timer.c 50.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 *  linux/kernel/timer.c
 *
 *  Kernel internal timers, kernel timekeeping, basic process system calls
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
36
#include <linux/delay.h>
37
#include <linux/tick.h>
38
#include <linux/kallsyms.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

T
Thomas Gleixner 已提交
46 47 48 49
u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

typedef struct tvec_s {
	struct list_head vec[TVN_SIZE];
} tvec_t;

typedef struct tvec_root_s {
	struct list_head vec[TVR_SIZE];
} tvec_root_t;

struct tvec_t_base_s {
69 70
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79
	unsigned long timer_jiffies;
	tvec_root_t tv1;
	tvec_t tv2;
	tvec_t tv3;
	tvec_t tv4;
	tvec_t tv5;
} ____cacheline_aligned_in_smp;

typedef struct tvec_t_base_s tvec_base_t;
A
Andrew Morton 已提交
80

81 82
tvec_base_t boot_tvec_bases;
EXPORT_SYMBOL(boot_tvec_bases);
83
static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
L
Linus Torvalds 已提交
84

85 86 87 88 89
/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
90
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
91 92 93 94 95 96 97 98 99 100 101 102
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
103
 * The return value is the rounded version of the @j parameter.
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
	 */
	if (rem < HZ/4) /* round down */
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

	if (j <= jiffies) /* rounding ate our timeout entirely; */
		return original;
	return j;
}
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
147
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
148 149 150 151 152 153 154 155 156 157 158 159
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
160
 * The return value is the rounded version of the @j parameter.
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
	/*
	 * In theory the following code can skip a jiffy in case jiffies
	 * increments right between the addition and the later subtraction.
	 * However since the entire point of this function is to use approximate
	 * timeouts, it's entirely ok to not handle that.
	 */
	return  __round_jiffies(j + jiffies, cpu) - jiffies;
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
178
 * round_jiffies() rounds an absolute time in the future (in jiffies)
179 180 181 182 183 184 185 186
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
187
 * The return value is the rounded version of the @j parameter.
188 189 190 191 192 193 194 195 196 197 198
 */
unsigned long round_jiffies(unsigned long j)
{
	return __round_jiffies(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
199
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
200 201 202 203 204 205 206 207
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
208
 * The return value is the rounded version of the @j parameter.
209 210 211 212 213 214 215 216
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);


L
Linus Torvalds 已提交
217 218 219 220
static inline void set_running_timer(tvec_base_t *base,
					struct timer_list *timer)
{
#ifdef CONFIG_SMP
221
	base->running_timer = timer;
L
Linus Torvalds 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
#endif
}

static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
	struct list_head *vec;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
		/* If the timeout is larger than 0xffffffff on 64-bit
		 * architectures then we use the maximum timeout:
		 */
		if (idx > 0xffffffffUL) {
			idx = 0xffffffffUL;
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
	/*
	 * Timers are FIFO:
	 */
	list_add_tail(&timer->entry, vec);
}

267 268 269 270 271 272 273 274 275 276 277 278
#ifdef CONFIG_TIMER_STATS
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

279
/**
280 281 282 283 284 285 286 287 288
 * init_timer - initialize a timer.
 * @timer: the timer to be initialized
 *
 * init_timer() must be done to a timer prior calling *any* of the
 * other timer functions.
 */
void fastcall init_timer(struct timer_list *timer)
{
	timer->entry.next = NULL;
289
	timer->base = __raw_get_cpu_var(tvec_bases);
290 291 292 293 294
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
295 296 297 298
}
EXPORT_SYMBOL(init_timer);

static inline void detach_timer(struct timer_list *timer,
299
				int clear_pending)
300 301 302 303 304 305 306 307 308 309
{
	struct list_head *entry = &timer->entry;

	__list_del(entry->prev, entry->next);
	if (clear_pending)
		entry->next = NULL;
	entry->prev = LIST_POISON2;
}

/*
310
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
311 312 313 314 315 316 317 318 319 320
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
321
static tvec_base_t *lock_timer_base(struct timer_list *timer,
322
					unsigned long *flags)
323
	__acquires(timer->base->lock)
324
{
325
	tvec_base_t *base;
326 327 328 329 330 331 332 333 334 335 336 337 338 339

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
			spin_lock_irqsave(&base->lock, *flags);
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU */
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

L
Linus Torvalds 已提交
340 341
int __mod_timer(struct timer_list *timer, unsigned long expires)
{
342
	tvec_base_t *base, *new_base;
L
Linus Torvalds 已提交
343 344 345
	unsigned long flags;
	int ret = 0;

346
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
347 348
	BUG_ON(!timer->function);

349 350 351 352 353 354 355
	base = lock_timer_base(timer, &flags);

	if (timer_pending(timer)) {
		detach_timer(timer, 0);
		ret = 1;
	}

356
	new_base = __get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
357

358
	if (base != new_base) {
L
Linus Torvalds 已提交
359
		/*
360 361 362 363 364
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
365
		 */
366
		if (likely(base->running_timer != timer)) {
367 368 369
			/* See the comment in lock_timer_base() */
			timer->base = NULL;
			spin_unlock(&base->lock);
370 371 372
			base = new_base;
			spin_lock(&base->lock);
			timer->base = base;
L
Linus Torvalds 已提交
373 374 375 376
		}
	}

	timer->expires = expires;
377 378
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
379 380 381 382 383 384

	return ret;
}

EXPORT_SYMBOL(__mod_timer);

