_dbg("Could not acquire NVM grant\n");
204 205 206 207 208 209 210
		ret_val = -E1000_ERR_NVM;
	}

	return ret_val;
}

/**
211
 *  igb_standby_nvm - Return EEPROM to standby state
212 213 214 215 216 217 218 219 220
 *  @hw: pointer to the HW structure
 *
 *  Return the EEPROM to a standby state.
 **/
static void igb_standby_nvm(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = rd32(E1000_EECD);

221
	if (nvm->type == e1000_nvm_eeprom_spi) {
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
		/* Toggle CS to flush commands */
		eecd |= E1000_EECD_CS;
		wr32(E1000_EECD, eecd);
		wrfl();
		udelay(nvm->delay_usec);
		eecd &= ~E1000_EECD_CS;
		wr32(E1000_EECD, eecd);
		wrfl();
		udelay(nvm->delay_usec);
	}
}

/**
 *  e1000_stop_nvm - Terminate EEPROM command
 *  @hw: pointer to the HW structure
 *
 *  Terminates the current command by inverting the EEPROM's chip select pin.
 **/
static void e1000_stop_nvm(struct e1000_hw *hw)
{
	u32 eecd;

	eecd = rd32(E1000_EECD);
	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
		/* Pull CS high */
		eecd |= E1000_EECD_CS;
		igb_lower_eec_clk(hw, &eecd);
	}
}

/**
253
 *  igb_release_nvm - Release exclusive access to EEPROM
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 **/
void igb_release_nvm(struct e1000_hw *hw)
{
	u32 eecd;

	e1000_stop_nvm(hw);

	eecd = rd32(E1000_EECD);
	eecd &= ~E1000_EECD_REQ;
	wr32(E1000_EECD, eecd);
}

/**
270
 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
271 272 273 274 275 276 277 278 279 280 281 282 283
 *  @hw: pointer to the HW structure
 *
 *  Setups the EEPROM for reading and writing.
 **/
static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = rd32(E1000_EECD);
	s32 ret_val = 0;
	u16 timeout = 0;
	u8 spi_stat_reg;


284
	if (nvm->type == e1000_nvm_eeprom_spi) {
285 286 287
		/* Clear SK and CS */
		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
		wr32(E1000_EECD, eecd);
288
		wrfl();
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
		udelay(1);
		timeout = NVM_MAX_RETRY_SPI;

		/*
		 * Read "Status Register" repeatedly until the LSB is cleared.
		 * The EEPROM will signal that the command has been completed
		 * by clearing bit 0 of the internal status register.  If it's
		 * not cleared within 'timeout', then error out.
		 */
		while (timeout) {
			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
						 hw->nvm.opcode_bits);
			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
				break;

			udelay(5);
			igb_standby_nvm(hw);
			timeout--;
		}

		if (!timeout) {
311
			hw_dbg("SPI NVM Status error\n");
312 313 314 315 316 317 318 319 320
			ret_val = -E1000_ERR_NVM;
			goto out;
		}
	}

out:
	return ret_val;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/**
 *  igb_read_nvm_spi - Read EEPROM's using SPI
 *  @hw: pointer to the HW structure
 *  @offset: offset of word in the EEPROM to read
 *  @words: number of words to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM.
 **/
s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i = 0;
	s32 ret_val;
	u16 word_in;
	u8 read_opcode = NVM_READ_OPCODE_SPI;

	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		hw_dbg("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	ret_val = nvm->ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = igb_ready_nvm_eeprom(hw);
	if (ret_val)
		goto release;

	igb_standby_nvm(hw);

	if ((nvm->address_bits == 8) && (offset >= 128))
		read_opcode |= NVM_A8_OPCODE_SPI;

	/* Send the READ command (opcode + addr) */
	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);

	/*
	 * Read the data.  SPI NVMs increment the address with each byte
	 * read and will roll over if reading beyond the end.  This allows
	 * us to read the whole NVM from any offset
	 */
	for (i = 0; i < words; i++) {
		word_in = igb_shift_in_eec_bits(hw, 16);
		data[i] = (word_in >> 8) | (word_in << 8);
	}

release:
	nvm->ops.release(hw);

out:
	return ret_val;
}

383
/**
384
 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
 *  @hw: pointer to the HW structure
 *  @offset: offset of word in the EEPROM to read
 *  @words: number of words to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM using the EERD register.
 **/
s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i, eerd = 0;
	s32 ret_val = 0;

