timer.c 43.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 *  linux/kernel/timer.c
 *
 *  Kernel internal timers, kernel timekeeping, basic process system calls
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
36
#include <linux/delay.h>
L
Linus Torvalds 已提交
37 38 39 40 41 42 43

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

T
Thomas Gleixner 已提交
44 45 46 47
u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

typedef struct tvec_s {
	struct list_head vec[TVN_SIZE];
} tvec_t;

typedef struct tvec_root_s {
	struct list_head vec[TVR_SIZE];
} tvec_root_t;

struct tvec_t_base_s {
67 68
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
69 70 71 72 73 74 75 76 77
	unsigned long timer_jiffies;
	tvec_root_t tv1;
	tvec_t tv2;
	tvec_t tv3;
	tvec_t tv4;
	tvec_t tv5;
} ____cacheline_aligned_in_smp;

typedef struct tvec_t_base_s tvec_base_t;
A
Andrew Morton 已提交
78

79 80
tvec_base_t boot_tvec_bases;
EXPORT_SYMBOL(boot_tvec_bases);
81
static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
L
Linus Torvalds 已提交
82 83 84 85 86

static inline void set_running_timer(tvec_base_t *base,
					struct timer_list *timer)
{
#ifdef CONFIG_SMP
87
	base->running_timer = timer;
L
Linus Torvalds 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#endif
}

static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
	struct list_head *vec;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
		/* If the timeout is larger than 0xffffffff on 64-bit
		 * architectures then we use the maximum timeout:
		 */
		if (idx > 0xffffffffUL) {
			idx = 0xffffffffUL;
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
	/*
	 * Timers are FIFO:
	 */
	list_add_tail(&timer->entry, vec);
}

133
/**
134 135 136 137 138 139 140 141 142
 * init_timer - initialize a timer.
 * @timer: the timer to be initialized
 *
 * init_timer() must be done to a timer prior calling *any* of the
 * other timer functions.
 */
void fastcall init_timer(struct timer_list *timer)
{
	timer->entry.next = NULL;
143
	timer->base = __raw_get_cpu_var(tvec_bases);
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
}
EXPORT_SYMBOL(init_timer);

static inline void detach_timer(struct timer_list *timer,
					int clear_pending)
{
	struct list_head *entry = &timer->entry;

	__list_del(entry->prev, entry->next);
	if (clear_pending)
		entry->next = NULL;
	entry->prev = LIST_POISON2;
}

/*
159
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
160 161 162 163 164 165 166 167 168 169
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
170
static tvec_base_t *lock_timer_base(struct timer_list *timer,
171
					unsigned long *flags)
172
	__acquires(timer->base->lock)
173
{
174
	tvec_base_t *base;
175 176 177 178 179 180 181 182 183 184 185 186 187 188

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
			spin_lock_irqsave(&base->lock, *flags);
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU */
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

L
Linus Torvalds 已提交
189 190
int __mod_timer(struct timer_list *timer, unsigned long expires)
{
191
	tvec_base_t *base, *new_base;
L
Linus Torvalds 已提交
192 193 194 195 196
	unsigned long flags;
	int ret = 0;

	BUG_ON(!timer->function);

197 198 199 200 201 202 203
	base = lock_timer_base(timer, &flags);

	if (timer_pending(timer)) {
		detach_timer(timer, 0);
		ret = 1;
	}

204
	new_base = __get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
205

206
	if (base != new_base) {
L
Linus Torvalds 已提交
207
		/*
208 209 210 211 212
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
213
		 */
214
		if (likely(base->running_timer != timer)) {
215 216 217
			/* See the comment in lock_timer_base() */
			timer->base = NULL;
			spin_unlock(&base->lock);
218 219 220
			base = new_base;
			spin_lock(&base->lock);
			timer->base = base;
L
Linus Torvalds 已提交
221 222 223 224
		}
	}

	timer->expires = expires;
225 226
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
227 228 229 230 231 232

	return ret;
}

EXPORT_SYMBOL(__mod_timer);