385
/**
L
Linus Torvalds 已提交
386 387 388 389 390 391 392 393
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
394
	tvec_base_t *base = per_cpu(tvec_bases, cpu);
L
Linus Torvalds 已提交
395
  	unsigned long flags;
396

397
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
398
  	BUG_ON(timer_pending(timer) || !timer->function);
399 400
	spin_lock_irqsave(&base->lock, flags);
	timer->base = base;
L
Linus Torvalds 已提交
401
	internal_add_timer(base, timer);
402
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
403 404 405
}


406
/**
L
Linus Torvalds 已提交
407 408
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
409
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
410
 *
411
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
	BUG_ON(!timer->function);

430
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443
	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires);
}

EXPORT_SYMBOL(mod_timer);

444
/**
L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454 455 456
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
457
	tvec_base_t *base;
L
Linus Torvalds 已提交
458
	unsigned long flags;
459
	int ret = 0;
L
Linus Torvalds 已提交
460

461
	timer_stats_timer_clear_start_info(timer);
462 463 464 465 466 467
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
		if (timer_pending(timer)) {
			detach_timer(timer, 1);
			ret = 1;
		}
L
Linus Torvalds 已提交
468 469 470
		spin_unlock_irqrestore(&base->lock, flags);
	}

471
	return ret;
L
Linus Torvalds 已提交
472 473 474 475 476
}

EXPORT_SYMBOL(del_timer);

#ifdef CONFIG_SMP
477 478 479 480
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
481 482 483 484 485 486 487
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 *
 * It must not be called from interrupt contexts.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
488
	tvec_base_t *base;
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	unsigned long flags;
	int ret = -1;

	base = lock_timer_base(timer, &flags);

	if (base->running_timer == timer)
		goto out;

	ret = 0;
	if (timer_pending(timer)) {
		detach_timer(timer, 1);
		ret = 1;
	}
out:
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}

508 509
EXPORT_SYMBOL(try_to_del_timer_sync);

510
/**
L
Linus Torvalds 已提交
511 512 513 514 515 516 517
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
518
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
519 520
 * otherwise this function is meaningless. It must not be called from
 * interrupt contexts. The caller must not hold locks which would prevent
521 522 523
 * completion of the timer's handler. The timer's handler must not call
 * add_timer_on(). Upon exit the timer is not queued and the handler is
 * not running on any CPU.
L
Linus Torvalds 已提交
524 525 526 527 528
 *
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
529 530 531 532
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
533
		cpu_relax();
534
	}
L
Linus Torvalds 已提交
535 536
}

537
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
538 539 540 541 542
#endif

static int cascade(tvec_base_t *base, tvec_t *tv, int index)
{
	/* cascade all the timers from tv up one level */
543 544 545 546
	struct timer_list *timer, *tmp;
	struct list_head tv_list;

	list_replace_init(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
547 548

	/*
549 550
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
551
	 */
552 553 554
	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
		BUG_ON(timer->base != base);
		internal_add_timer(base, timer);
L
Linus Torvalds 已提交
555 556 557 558 559
	}

	return index;
}

560 561 562
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

/**
L
Linus Torvalds 已提交
563 564 565 566 567 568 569 570 571 572
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
static inline void __run_timers(tvec_base_t *base)
{
	struct timer_list *timer;

573
	spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
574
	while (time_after_eq(jiffies, base->timer_jiffies)) {
575
		struct list_head work_list;
L
Linus Torvalds 已提交
576 577
		struct list_head *head = &work_list;
 		int index = base->timer_jiffies & TVR_MASK;
578

L
Linus Torvalds 已提交
579 580 581 582 583 584 585 586
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
587 588
		++base->timer_jiffies;
		list_replace_init(base->tv1.vec + index, &work_list);
589
		while (!list_empty(head)) {
L
Linus Torvalds 已提交
590 591 592 593 594 595 596
			void (*fn)(unsigned long);
			unsigned long data;

			timer = list_entry(head->next,struct timer_list,entry);
 			fn = timer->function;
 			data = timer->data;

597 598
			timer_stats_account_timer(timer);

L
Linus Torvalds 已提交
599
			set_running_timer(base, timer);
600
			detach_timer(timer, 1);
601
			spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
602
			{
603
				int preempt_count = preempt_count();
L
Linus Torvalds 已提交
604 605
				fn(data);
				if (preempt_count != preempt_count()) {
606 607 608 609 610
					printk(KERN_WARNING "huh, entered %p "
					       "with preempt_count %08x, exited"
					       " with %08x?\n",
					       fn, preempt_count,
					       preempt_count());
L
Linus Torvalds 已提交
611 612 613
					BUG();
				}
			}
614
			spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
615 616 617
		}
	}
	set_running_timer(base, NULL);
618
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
619 620
}

621
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
L
Linus Torvalds 已提交
622 623 624 625 626
/*
 * Find out when the next timer event is due to happen. This
 * is used on S/390 to stop all activity when a cpus is idle.
 * This functions needs to be called disabled.
 */
627
static unsigned long __next_timer_interrupt(tvec_base_t *base)
L
Linus Torvalds 已提交
628
{
629 630 631
	unsigned long timer_jiffies = base->timer_jiffies;
	unsigned long expires = timer_jiffies + (LONG_MAX >> 1);
	int index, slot, array, found = 0;
L
Linus Torvalds 已提交
632 633 634 635
	struct timer_list *nte;
	tvec_t *varray[4];

