intel_ringbuffer.h 19.2 KB
Newer Older
1 2 3
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

4
#include <linux/hashtable.h>
5
#include "i915_gem_batch_pool.h"
6 7 8

#define I915_CMD_HASH_ORDER 9

9 10 11 12 13 14
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
15
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
16

17 18 19 20 21 22 23 24 25 26 27
/*
 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
 *
 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
 * cacheline, the Head Pointer must not be greater than the Tail
 * Pointer."
 */
#define I915_RING_FREE_SPACE 64

28
struct  intel_hw_status_page {
29
	u32		*page_addr;
30
	unsigned int	gfx_addr;
31
	struct		drm_i915_gem_object *obj;
32 33
};

34 35
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
36

37 38
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
39

40 41
#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
42

43 44
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
45

46 47
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
48

49 50
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
51

52 53 54
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
55 56 57
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
58 59
#define GEN8_SIGNAL_OFFSET(__ring, to)			     \
	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
60
	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
61 62
#define GEN8_WAIT_OFFSET(__ring, from)			     \
	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
63
	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
64

65
enum intel_engine_hangcheck_action {
66
	HANGCHECK_IDLE = 0,
67 68 69 70 71
	HANGCHECK_WAIT,
	HANGCHECK_ACTIVE,
	HANGCHECK_KICK,
	HANGCHECK_HUNG,
};
72

73 74
#define HANGCHECK_SCORE_RING_HUNG 31

75
struct intel_engine_hangcheck {
76
	u64 acthd;
77
	unsigned long user_interrupts;
78
	u32 seqno;
79
	int score;
80
	enum intel_engine_hangcheck_action action;
81
	int deadlock;
82
	u32 instdone[I915_NUM_INSTDONE_REG];
83 84
};

85
struct intel_ring {
86
	struct drm_i915_gem_object *obj;
87
	void *vaddr;
88
	struct i915_vma *vma;
89

90
	struct intel_engine_cs *engine;
91
	struct list_head link;
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	u32 head;
	u32 tail;
	int space;
	int size;
	int effective_size;

	/** We track the position of the requests in the ring buffer, and
	 * when each is retired we increment last_retired_head as the GPU
	 * must have finished processing the request and so we know we
	 * can advance the ringbuffer up to that position.
	 *
	 * last_retired_head is set to -1 after the value is consumed so
	 * we can detect new retirements.
	 */
	u32 last_retired_head;
};

110
struct i915_gem_context;
111
struct drm_i915_reg_table;
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
struct  i915_ctx_workarounds {
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
	struct drm_i915_gem_object *obj;
};

132 133
struct drm_i915_gem_request;

134 135
struct intel_engine_cs {
	struct drm_i915_private *i915;
136
	const char	*name;
137
	enum intel_engine_id {
138
		RCS = 0,
139
		BCS,
140 141 142
		VCS,
		VCS2,	/* Keep instances of the same type engine together. */
		VECS
143
	} id;
144
#define I915_NUM_ENGINES 5
145
#define _VCS(n) (VCS + (n))
146
	unsigned int exec_id;
147 148
	unsigned int hw_id;
	unsigned int guc_id; /* XXX same as hw_id? */
149
	u64 fence_context;
150
	u32		mmio_base;
151
	unsigned int irq_shift;
152
	struct intel_ring *buffer;
153
	struct list_head buffers;
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
172 173 174 175
		struct task_struct *irq_seqno_bh; /* bh for user interrupts */
		unsigned long irq_wakeups;
		bool irq_posted;

176 177
		spinlock_t lock; /* protects the lists of requests */
		struct rb_root waiters; /* sorted by retirement, priority */
178
		struct rb_root signals; /* sorted by retirement */
179
		struct intel_wait *first_wait; /* oldest waiter by retirement */
180
		struct task_struct *signaler; /* used for fence signalling */
181
		struct drm_i915_gem_request *first_signal;
182
		struct timer_list fake_irq; /* used after a missed interrupt */
183 184 185

		bool irq_enabled : 1;
		bool rpm_wakelock : 1;
186 187
	} breadcrumbs;