233
/**
L
Linus Torvalds 已提交
234 235 236 237 238 239 240 241
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
242
	tvec_base_t *base = per_cpu(tvec_bases, cpu);
L
Linus Torvalds 已提交
243
  	unsigned long flags;
244

L
Linus Torvalds 已提交
245
  	BUG_ON(timer_pending(timer) || !timer->function);
246 247
	spin_lock_irqsave(&base->lock, flags);
	timer->base = base;
L
Linus Torvalds 已提交
248
	internal_add_timer(base, timer);
249
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
250 251 252
}


253
/**
L
Linus Torvalds 已提交
254 255
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
256
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
 *
 * mod_timer is a more efficient way to update the expire field of an
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
	BUG_ON(!timer->function);

	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires);
}

EXPORT_SYMBOL(mod_timer);

290
/**
L
Linus Torvalds 已提交
291 292 293 294 295 296 297 298 299 300 301 302
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
303
	tvec_base_t *base;
L
Linus Torvalds 已提交
304
	unsigned long flags;
305
	int ret = 0;
L
Linus Torvalds 已提交
306

307 308 309 310 311 312
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
		if (timer_pending(timer)) {
			detach_timer(timer, 1);
			ret = 1;
		}
L
Linus Torvalds 已提交
313 314 315
		spin_unlock_irqrestore(&base->lock, flags);
	}

316
	return ret;
L
Linus Torvalds 已提交
317 318 319 320 321
}

EXPORT_SYMBOL(del_timer);

#ifdef CONFIG_SMP
322 323 324 325
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
326 327 328 329 330 331 332
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 *
 * It must not be called from interrupt contexts.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
333
	tvec_base_t *base;
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	unsigned long flags;
	int ret = -1;

	base = lock_timer_base(timer, &flags);

	if (base->running_timer == timer)
		goto out;

	ret = 0;
	if (timer_pending(timer)) {
		detach_timer(timer, 1);
		ret = 1;
	}
out:
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}

353
/**
L
Linus Torvalds 已提交
354 355 356 357 358 359 360 361 362 363
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
 * Synchronization rules: callers must prevent restarting of the timer,
 * otherwise this function is meaningless. It must not be called from
 * interrupt contexts. The caller must not hold locks which would prevent
364 365 366
 * completion of the timer's handler. The timer's handler must not call
 * add_timer_on(). Upon exit the timer is not queued and the handler is
 * not running on any CPU.
L
Linus Torvalds 已提交
367 368 369 370 371
 *
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
372 373 374 375
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
376
		cpu_relax();
377
	}
L
Linus Torvalds 已提交
378 379
}

380
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
381 382 383 384 385
#endif

static int cascade(tvec_base_t *base, tvec_t *tv, int index)
{
	/* cascade all the timers from tv up one level */
386 387 388 389
	struct timer_list *timer, *tmp;
	struct list_head tv_list;

	list_replace_init(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
390 391

	/*
392 393
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
394
	 */
395 396 397
	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
		BUG_ON(timer->base != base);
		internal_add_timer(base, timer);
L
Linus Torvalds 已提交
398 399 400 401 402
	}

	return index;
}

403 404 405
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

/**
L
Linus Torvalds 已提交
406 407 408 409 410 411 412 413 414 415
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
static inline void __run_timers(tvec_base_t *base)
{
	struct timer_list *timer;

416
	spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
417
	while (time_after_eq(jiffies, base->timer_jiffies)) {
418
		struct list_head work_list;
L
Linus Torvalds 已提交
419 420
		struct list_head *head = &work_list;
 		int index = base->timer_jiffies & TVR_MASK;
421