	/* Look for timer events in tv1. */
636
	index = slot = timer_jiffies & TVR_MASK;
L
Linus Torvalds 已提交
637
	do {
638 639
		list_for_each_entry(nte, base->tv1.vec + slot, entry) {
			found = 1;
L
Linus Torvalds 已提交
640
			expires = nte->expires;
641 642 643 644
			/* Look at the cascade bucket(s)? */
			if (!index || slot < index)
				goto cascade;
			return expires;
L
Linus Torvalds 已提交
645
		}
646 647 648 649 650 651 652 653
		slot = (slot + 1) & TVR_MASK;
	} while (slot != index);

cascade:
	/* Calculate the next cascade event */
	if (index)
		timer_jiffies += TVR_SIZE - index;
	timer_jiffies >>= TVR_BITS;
L
Linus Torvalds 已提交
654 655 656 657 658 659

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
660 661 662 663 664

	for (array = 0; array < 4; array++) {
		tvec_t *varp = varray[array];

		index = slot = timer_jiffies & TVN_MASK;
L
Linus Torvalds 已提交
665
		do {
666 667
			list_for_each_entry(nte, varp->vec + slot, entry) {
				found = 1;
L
Linus Torvalds 已提交
668 669
				if (time_before(nte->expires, expires))
					expires = nte->expires;
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
			}
			/*
			 * Do we still search for the first timer or are
			 * we looking up the cascade buckets ?
			 */
			if (found) {
				/* Look at the cascade bucket(s)? */
				if (!index || slot < index)
					break;
				return expires;
			}
			slot = (slot + 1) & TVN_MASK;
		} while (slot != index);

		if (index)
			timer_jiffies += TVN_SIZE - index;
		timer_jiffies >>= TVN_BITS;
L
Linus Torvalds 已提交
687
	}
688 689
	return expires;
}
690

691 692 693 694 695 696 697 698 699
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
static unsigned long cmp_next_hrtimer_event(unsigned long now,
					    unsigned long expires)
{
	ktime_t hr_delta = hrtimer_get_next_event();
	struct timespec tsdelta;
700
	unsigned long delta;
701 702 703

	if (hr_delta.tv64 == KTIME_MAX)
		return expires;
704

705 706 707 708 709
	/*
	 * Expired timer available, let it expire in the next tick
	 */
	if (hr_delta.tv64 <= 0)
		return now + 1;
710

711
	tsdelta = ktime_to_timespec(hr_delta);
712 713 714 715 716 717 718 719 720 721
	delta = timespec_to_jiffies(&tsdelta);
	/*
	 * Take rounding errors in to account and make sure, that it
	 * expires in the next tick. Otherwise we go into an endless
	 * ping pong due to tick_nohz_stop_sched_tick() retriggering
	 * the timer softirq
	 */
	if (delta < 1)
		delta = 1;
	now += delta;
722 723
	if (time_before(now, expires))
		return now;
L
Linus Torvalds 已提交
724 725
	return expires;
}
726 727 728

/**
 * next_timer_interrupt - return the jiffy of the next pending timer
729
 * @now: current time (in jiffies)
730
 */
731
unsigned long get_next_timer_interrupt(unsigned long now)
732 733
{
	tvec_base_t *base = __get_cpu_var(tvec_bases);
734
	unsigned long expires;
735 736 737 738 739 740 741 742 743 744

	spin_lock(&base->lock);
	expires = __next_timer_interrupt(base);
	spin_unlock(&base->lock);

	if (time_before_eq(expires, now))
		return now;

	return cmp_next_hrtimer_event(now, expires);
}
745 746 747 748 749 750 751 752

#ifdef CONFIG_NO_IDLE_HZ
unsigned long next_timer_interrupt(void)
{
	return get_next_timer_interrupt(jiffies);
}
#endif

L
Linus Torvalds 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
#endif

/******************************************************************/

/* 
 * The current time 
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
 */
struct timespec xtime __attribute__ ((aligned (16)));
struct timespec wall_to_monotonic __attribute__ ((aligned (16)));

EXPORT_SYMBOL(xtime);

770

771 772 773
/* XXX - all of this timekeeping code should be later moved to time.c */
#include <linux/clocksource.h>
static struct clocksource *clock; /* pointer to current clocksource */
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

#ifdef CONFIG_GENERIC_TIME
/**
 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
 *
 * private function, must hold xtime_lock lock when being
 * called. Returns the number of nanoseconds since the
 * last call to update_wall_time() (adjusted by NTP scaling)
 */
static inline s64 __get_nsec_offset(void)
{
	cycle_t cycle_now, cycle_delta;
	s64 ns_offset;

	/* read clocksource: */
789
	cycle_now = clocksource_read(clock);
790 791

	/* calculate the delta since the last update_wall_time: */
792
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

	/* convert to nanoseconds: */
	ns_offset = cyc2ns(clock, cycle_delta);

	return ns_offset;
}

/**
 * __get_realtime_clock_ts - Returns the time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec. Used by
 * do_gettimeofday() and get_realtime_clock_ts().
 */
static inline void __get_realtime_clock_ts(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
		nsecs = __get_nsec_offset();

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

/**
824
 * getnstimeofday - Returns the time of day in a timespec
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void getnstimeofday(struct timespec *ts)
{
	__get_realtime_clock_ts(ts);
}

EXPORT_SYMBOL(getnstimeofday);