	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
404
		hw_dbg("nvm parameter(s) out of bounds\n");
405 406 407 408 409 410 411 412 413 414 415 416 417 418
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	for (i = 0; i < words; i++) {
		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
		       E1000_NVM_RW_REG_START;

		wr32(E1000_EERD, eerd);
		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
		if (ret_val)
			break;

		data[i] = (rd32(E1000_EERD) >>
419
			E1000_NVM_RW_REG_DATA);
420 421 422 423 424 425 426
	}

out:
	return ret_val;
}

/**
427
 *  igb_write_nvm_spi - Write to EEPROM using SPI
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  Writes data to EEPROM at offset using SPI interface.
 *
 *  If e1000_update_nvm_checksum is not called after this function , the
 *  EEPROM will most likley contain an invalid checksum.
 **/
s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val;
	u16 widx = 0;

	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
450
		hw_dbg("nvm parameter(s) out of bounds\n");
451 452 453 454
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

A
Alexander Duyck 已提交
455
	ret_val = hw->nvm.ops.acquire(hw);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	if (ret_val)
		goto out;

	msleep(10);

	while (widx < words) {
		u8 write_opcode = NVM_WRITE_OPCODE_SPI;

		ret_val = igb_ready_nvm_eeprom(hw);
		if (ret_val)
			goto release;

		igb_standby_nvm(hw);

		/* Send the WRITE ENABLE command (8 bit opcode) */
		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
					 nvm->opcode_bits);

		igb_standby_nvm(hw);

		/*
		 * Some SPI eeproms use the 8th address bit embedded in the
		 * opcode
		 */
		if ((nvm->address_bits == 8) && (offset >= 128))
			write_opcode |= NVM_A8_OPCODE_SPI;

		/* Send the Write command (8-bit opcode + addr) */
		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
					 nvm->address_bits);

		/* Loop to allow for up to whole page write of eeprom */
		while (widx < words) {
			u16 word_out = data[widx];
			word_out = (word_out >> 8) | (word_out << 8);
			igb_shift_out_eec_bits(hw, word_out, 16);
			widx++;

			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
				igb_standby_nvm(hw);
				break;
			}
		}
	}

	msleep(10);
release:
A
Alexander Duyck 已提交
504
	hw->nvm.ops.release(hw);
505 506 507 508 509 510

out:
	return ret_val;
}

/**
511
 *  igb_read_part_string - Read device part number
512 513
 *  @hw: pointer to the HW structure
 *  @part_num: pointer to device part number
514
 *  @part_num_size: size of part number buffer
515 516 517 518
 *
 *  Reads the product board assembly (PBA) number from the EEPROM and stores
 *  the value in part_num.
 **/
519
s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
520
{
521
	s32 ret_val;
522
	u16 nvm_data;
523 524 525 526 527 528 529 530 531
	u16 pointer;
	u16 offset;
	u16 length;

	if (part_num == NULL) {
		hw_dbg("PBA string buffer was null\n");
		ret_val = E1000_ERR_INVALID_ARGUMENT;
		goto out;
	}
532

A
Alexander Duyck 已提交
533
	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
534
	if (ret_val) {
535
		hw_dbg("NVM Read Error\n");
536 537 538
		goto out;
	}

539
	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
540
	if (ret_val) {
541
		hw_dbg("NVM Read Error\n");
542 543
		goto out;
	}
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

	/*
	 * if nvm_data is not ptr guard the PBA must be in legacy format which
	 * means pointer is actually our second data word for the PBA number
	 * and we can decode it into an ascii string
	 */
	if (nvm_data != NVM_PBA_PTR_GUARD) {
		hw_dbg("NVM PBA number is not stored as string\n");

		/* we will need 11 characters to store the PBA */
		if (part_num_size < 11) {
			hw_dbg("PBA string buffer too small\n");
			return E1000_ERR_NO_SPACE;
		}