L
Linus Torvalds 已提交
422 423 424 425 426 427 428 429
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
430 431
		++base->timer_jiffies;
		list_replace_init(base->tv1.vec + index, &work_list);
432
		while (!list_empty(head)) {
L
Linus Torvalds 已提交
433 434 435 436 437 438 439 440
			void (*fn)(unsigned long);
			unsigned long data;

			timer = list_entry(head->next,struct timer_list,entry);
 			fn = timer->function;
 			data = timer->data;

			set_running_timer(base, timer);
441
			detach_timer(timer, 1);
442
			spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
443
			{
444
				int preempt_count = preempt_count();
L
Linus Torvalds 已提交
445 446
				fn(data);
				if (preempt_count != preempt_count()) {
447 448 449 450 451
					printk(KERN_WARNING "huh, entered %p "
					       "with preempt_count %08x, exited"
					       " with %08x?\n",
					       fn, preempt_count,
					       preempt_count());
L
Linus Torvalds 已提交
452 453 454
					BUG();
				}
			}
455
			spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
456 457 458
		}
	}
	set_running_timer(base, NULL);
459
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473
}

#ifdef CONFIG_NO_IDLE_HZ
/*
 * Find out when the next timer event is due to happen. This
 * is used on S/390 to stop all activity when a cpus is idle.
 * This functions needs to be called disabled.
 */
unsigned long next_timer_interrupt(void)
{
	tvec_base_t *base;
	struct list_head *list;
	struct timer_list *nte;
	unsigned long expires;
474 475
	unsigned long hr_expires = MAX_JIFFY_OFFSET;
	ktime_t hr_delta;
L
Linus Torvalds 已提交
476 477 478
	tvec_t *varray[4];
	int i, j;

479 480 481 482 483 484 485 486 487 488
	hr_delta = hrtimer_get_next_event();
	if (hr_delta.tv64 != KTIME_MAX) {
		struct timespec tsdelta;
		tsdelta = ktime_to_timespec(hr_delta);
		hr_expires = timespec_to_jiffies(&tsdelta);
		if (hr_expires < 3)
			return hr_expires + jiffies;
	}
	hr_expires += jiffies;

489
	base = __get_cpu_var(tvec_bases);
490
	spin_lock(&base->lock);
L
Linus Torvalds 已提交
491
	expires = base->timer_jiffies + (LONG_MAX >> 1);
A
Al Viro 已提交
492
	list = NULL;
L
Linus Torvalds 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

	/* Look for timer events in tv1. */
	j = base->timer_jiffies & TVR_MASK;
	do {
		list_for_each_entry(nte, base->tv1.vec + j, entry) {
			expires = nte->expires;
			if (j < (base->timer_jiffies & TVR_MASK))
				list = base->tv2.vec + (INDEX(0));
			goto found;
		}
		j = (j + 1) & TVR_MASK;
	} while (j != (base->timer_jiffies & TVR_MASK));

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
	for (i = 0; i < 4; i++) {
		j = INDEX(i);
		do {
			if (list_empty(varray[i]->vec + j)) {
				j = (j + 1) & TVN_MASK;
				continue;
			}
			list_for_each_entry(nte, varray[i]->vec + j, entry)
				if (time_before(nte->expires, expires))
					expires = nte->expires;
			if (j < (INDEX(i)) && i < 3)
				list = varray[i + 1]->vec + (INDEX(i + 1));
			goto found;
		} while (j != (INDEX(i)));
	}
found:
	if (list) {
		/*
		 * The search wrapped. We need to look at the next list
		 * from next tv element that would cascade into tv element
		 * where we found the timer element.
		 */
		list_for_each_entry(nte, list, entry) {
			if (time_before(nte->expires, expires))
				expires = nte->expires;
		}
	}
538
	spin_unlock(&base->lock);
539