/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
 * NOTE: Users should be converted to using get_realtime_clock_ts()
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

	__get_realtime_clock_ts(&now);
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
int do_settimeofday(struct timespec *tv)
{
	unsigned long flags;
	time_t wtm_sec, sec = tv->tv_sec;
	long wtm_nsec, nsec = tv->tv_nsec;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

	nsec -= __get_nsec_offset();

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);

	set_normalized_timespec(&xtime, sec, nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

877
	clock->error = 0;
878 879
	ntp_clear();

880 881
	update_vsyscall(&xtime, clock);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
897
static void change_clocksource(void)
898 899 900 901
{
	struct clocksource *new;
	cycle_t now;
	u64 nsec;
902

903
	new = clocksource_get_next();
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

	if (clock == new)
		return;

	now = clocksource_read(new);
	nsec =  __get_nsec_offset();
	timespec_add_ns(&xtime, nsec);

	clock = new;
	clock->cycle_last = now;

	clock->error = 0;
	clock->xtime_nsec = 0;
	clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);

919 920
	tick_clock_notify();

921 922
	printk(KERN_INFO "Time: %s clocksource has been installed.\n",
	       clock->name);
923 924
}
#else
925
static inline void change_clocksource(void) { }
926 927 928
#endif

/**
929
 * timekeeping_is_continuous - check to see if timekeeping is free running
930 931 932 933 934 935 936 937 938
 */
int timekeeping_is_continuous(void)
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

939
		ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
940 941 942 943 944 945

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959
/**
 * read_persistent_clock -  Return time in seconds from the persistent clock.
 *
 * Weak dummy function for arches that do not yet support it.
 * Returns seconds from epoch using the battery backed persistent clock.
 * Returns zero if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
unsigned long __attribute__((weak)) read_persistent_clock(void)
{
	return 0;
}

L
Linus Torvalds 已提交
960
/*
961
 * timekeeping_init - Initializes the clocksource and common timekeeping values
L
Linus Torvalds 已提交
962
 */
963
void __init timekeeping_init(void)
L
Linus Torvalds 已提交
964
{
965
	unsigned long flags;
966
	unsigned long sec = read_persistent_clock();
967 968

	write_seqlock_irqsave(&xtime_lock, flags);
969 970 971

	ntp_clear();

972
	clock = clocksource_get_next();
J
john stultz 已提交
973
	clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
974
	clock->cycle_last = clocksource_read(clock);
975

976 977 978 979 980
	xtime.tv_sec = sec;
	xtime.tv_nsec = 0;
	set_normalized_timespec(&wall_to_monotonic,
		-xtime.tv_sec, -xtime.tv_nsec);

981 982 983
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

984
/* flag for if timekeeping is suspended */
985
static int timekeeping_suspended;
986 987 988
/* time in seconds when suspend began */
static unsigned long timekeeping_suspend_time;

989
/**
990 991 992 993
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 * @dev:	unused
 *
 * This is for the generic clocksource timekeeping.
A
Atsushi Nemoto 已提交
994
 * xtime/wall_to_monotonic/jiffies/etc are
995 996 997 998 999
 * still managed by arch specific suspend/resume code.
 */
static int timekeeping_resume(struct sys_device *dev)
{
	unsigned long flags;
1000
	unsigned long now = read_persistent_clock();
1001 1002

	write_seqlock_irqsave(&xtime_lock, flags);
1003 1004 1005 1006 1007 1008 1009 1010

	if (now && (now > timekeeping_suspend_time)) {
		unsigned long sleep_length = now - timekeeping_suspend_time;

		xtime.tv_sec += sleep_length;
		wall_to_monotonic.tv_sec -= sleep_length;
	}
	/* re-base the last cycle value */
1011
	clock->cycle_last = clocksource_read(clock);
1012 1013 1014
	clock->error = 0;
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);
1015 1016

	touch_softlockup_watchdog();
1017 1018 1019

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

1020
	/* Resume hrtimers */
1021
	hres_timers_resume();
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031
	return 0;
}

static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
{
	unsigned long flags;

	write_seqlock_irqsave(&xtime_lock, flags);
	timekeeping_suspended = 1;
1032
	timekeeping_suspend_time = read_persistent_clock();
1033
	write_sequnlock_irqrestore(&xtime_lock, flags);
1034 1035 1036

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);

1037 1038 1039 1040 1041 1042
	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
static struct sysdev_class timekeeping_sysclass = {
	.resume		= timekeeping_resume,
1043
	.suspend	= timekeeping_suspend,
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	set_kset_name("timekeeping"),
};

static struct sys_device device_timer = {
	.id		= 0,
	.cls		= &timekeeping_sysclass,
};

static int __init timekeeping_init_device(void)
{
	int error = sysdev_class_register(&timekeeping_sysclass);
	if (!error)
		error = sysdev_register(&device_timer);
	return error;
}

device_initcall(timekeeping_init_device);

1062
/*
1063
 * If the error is already larger, we look ahead even further
1064 1065
 * to compensate for late or lost adjustments.
 */
D
Daniel Walker 已提交
1066 1067
static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
						 s64 *offset)
1068
{
1069 1070 1071
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;
1072 1073

	/*
1074 1075 1076 1077 1078 1079 1080
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
	 * here.  This is tuned so that an error of about 1 msec is adusted
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1081
	 */
1082 1083 1084 1085
	error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;
1086 1087