188 189 190 191 192 193 194
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

195
	struct intel_hw_status_page status_page;
196
	struct i915_ctx_workarounds wa_ctx;
197

198 199
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
200 201
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);
202

203
	int		(*init_hw)(struct intel_engine_cs *engine);
204

205
	int		(*init_context)(struct drm_i915_gem_request *req);
206

207 208 209 210 211 212 213 214 215 216 217 218 219
	int		(*emit_flush)(struct drm_i915_gem_request *request,
				      u32 mode);
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
	int		(*emit_request)(struct drm_i915_gem_request *req);
	void		(*submit_request)(struct drm_i915_gem_request *req);
220 221 222 223 224 225
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
226 227
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
266
	struct {
267
		u32	sync_seqno[I915_NUM_ENGINES-1];
268

269 270 271
		union {
			struct {
				/* our mbox written by others */
272
				u32		wait[I915_NUM_ENGINES];
273
				/* mboxes this ring signals to */
274
				i915_reg_t	signal[I915_NUM_ENGINES];
275
			} mbox;
276
			u64		signal_ggtt[I915_NUM_ENGINES];
277
		};
278 279

		/* AKA wait() */
280 281
		int	(*sync_to)(struct drm_i915_gem_request *to_req,
				   struct intel_engine_cs *from,
282
				   u32 seqno);
283
		int	(*signal)(struct drm_i915_gem_request *signaller_req,
284 285
				  /* num_dwords needed by caller */
				  unsigned int num_dwords);
286
	} semaphore;
287

288
	/* Execlists */
289 290
	struct tasklet_struct irq_tasklet;
	spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
291
	struct list_head execlist_queue;
292
	unsigned int fw_domains;
293 294
	unsigned int next_context_status_buffer;
	unsigned int idle_lite_restore_wa;
295 296
	bool disable_lite_restore_wa;
	u32 ctx_desc_template;
297

298 299 300 301 302
	/**
	 * List of objects currently involved in rendering from the
	 * ringbuffer.
	 *
	 * Includes buffers having the contents of their GPU caches
303
	 * flushed, not necessarily primitives.  last_read_req
304 305 306 307 308 309 310 311 312 313 314 315
	 * represents when the rendering involved will be completed.
	 *
	 * A reference is held on the buffer while on this list.
	 */
	struct list_head active_list;

	/**
	 * List of breadcrumbs associated with GPU requests currently
	 * outstanding.
	 */
	struct list_head request_list;

316 317 318 319 320 321 322
	/**
	 * Seqno of request most recently submitted to request_list.
	 * Used exclusively by hang checker to avoid grabbing lock while
	 * inspecting request list.
	 */
	u32 last_submitted_seqno;

323
	struct i915_gem_context *last_context;
324

325
	struct intel_engine_hangcheck hangcheck;
326

327 328 329 330
	struct {
		struct drm_i915_gem_object *obj;
		u32 gtt_offset;
	} scratch;
331

332 333
	bool needs_cmd_parser;

334
	/*
335
	 * Table of commands the command parser needs to know about
336
	 * for this engine.
337
	 */
338
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
339 340 341 342

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
343 344
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
345 346 347 348 349

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
350
	 * If the command parser finds an entry for a command in the engine's
351
	 * cmd_tables, it gets the command's length based on the table entry.
352 353 354
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
355 356
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
357 358
};

359
static inline bool
360
intel_engine_initialized(const struct intel_engine_cs *engine)
361
{
362
	return engine->i915 != NULL;
363
}
364

365
static inline unsigned
366
intel_engine_flag(const struct intel_engine_cs *engine)
367
{
368
	return 1 << engine->id;
369 370
}