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	/*
	 * It can happen that other CPUs service timer IRQs and increment
	 * jiffies, but we have not yet got a local timer tick to process
	 * the timer wheels.  In that case, the expiry time can be before
	 * jiffies, but since the high-resolution timer here is relative to
	 * jiffies, the default expression when high-resolution timers are
	 * not active,
	 *
	 *   time_before(MAX_JIFFY_OFFSET + jiffies, expires)
	 *
	 * would falsely evaluate to true.  If that is the case, just
	 * return jiffies so that we can immediately fire the local timer
	 */
	if (time_before(expires, jiffies))
		return jiffies;

556 557 558
	if (time_before(hr_expires, expires))
		return hr_expires;

L
Linus Torvalds 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	return expires;
}
#endif

/******************************************************************/

/*
 * Timekeeping variables
 */
unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */
unsigned long tick_nsec = TICK_NSEC;		/* ACTHZ period (nsec) */

/* 
 * The current time 
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
 */
struct timespec xtime __attribute__ ((aligned (16)));
struct timespec wall_to_monotonic __attribute__ ((aligned (16)));

EXPORT_SYMBOL(xtime);

584

585 586 587
/* XXX - all of this timekeeping code should be later moved to time.c */
#include <linux/clocksource.h>
static struct clocksource *clock; /* pointer to current clocksource */
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

#ifdef CONFIG_GENERIC_TIME
/**
 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
 *
 * private function, must hold xtime_lock lock when being
 * called. Returns the number of nanoseconds since the
 * last call to update_wall_time() (adjusted by NTP scaling)
 */
static inline s64 __get_nsec_offset(void)
{
	cycle_t cycle_now, cycle_delta;
	s64 ns_offset;

	/* read clocksource: */
603
	cycle_now = clocksource_read(clock);
604 605

	/* calculate the delta since the last update_wall_time: */
606
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

	/* convert to nanoseconds: */
	ns_offset = cyc2ns(clock, cycle_delta);

	return ns_offset;
}

/**
 * __get_realtime_clock_ts - Returns the time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec. Used by
 * do_gettimeofday() and get_realtime_clock_ts().
 */
static inline void __get_realtime_clock_ts(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
		nsecs = __get_nsec_offset();

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

/**
638
 * getnstimeofday - Returns the time of day in a timespec
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void getnstimeofday(struct timespec *ts)
{
	__get_realtime_clock_ts(ts);
}

EXPORT_SYMBOL(getnstimeofday);

/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
 * NOTE: Users should be converted to using get_realtime_clock_ts()
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

	__get_realtime_clock_ts(&now);
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
int do_settimeofday(struct timespec *tv)
{
	unsigned long flags;
	time_t wtm_sec, sec = tv->tv_sec;
	long wtm_nsec, nsec = tv->tv_nsec;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

	nsec -= __get_nsec_offset();

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);

	set_normalized_timespec(&xtime, sec, nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

691
	clock->error = 0;
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	ntp_clear();

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
static int change_clocksource(void)
{
	struct clocksource *new;
	cycle_t now;
	u64 nsec;
714
	new = clocksource_get_next();
715
	if (clock != new) {
716
		now = clocksource_read(new);
717 718 719 720
		nsec =  __get_nsec_offset();
		timespec_add_ns(&xtime, nsec);

		clock = new;
721
		clock->cycle_last = now;
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
		printk(KERN_INFO "Time: %s clocksource has been installed.\n",
					clock->name);
		return 1;
	} else if (clock->update_callback) {
		return clock->update_callback();
	}
	return 0;
}
#else
#define change_clocksource() (0)
#endif

/**
 * timeofday_is_continuous - check to see if timekeeping is free running
 */
int timekeeping_is_continuous(void)
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

		ret = clock->is_continuous;

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

L
Linus Torvalds 已提交
752
/*
753
 * timekeeping_init - Initializes the clocksource and common timekeeping values
L
Linus Torvalds 已提交
754
 */
755
void __init timekeeping_init(void)
L
Linus Torvalds 已提交
756
{
757 758 759
	unsigned long flags;

	write_seqlock_irqsave(&xtime_lock, flags);
760 761
	clock = clocksource_get_next();
	clocksource_calculate_interval(clock, tick_nsec);
762
	clock->cycle_last = clocksource_read(clock);
763 764 765 766 767
	ntp_clear();
	write_sequnlock_irqrestore(&xtime_lock, flags);
}