	/*
1088 1089
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
1090
	 */
D
Daniel Walker 已提交
1091 1092
	tick_error = current_tick_length() >>
		(TICK_LENGTH_SHIFT - clock->shift + 1);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	tick_error -= clock->xtime_interval >> 1;
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
1104
	}
1105 1106
	for (adj = 0; error > i; adj++)
		error >>= 1;
1107 1108 1109

	*interval <<= adj;
	*offset <<= adj;
1110
	return mult << adj;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
static void clocksource_adjust(struct clocksource *clock, s64 offset)
{
	s64 error, interval = clock->cycle_interval;
	int adj;

	error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
	if (error > interval) {
1125 1126 1127 1128 1129
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
			adj = clocksource_bigadjust(error, &interval, &offset);
1130
	} else if (error < -interval) {
1131 1132 1133 1134 1135 1136 1137
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
			adj = clocksource_bigadjust(error, &interval, &offset);
1138 1139 1140 1141 1142 1143
	} else
		return;

	clock->mult += adj;
	clock->xtime_interval += interval;
	clock->xtime_nsec -= offset;
D
Daniel Walker 已提交
1144 1145
	clock->error -= (interval - offset) <<
			(TICK_LENGTH_SHIFT - clock->shift);
1146 1147
}

1148
/**
1149 1150 1151 1152 1153 1154
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
static void update_wall_time(void)
{
1155
	cycle_t offset;
1156

1157 1158 1159
	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;
1160

1161 1162 1163 1164 1165
#ifdef CONFIG_GENERIC_TIME
	offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
#else
	offset = clock->cycle_interval;
#endif
1166
	clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
1167 1168 1169 1170

	/* normally this loop will run just once, however in the
	 * case of lost or late ticks, it will accumulate correctly.
	 */
1171
	while (offset >= clock->cycle_interval) {
1172
		/* accumulate one interval */
1173 1174 1175 1176 1177 1178 1179 1180 1181
		clock->xtime_nsec += clock->xtime_interval;
		clock->cycle_last += clock->cycle_interval;
		offset -= clock->cycle_interval;

		if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
			clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
			xtime.tv_sec++;
			second_overflow();
		}
1182

1183
		/* interpolator bits */
1184
		time_interpolator_update(clock->xtime_interval
1185 1186 1187
						>> clock->shift);

		/* accumulate error between NTP and clock interval */
1188 1189 1190
		clock->error += current_tick_length();
		clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
	}
1191

1192 1193
	/* correct the clock when NTP error is too big */
	clocksource_adjust(clock, offset);
1194 1195

	/* store full nanoseconds into xtime */
1196
	xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
1197
	clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
1198 1199

	/* check to see if there is a new clocksource to use */
1200
	change_clocksource();
1201
	update_vsyscall(&xtime, clock);
L
Linus Torvalds 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
}

/*
 * Called from the timer interrupt handler to charge one tick to the current 
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;
	int cpu = smp_processor_id();

	/* Note: this timer irq context must be accounted for as well. */
	if (user_tick)
		account_user_time(p, jiffies_to_cputime(1));
	else
		account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
	run_local_timers();
	if (rcu_pending(cpu))
		rcu_check_callbacks(cpu, user_tick);
	scheduler_tick();
 	run_posix_cpu_timers(p);
}

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
1230
	return nr_active() * FIXED_1;
L
Linus Torvalds 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
}

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 *
 * Requires xtime_lock to access.
 */
unsigned long avenrun[3];

EXPORT_SYMBOL(avenrun);

/*
 * calc_load - given tick count, update the avenrun load estimates.
 * This is called while holding a write_lock on xtime_lock.
 */
static inline void calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

E
Eric Dumazet 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262
	count -= ticks;
	if (unlikely(count < 0)) {
		active_tasks = count_active_tasks();
		do {
			CALC_LOAD(avenrun[0], EXP_1, active_tasks);
			CALC_LOAD(avenrun[1], EXP_5, active_tasks);
			CALC_LOAD(avenrun[2], EXP_15, active_tasks);
			count += LOAD_FREQ;
		} while (count < 0);
L
Linus Torvalds 已提交
1263 1264 1265 1266 1267 1268 1269
	}
}

/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime and avenrun.
 */
1270
__attribute__((weak)) __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
L
Linus Torvalds 已提交
1271 1272 1273 1274 1275 1276 1277 1278

EXPORT_SYMBOL(xtime_lock);

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
1279
	tvec_base_t *base = __get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
1280

1281 1282
	hrtimer_run_queues();

L
Linus Torvalds 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
	raise_softirq(TIMER_SOFTIRQ);
1293
	softlockup_tick();
L
Linus Torvalds 已提交
1294 1295 1296 1297 1298 1299
}

/*
 * Called by the timer interrupt. xtime_lock must already be taken
 * by the timer IRQ!
 */
1300
static inline void update_times(unsigned long ticks)
L
Linus Torvalds 已提交
1301
{
1302
	update_wall_time();
L
Linus Torvalds 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311
	calc_load(ticks);
}
  
/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */

1312
void do_timer(unsigned long ticks)
L
Linus Torvalds 已提交
1313
{
1314 1315
	jiffies_64 += ticks;
	update_times(ticks);
L
Linus Torvalds 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage unsigned long sys_alarm(unsigned int seconds)
{
1326
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
}