		/* extract hex string from data and pointer */
		part_num[0] = (nvm_data >> 12) & 0xF;
		part_num[1] = (nvm_data >> 8) & 0xF;
		part_num[2] = (nvm_data >> 4) & 0xF;
		part_num[3] = nvm_data & 0xF;
		part_num[4] = (pointer >> 12) & 0xF;
		part_num[5] = (pointer >> 8) & 0xF;
		part_num[6] = '-';
		part_num[7] = 0;
		part_num[8] = (pointer >> 4) & 0xF;
		part_num[9] = pointer & 0xF;

		/* put a null character on the end of our string */
		part_num[10] = '\0';

		/* switch all the data but the '-' to hex char */
		for (offset = 0; offset < 10; offset++) {
			if (part_num[offset] < 0xA)
				part_num[offset] += '0';
			else if (part_num[offset] < 0x10)
				part_num[offset] += 'A' - 0xA;
		}

		goto out;
	}

	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
	if (ret_val) {
		hw_dbg("NVM Read Error\n");
		goto out;
	}

	if (length == 0xFFFF || length == 0) {
		hw_dbg("NVM PBA number section invalid length\n");
		ret_val = E1000_ERR_NVM_PBA_SECTION;
		goto out;
	}
	/* check if part_num buffer is big enough */
	if (part_num_size < (((u32)length * 2) - 1)) {
		hw_dbg("PBA string buffer too small\n");
		ret_val = E1000_ERR_NO_SPACE;
		goto out;
	}

	/* trim pba length from start of string */
	pointer++;
	length--;

	for (offset = 0; offset < length; offset++) {
		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
		if (ret_val) {
			hw_dbg("NVM Read Error\n");
			goto out;
		}
		part_num[offset * 2] = (u8)(nvm_data >> 8);
		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
	}
	part_num[offset * 2] = '\0';
617 618 619 620 621 622

out:
	return ret_val;
}

/**
623
 *  igb_read_mac_addr - Read device MAC address
624 625 626 627 628 629 630 631
 *  @hw: pointer to the HW structure
 *
 *  Reads the device MAC address from the EEPROM and stores the value.
 *  Since devices with two ports use the same EEPROM, we increment the
 *  last bit in the MAC address for the second port.
 **/
s32 igb_read_mac_addr(struct e1000_hw *hw)
{
632 633 634
	u32 rar_high;
	u32 rar_low;
	u16 i;
635

636 637
	rar_high = rd32(E1000_RAH(0));
	rar_low = rd32(E1000_RAL(0));
638

639 640 641 642 643
	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));

	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
644 645 646 647

	for (i = 0; i < ETH_ALEN; i++)
		hw->mac.addr[i] = hw->mac.perm_addr[i];

648
	return 0;
649 650 651
}

/**
652
 *  igb_validate_nvm_checksum - Validate EEPROM checksum
653 654 655 656 657 658 659 660 661 662 663 664
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 checksum = 0;
	u16 i, nvm_data;

	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
A
Alexander Duyck 已提交
665
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
666
		if (ret_val) {
667
			hw_dbg("NVM Read Error\n");
668 669 670 671 672 673
			goto out;
		}
		checksum += nvm_data;
	}

	if (checksum != (u16) NVM_SUM) {
674
		hw_dbg("NVM Checksum Invalid\n");
675 676 677 678 679 680 681 682 683
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

out:
	return ret_val;
}

/**
684
 *  igb_update_nvm_checksum - Update EEPROM checksum
685 686 687 688 689 690 691 692 693 694 695 696 697
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
s32 igb_update_nvm_checksum(struct e1000_hw *hw)
{
	s32  ret_val;
	u16 checksum = 0;
	u16 i, nvm_data;

	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
A
Alexander Duyck 已提交
698
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
699
		if (ret_val) {
700
			hw_dbg("NVM Read Error while updating checksum.\n");
701 702 703 704 705
			goto out;
		}
		checksum += nvm_data;
	}
	checksum = (u16) NVM_SUM - checksum;
A
Alexander Duyck 已提交
706
	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
707
	if (ret_val)
708
		hw_dbg("NVM Write Error while updating checksum.\n");
709 710 711 712 713

out:
	return ret_val;
}