768
static int timekeeping_suspended;
769
/**
770 771 772 773 774 775 776 777 778 779 780 781 782
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 * @dev:	unused
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
static int timekeeping_resume(struct sys_device *dev)
{
	unsigned long flags;

	write_seqlock_irqsave(&xtime_lock, flags);
	/* restart the last cycle value */
783
	clock->cycle_last = clocksource_read(clock);
784 785 786 787 788 789 790 791 792 793 794 795
	clock->error = 0;
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);
	return 0;
}

static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
{
	unsigned long flags;

	write_seqlock_irqsave(&xtime_lock, flags);
	timekeeping_suspended = 1;
796 797 798 799 800 801 802
	write_sequnlock_irqrestore(&xtime_lock, flags);
	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
static struct sysdev_class timekeeping_sysclass = {
	.resume		= timekeeping_resume,
803
	.suspend	= timekeeping_suspend,
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	set_kset_name("timekeeping"),
};

static struct sys_device device_timer = {
	.id		= 0,
	.cls		= &timekeeping_sysclass,
};

static int __init timekeeping_init_device(void)
{
	int error = sysdev_class_register(&timekeeping_sysclass);
	if (!error)
		error = sysdev_register(&device_timer);
	return error;
}

device_initcall(timekeeping_init_device);

822
/*
823
 * If the error is already larger, we look ahead even further
824 825
 * to compensate for late or lost adjustments.
 */
826
static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, s64 *offset)
827
{
828 829 830
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;
831 832

	/*
833 834 835 836 837 838 839
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
	 * here.  This is tuned so that an error of about 1 msec is adusted
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
840
	 */
841 842 843 844
	error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;
845 846

	/*
847 848
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
849
	 */
850 851 852 853 854 855 856 857 858 859 860 861
	tick_error = current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift + 1);
	tick_error -= clock->xtime_interval >> 1;
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
862
	}
863 864
	for (adj = 0; error > i; adj++)
		error >>= 1;
865 866 867

	*interval <<= adj;
	*offset <<= adj;
868
	return mult << adj;
869 870 871 872 873 874 875 876 877 878 879 880 881 882
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
static void clocksource_adjust(struct clocksource *clock, s64 offset)
{
	s64 error, interval = clock->cycle_interval;
	int adj;

	error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
	if (error > interval) {
883 884 885 886 887
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
			adj = clocksource_bigadjust(error, &interval, &offset);
888
	} else if (error < -interval) {
889 890 891 892 893 894 895
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
			adj = clocksource_bigadjust(error, &interval, &offset);
896 897 898 899 900 901 902 903 904
	} else
		return;

	clock->mult += adj;
	clock->xtime_interval += interval;
	clock->xtime_nsec -= offset;
	clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - clock->shift);
}

905
/**
906 907 908 909 910 911
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
static void update_wall_time(void)
{
912
	cycle_t offset;
913

914 915 916
	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;
917

918 919 920 921 922
#ifdef CONFIG_GENERIC_TIME
	offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
#else
	offset = clock->cycle_interval;
#endif
923
	clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
924 925 926 927

	/* normally this loop will run just once, however in the
	 * case of lost or late ticks, it will accumulate correctly.
	 */
928
	while (offset >= clock->cycle_interval) {
929
		/* accumulate one interval */
930 931 932 933 934 935 936 937 938
		clock->xtime_nsec += clock->xtime_interval;
		clock->cycle_last += clock->cycle_interval;
		offset -= clock->cycle_interval;

		if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
			clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
			xtime.tv_sec++;
			second_overflow();
		}
939

940
		/* interpolator bits */
941
		time_interpolator_update(clock->xtime_interval
942 943 944 945 946
						>> clock->shift);
		/* increment the NTP state machine */
		update_ntp_one_tick();