#endif

#ifndef __alpha__

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */

/**
 * sys_getpid - return the thread group id of the current process
 *
 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 * the pid are identical unless CLONE_THREAD was specified on clone() in
 * which case the tgid is the same in all threads of the same group.
 *
 * This is SMP safe as current->tgid does not change.
 */
asmlinkage long sys_getpid(void)
{
	return current->tgid;
}

/*
1353 1354 1355 1356
 * Accessing ->real_parent is not SMP-safe, it could
 * change from under us. However, we can use a stale
 * value of ->real_parent under rcu_read_lock(), see
 * release_task()->call_rcu(delayed_put_task_struct).
L
Linus Torvalds 已提交
1357 1358 1359 1360 1361
 */
asmlinkage long sys_getppid(void)
{
	int pid;

1362 1363 1364
	rcu_read_lock();
	pid = rcu_dereference(current->real_parent)->tgid;
	rcu_read_unlock();
L
Linus Torvalds 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

	return pid;
}

asmlinkage long sys_getuid(void)
{
	/* Only we change this so SMP safe */
	return current->uid;
}

asmlinkage long sys_geteuid(void)
{
	/* Only we change this so SMP safe */
	return current->euid;
}

asmlinkage long sys_getgid(void)
{
	/* Only we change this so SMP safe */
	return current->gid;
}

asmlinkage long sys_getegid(void)
{
	/* Only we change this so SMP safe */
	return  current->egid;
}

#endif

static void process_timeout(unsigned long __data)
{
1397
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
fastcall signed long __sched schedule_timeout(signed long timeout)
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1451
		if (timeout < 0) {
L
Linus Torvalds 已提交
1452
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1453 1454
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1455 1456 1457 1458 1459 1460 1461
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1462 1463
	setup_timer(&timer, process_timeout, (unsigned long)current);
	__mod_timer(&timer, expire);
L
Linus Torvalds 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	schedule();
	del_singleshot_timer_sync(&timer);

	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1474 1475 1476 1477
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1478 1479
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1480 1481
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1482 1483 1484 1485 1486
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1487 1488
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1489 1490 1491
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

L
Linus Torvalds 已提交
1492 1493 1494 1495 1496 1497
/* Thread ID - the internal kernel "pid" */
asmlinkage long sys_gettid(void)
{
	return current->pid;
}

1498
/**
1499
 * do_sysinfo - fill in sysinfo struct
1500
 * @info: pointer to buffer to fill
L
Linus Torvalds 已提交
1501
 */ 
1502
int do_sysinfo(struct sysinfo *info)
L
Linus Torvalds 已提交
1503 1504 1505 1506 1507
{
	unsigned long mem_total, sav_total;
	unsigned int mem_unit, bitcount;
	unsigned long seq;

1508
	memset(info, 0, sizeof(struct sysinfo));
L
Linus Torvalds 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

	do {
		struct timespec tp;
		seq = read_seqbegin(&xtime_lock);

		/*
		 * This is annoying.  The below is the same thing
		 * posix_get_clock_monotonic() does, but it wants to
		 * take the lock which we want to cover the loads stuff
		 * too.
		 */

		getnstimeofday(&tp);
		tp.tv_sec += wall_to_monotonic.tv_sec;
		tp.tv_nsec += wall_to_monotonic.tv_nsec;
		if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
			tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
			tp.tv_sec++;
		}
1528
		info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
L
Linus Torvalds 已提交
1529

1530 1531 1532
		info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
		info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
		info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
L
Linus Torvalds 已提交
1533

1534
		info->procs = nr_threads;
L
Linus Torvalds 已提交
1535 1536
	} while (read_seqretry(&xtime_lock, seq));

1537 1538
	si_meminfo(info);
	si_swapinfo(info);
L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

	/*
	 * If the sum of all the available memory (i.e. ram + swap)
	 * is less than can be stored in a 32 bit unsigned long then
	 * we can be binary compatible with 2.2.x kernels.  If not,
	 * well, in that case 2.2.x was broken anyways...
	 *
	 *  -Erik Andersen <andersee@debian.org>
	 */

1549 1550
	mem_total = info->totalram + info->totalswap;
	if (mem_total < info->totalram || mem_total < info->totalswap)
L
Linus Torvalds 已提交
1551 1552
		goto out;
	bitcount = 0;
1553
	mem_unit = info->mem_unit;
L
Linus Torvalds 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	while (mem_unit > 1) {
		bitcount++;
		mem_unit >>= 1;
		sav_total = mem_total;
		mem_total <<= 1;
		if (mem_total < sav_total)
			goto out;
	}

	/*
	 * If mem_total did not overflow, multiply all memory values by
1565
	 * info->mem_unit and set it to 1.  This leaves things compatible
L
Linus Torvalds 已提交
1566 1567 1568 1569
	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
	 * kernels...
	 */

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	info->mem_unit = 1;
	info->totalram <<= bitcount;
	info->freeram <<= bitcount;
	info->sharedram <<= bitcount;
	info->bufferram <<= bitcount;
	info->totalswap <<= bitcount;
	info->freeswap <<= bitcount;
	info->totalhigh <<= bitcount;
	info->freehigh <<= bitcount;

out:
	return 0;
}

asmlinkage long sys_sysinfo(struct sysinfo __user *info)
{
	struct sysinfo val;

	do_sysinfo(&val);
L
Linus Torvalds 已提交
1589 1590 1591 1592 1593 1594 1595

	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
		return -EFAULT;

	return 0;
}

1596 1597 1598 1599 1600 1601 1602
/*
 * lockdep: we want to track each per-CPU base as a separate lock-class,
 * but timer-bases are kmalloc()-ed, so we need to attach separate
 * keys to them:
 */
static struct lock_class_key base_lock_keys[NR_CPUS];