371
static inline u32
372 373
intel_engine_sync_index(struct intel_engine_cs *engine,
			struct intel_engine_cs *other)
374 375 376 377
{
	int idx;

	/*
R
Rodrigo Vivi 已提交
378 379 380 381 382
	 * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
	 * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
	 * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
	 * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
	 * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
383 384
	 */

385
	idx = (other - engine) - 1;
386
	if (idx < 0)
387
		idx += I915_NUM_ENGINES;
388 389 390 391

	return idx;
}

392
static inline void
393
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
394
{
395 396 397
	mb();
	clflush(&engine->status_page.page_addr[reg]);
	mb();
398 399
}

400
static inline u32
401
intel_read_status_page(struct intel_engine_cs *engine, int reg)
402
{
403
	/* Ensure that the compiler doesn't optimize away the load. */
404
	return READ_ONCE(engine->status_page.page_addr[reg]);
405 406
}

M
Mika Kuoppala 已提交
407
static inline void
408
intel_write_status_page(struct intel_engine_cs *engine,
M
Mika Kuoppala 已提交
409 410
			int reg, u32 value)
{
411
	engine->status_page.page_addr[reg] = value;
M
Mika Kuoppala 已提交
412 413
}

414
/*
C
Chris Wilson 已提交
415 416 417 418 419 420 421 422 423 424 425
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
426
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
427
 *
428
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
429
 */
430
#define I915_GEM_HWS_INDEX		0x30
431
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
432
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
433
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
434

435 436
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
437 438
int intel_ring_pin(struct intel_ring *ring);
void intel_ring_unpin(struct intel_ring *ring);
439
void intel_ring_free(struct intel_ring *ring);
440

441 442
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
443

444 445
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);

446
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
447
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
448

449
static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
450
{
451 452
	*(uint32_t *)(ring->vaddr + ring->tail) = data;
	ring->tail += 4;
453 454
}

455
static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
456
{
457
	intel_ring_emit(ring, i915_mmio_reg_offset(reg));
458
}
459

460
static inline void intel_ring_advance(struct intel_ring *ring)
461
{
462 463 464 465 466 467 468
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
469
	 */
470 471 472 473 474 475
}

static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value)
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
	return value & (ring->size - 1);
476
}
477

478
int __intel_ring_space(int head, int tail, int size);
479
void intel_ring_update_space(struct intel_ring *ring);
480

481
int __must_check intel_engine_idle(struct intel_engine_cs *engine);
482
void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
483

484
int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
485
void intel_fini_pipe_control(struct intel_engine_cs *engine);
486

487 488 489
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);

490 491 492 493 494
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
495

496
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
497 498 499 500
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
501

502
int init_workarounds_ring(struct intel_engine_cs *engine);
503

504 505 506
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
507 508 509
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
510
 */
511
#define MIN_SPACE_FOR_ADD_REQUEST 336
512

513 514 515 516 517
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

518 519 520 521 522 523 524
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
struct intel_wait {
	struct rb_node node;
	struct task_struct *tsk;
	u32 seqno;
};

525 526 527 528 529
struct intel_signal_node {
	struct rb_node node;
	struct intel_wait wait;
};

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
547
void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
548 549 550

static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
{
551
	return READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
552 553 554 555 556
}

static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
{
	bool wakeup = false;
557
	struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	/* Note that for this not to dangerously chase a dangling pointer,
	 * the caller is responsible for ensure that the task remain valid for
	 * wake_up_process() i.e. that the RCU grace period cannot expire.
	 *
	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
	 * is unlikely to be beneficial.
	 */
	if (tsk)
		wakeup = wake_up_process(tsk);
	return wakeup;
}

void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
unsigned int intel_kick_waiters(struct drm_i915_private *i915);
574
unsigned int intel_kick_signalers(struct drm_i915_private *i915);
575

576
#endif /* _INTEL_RINGBUFFER_H_ */