		/* accumulate error between NTP and clock interval */
947 948 949
		clock->error += current_tick_length();
		clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
	}
950

951 952
	/* correct the clock when NTP error is too big */
	clocksource_adjust(clock, offset);
953 954

	/* store full nanoseconds into xtime */
955
	xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
956
	clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
957 958 959

	/* check to see if there is a new clocksource to use */
	if (change_clocksource()) {
960 961
		clock->error = 0;
		clock->xtime_nsec = 0;
962
		clocksource_calculate_interval(clock, tick_nsec);
963
	}
L
Linus Torvalds 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
}

/*
 * Called from the timer interrupt handler to charge one tick to the current 
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;
	int cpu = smp_processor_id();

	/* Note: this timer irq context must be accounted for as well. */
	if (user_tick)
		account_user_time(p, jiffies_to_cputime(1));
	else
		account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
	run_local_timers();
	if (rcu_pending(cpu))
		rcu_check_callbacks(cpu, user_tick);
	scheduler_tick();
 	run_posix_cpu_timers(p);
}

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
992
	return nr_active() * FIXED_1;
L
Linus Torvalds 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
}

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 *
 * Requires xtime_lock to access.
 */
unsigned long avenrun[3];

EXPORT_SYMBOL(avenrun);

/*
 * calc_load - given tick count, update the avenrun load estimates.
 * This is called while holding a write_lock on xtime_lock.
 */
static inline void calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

1016 1017
	active_tasks = count_active_tasks();
	for (count -= ticks; count < 0; count += LOAD_FREQ) {
L
Linus Torvalds 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		CALC_LOAD(avenrun[0], EXP_1, active_tasks);
		CALC_LOAD(avenrun[1], EXP_5, active_tasks);
		CALC_LOAD(avenrun[2], EXP_15, active_tasks);
	}
}

/* jiffies at the most recent update of wall time */
unsigned long wall_jiffies = INITIAL_JIFFIES;

/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime and avenrun.
 */
#ifndef ARCH_HAVE_XTIME_LOCK
1032
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
L
Linus Torvalds 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041

EXPORT_SYMBOL(xtime_lock);
#endif

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
1042
	tvec_base_t *base = __get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
1043

1044
 	hrtimer_run_queues();
L
Linus Torvalds 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
	raise_softirq(TIMER_SOFTIRQ);
1055
	softlockup_tick();
L
Linus Torvalds 已提交
1056 1057 1058 1059 1060 1061
}

/*
 * Called by the timer interrupt. xtime_lock must already be taken
 * by the timer IRQ!
 */
1062
static inline void update_times(unsigned long ticks)
L
Linus Torvalds 已提交
1063
{
1064 1065
	wall_jiffies += ticks;
	update_wall_time();
L
Linus Torvalds 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074
	calc_load(ticks);
}
  
/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */

1075
void do_timer(unsigned long ticks)
L
Linus Torvalds 已提交
1076
{
1077 1078
	jiffies_64 += ticks;
	update_times(ticks);
L
Linus Torvalds 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage unsigned long sys_alarm(unsigned int seconds)
{
1089
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
}

#endif

#ifndef __alpha__

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */

/**
 * sys_getpid - return the thread group id of the current process
 *
 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 * the pid are identical unless CLONE_THREAD was specified on clone() in
 * which case the tgid is the same in all threads of the same group.
 *
 * This is SMP safe as current->tgid does not change.
 */
asmlinkage long sys_getpid(void)
{
	return current->tgid;
}

/*
1116 1117 1118 1119
 * Accessing ->real_parent is not SMP-safe, it could
 * change from under us. However, we can use a stale
 * value of ->real_parent under rcu_read_lock(), see
 * release_task()->call_rcu(delayed_put_task_struct).
L
Linus Torvalds 已提交
1120 1121 1122 1123 1124
 */
asmlinkage long sys_getppid(void)
{
	int pid;