1603
static int __devinit init_timers_cpu(int cpu)
L
Linus Torvalds 已提交
1604 1605 1606
{
	int j;
	tvec_base_t *base;
A
Andrew Morton 已提交
1607
	static char __devinitdata tvec_base_done[NR_CPUS];
1608

A
Andrew Morton 已提交
1609
	if (!tvec_base_done[cpu]) {
1610 1611 1612
		static char boot_done;

		if (boot_done) {
A
Andrew Morton 已提交
1613 1614 1615
			/*
			 * The APs use this path later in boot
			 */
1616 1617 1618 1619 1620
			base = kmalloc_node(sizeof(*base), GFP_KERNEL,
						cpu_to_node(cpu));
			if (!base)
				return -ENOMEM;
			memset(base, 0, sizeof(*base));
A
Andrew Morton 已提交
1621
			per_cpu(tvec_bases, cpu) = base;
1622
		} else {
A
Andrew Morton 已提交
1623 1624 1625 1626 1627 1628
			/*
			 * This is for the boot CPU - we use compile-time
			 * static initialisation because per-cpu memory isn't
			 * ready yet and because the memory allocators are not
			 * initialised either.
			 */
1629
			boot_done = 1;
A
Andrew Morton 已提交
1630
			base = &boot_tvec_bases;
1631
		}
A
Andrew Morton 已提交
1632 1633 1634
		tvec_base_done[cpu] = 1;
	} else {
		base = per_cpu(tvec_bases, cpu);
1635
	}
A
Andrew Morton 已提交
1636

1637
	spin_lock_init(&base->lock);
1638 1639
	lockdep_set_class(&base->lock, base_lock_keys + cpu);

L
Linus Torvalds 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	for (j = 0; j < TVN_SIZE; j++) {
		INIT_LIST_HEAD(base->tv5.vec + j);
		INIT_LIST_HEAD(base->tv4.vec + j);
		INIT_LIST_HEAD(base->tv3.vec + j);
		INIT_LIST_HEAD(base->tv2.vec + j);
	}
	for (j = 0; j < TVR_SIZE; j++)
		INIT_LIST_HEAD(base->tv1.vec + j);

	base->timer_jiffies = jiffies;
1650
	return 0;
L
Linus Torvalds 已提交
1651 1652 1653
}

#ifdef CONFIG_HOTPLUG_CPU
1654
static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
L
Linus Torvalds 已提交
1655 1656 1657 1658 1659
{
	struct timer_list *timer;

	while (!list_empty(head)) {
		timer = list_entry(head->next, struct timer_list, entry);
1660
		detach_timer(timer, 0);
1661
		timer->base = new_base;
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		internal_add_timer(new_base, timer);
	}
}

static void __devinit migrate_timers(int cpu)
{
	tvec_base_t *old_base;
	tvec_base_t *new_base;
	int i;

	BUG_ON(cpu_online(cpu));
1673 1674
	old_base = per_cpu(tvec_bases, cpu);
	new_base = get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
1675 1676

	local_irq_disable();
1677 1678
	double_spin_lock(&new_base->lock, &old_base->lock,
			 smp_processor_id() < cpu);
1679 1680

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1681 1682

	for (i = 0; i < TVR_SIZE; i++)
1683 1684 1685 1686 1687 1688 1689 1690
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1691 1692
	double_spin_unlock(&new_base->lock, &old_base->lock,
			   smp_processor_id() < cpu);
L
Linus Torvalds 已提交
1693 1694 1695 1696 1697
	local_irq_enable();
	put_cpu_var(tvec_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1698
static int __cpuinit timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1699 1700 1701 1702 1703
				unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	switch(action) {
	case CPU_UP_PREPARE:
1704 1705
		if (init_timers_cpu(cpu) < 0)
			return NOTIFY_BAD;
L
Linus Torvalds 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
		migrate_timers(cpu);
		break;
#endif
	default:
		break;
	}
	return NOTIFY_OK;
}

1718
static struct notifier_block __cpuinitdata timers_nb = {
L
Linus Torvalds 已提交
1719 1720 1721 1722 1723 1724
	.notifier_call	= timer_cpu_notify,
};


void __init init_timers(void)
{
1725
	int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
L
Linus Torvalds 已提交
1726
				(void *)(long)smp_processor_id());
1727

1728 1729
	init_timer_stats();

1730
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735 1736
	register_cpu_notifier(&timers_nb);
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
}

#ifdef CONFIG_TIME_INTERPOLATION

1737 1738
struct time_interpolator *time_interpolator __read_mostly;
static struct time_interpolator *time_interpolator_list __read_mostly;
L
Linus Torvalds 已提交
1739 1740
static DEFINE_SPINLOCK(time_interpolator_lock);

1741
static inline cycles_t time_interpolator_get_cycles(unsigned int src)
L
Linus Torvalds 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
{
	unsigned long (*x)(void);

	switch (src)
	{
		case TIME_SOURCE_FUNCTION:
			x = time_interpolator->addr;
			return x();

		case TIME_SOURCE_MMIO64	:
1752
			return readq_relaxed((void __iomem *)time_interpolator->addr);
L
Linus Torvalds 已提交
1753 1754

		case TIME_SOURCE_MMIO32	:
1755
			return readl_relaxed((void __iomem *)time_interpolator->addr);
L
Linus Torvalds 已提交
1756 1757 1758 1759 1760

		default: return get_cycles();
	}
}

1761
static inline u64 time_interpolator_get_counter(int writelock)
L
Linus Torvalds 已提交
1762 1763 1764 1765 1766
{
	unsigned int src = time_interpolator->source;

	if (time_interpolator->jitter)
	{
1767 1768
		cycles_t lcycle;
		cycles_t now;
L
Linus Torvalds 已提交
1769 1770 1771 1772 1773 1774

		do {
			lcycle = time_interpolator->last_cycle;
			now = time_interpolator_get_cycles(src);
			if (lcycle && time_after(lcycle, now))
				return lcycle;
1775 1776 1777 1778 1779 1780 1781 1782 1783

			/* When holding the xtime write lock, there's no need
			 * to add the overhead of the cmpxchg.  Readers are
			 * force to retry until the write lock is released.
			 */
			if (writelock) {
				time_interpolator->last_cycle = now;
				return now;
			}
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
			/* Keep track of the last timer value returned. The use of cmpxchg here
			 * will cause contention in an SMP environment.
			 */
		} while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
		return now;
	}
	else
		return time_interpolator_get_cycles(src);
}

void time_interpolator_reset(void)
{
	time_interpolator->offset = 0;
1797
	time_interpolator->last_counter = time_interpolator_get_counter(1);
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
}

#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)

unsigned long time_interpolator_get_offset(void)
{
	/* If we do not have a time interpolator set up then just return zero */
	if (!time_interpolator)
		return 0;

	return time_interpolator->offset +
1809
		GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814
}

#define INTERPOLATOR_ADJUST 65536
#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST

1815
void time_interpolator_update(long delta_nsec)
L
Linus Torvalds 已提交
1816 1817 1818 1819 1820 1821 1822 1823
{
	u64 counter;
	unsigned long offset;

	/* If there is no time interpolator set up then do nothing */
	if (!time_interpolator)
		return;

A
Andrew Morton 已提交
1824 1825 1826 1827 1828 1829 1830 1831
	/*
	 * The interpolator compensates for late ticks by accumulating the late
	 * time in time_interpolator->offset. A tick earlier than expected will
	 * lead to a reset of the offset and a corresponding jump of the clock
	 * forward. Again this only works if the interpolator clock is running
	 * slightly slower than the regular clock and the tuning logic insures
	 * that.
	 */
L
Linus Torvalds 已提交
1832

1833
	counter = time_interpolator_get_counter(1);
A
Andrew Morton 已提交
1834 1835
	offset = time_interpolator->offset +
			GET_TI_NSECS(counter, time_interpolator);
L
Linus Torvalds 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

	if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
		time_interpolator->offset = offset - delta_nsec;
	else {
		time_interpolator->skips++;
		time_interpolator->ns_skipped += delta_nsec - offset;
		time_interpolator->offset = 0;
	}
	time_interpolator->last_counter = counter;

	/* Tuning logic for time interpolator invoked every minute or so.
	 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
	 * Increase interpolator clock speed if we skip too much time.
	 */
	if (jiffies % INTERPOLATOR_ADJUST == 0)
	{
1852
		if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
			time_interpolator->nsec_per_cyc--;
		if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
			time_interpolator->nsec_per_cyc++;
		time_interpolator->skips = 0;
		time_interpolator->ns_skipped = 0;
	}
}

static inline int
is_better_time_interpolator(struct time_interpolator *new)
{
	if (!time_interpolator)
		return 1;
	return new->frequency > 2*time_interpolator->frequency ||
	    (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
}

void
register_time_interpolator(struct time_interpolator *ti)
{
	unsigned long flags;

	/* Sanity check */
1876
	BUG_ON(ti->frequency == 0 || ti->mask == 0);
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

	ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
	spin_lock(&time_interpolator_lock);
	write_seqlock_irqsave(&xtime_lock, flags);
	if (is_better_time_interpolator(ti)) {
		time_interpolator = ti;
		time_interpolator_reset();
	}
	write_sequnlock_irqrestore(&xtime_lock, flags);

	ti->next = time_interpolator_list;
	time_interpolator_list = ti;
	spin_unlock(&time_interpolator_lock);
}

void
unregister_time_interpolator(struct time_interpolator *ti)
{
	struct time_interpolator *curr, **prev;
	unsigned long flags;

	spin_lock(&time_interpolator_lock);
	prev = &time_interpolator_list;
	for (curr = *prev; curr; curr = curr->next) {
		if (curr == ti) {
			*prev = curr->next;
			break;
		}
		prev = &curr->next;
	}

	write_seqlock_irqsave(&xtime_lock, flags);
	if (ti == time_interpolator) {
		/* we lost the best time-interpolator: */
		time_interpolator = NULL;
		/* find the next-best interpolator */
		for (curr = time_interpolator_list; curr; curr = curr->next)
			if (is_better_time_interpolator(curr))
				time_interpolator = curr;
		time_interpolator_reset();
	}
	write_sequnlock_irqrestore(&xtime_lock, flags);
	spin_unlock(&time_interpolator_lock);
}
#endif /* CONFIG_TIME_INTERPOLATION */

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1931 1932
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1933 1934 1935 1936 1937
}

EXPORT_SYMBOL(msleep);

/**
1938
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1939 1940 1941 1942 1943 1944
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1945 1946
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1947 1948 1949 1950
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);