1125 1126 1127
	rcu_read_lock();
	pid = rcu_dereference(current->real_parent)->tgid;
	rcu_read_unlock();
L
Linus Torvalds 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	return pid;
}

asmlinkage long sys_getuid(void)
{
	/* Only we change this so SMP safe */
	return current->uid;
}

asmlinkage long sys_geteuid(void)
{
	/* Only we change this so SMP safe */
	return current->euid;
}

asmlinkage long sys_getgid(void)
{
	/* Only we change this so SMP safe */
	return current->gid;
}

asmlinkage long sys_getegid(void)
{
	/* Only we change this so SMP safe */
	return  current->egid;
}

#endif

static void process_timeout(unsigned long __data)
{
1160
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
fastcall signed long __sched schedule_timeout(signed long timeout)
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
		if (timeout < 0)
		{
			printk(KERN_ERR "schedule_timeout: wrong timeout "
A
Andrew Morton 已提交
1217 1218
				"value %lx from %p\n", timeout,
				__builtin_return_address(0));
L
Linus Torvalds 已提交
1219 1220 1221 1222 1223 1224 1225
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1226 1227
	setup_timer(&timer, process_timeout, (unsigned long)current);
	__mod_timer(&timer, expire);
L
Linus Torvalds 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	schedule();
	del_singleshot_timer_sync(&timer);

	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1238 1239 1240 1241
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1242 1243
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1244 1245
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1246 1247 1248 1249 1250
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1251 1252
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1253 1254 1255
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

L
Linus Torvalds 已提交
1256 1257 1258 1259 1260 1261
/* Thread ID - the internal kernel "pid" */
asmlinkage long sys_gettid(void)
{
	return current->pid;
}

1262
/**
L
Linus Torvalds 已提交
1263
 * sys_sysinfo - fill in sysinfo struct
1264
 * @info: pointer to buffer to fill
L
Linus Torvalds 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
 */ 
asmlinkage long sys_sysinfo(struct sysinfo __user *info)
{
	struct sysinfo val;
	unsigned long mem_total, sav_total;
	unsigned int mem_unit, bitcount;
	unsigned long seq;

	memset((char *)&val, 0, sizeof(struct sysinfo));

	do {
		struct timespec tp;
		seq = read_seqbegin(&xtime_lock);

		/*
		 * This is annoying.  The below is the same thing
		 * posix_get_clock_monotonic() does, but it wants to
		 * take the lock which we want to cover the loads stuff
		 * too.
		 */

		getnstimeofday(&tp);
		tp.tv_sec += wall_to_monotonic.tv_sec;
		tp.tv_nsec += wall_to_monotonic.tv_nsec;
		if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
			tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
			tp.tv_sec++;
		}
		val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);

		val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
		val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
		val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);

		val.procs = nr_threads;
	} while (read_seqretry(&xtime_lock, seq));

	si_meminfo(&val);
	si_swapinfo(&val);

	/*
	 * If the sum of all the available memory (i.e. ram + swap)
	 * is less than can be stored in a 32 bit unsigned long then
	 * we can be binary compatible with 2.2.x kernels.  If not,
	 * well, in that case 2.2.x was broken anyways...
	 *
	 *  -Erik Andersen <andersee@debian.org>
	 */

	mem_total = val.totalram + val.totalswap;
	if (mem_total < val.totalram || mem_total < val.totalswap)
		goto out;
	bitcount = 0;
	mem_unit = val.mem_unit;
	while (mem_unit > 1) {
		bitcount++;
		mem_unit >>= 1;
		sav_total = mem_total;
		mem_total <<= 1;
		if (mem_total < sav_total)
			goto out;
	}

	/*
	 * If mem_total did not overflow, multiply all memory values by
	 * val.mem_unit and set it to 1.  This leaves things compatible
	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
	 * kernels...
	 */

	val.mem_unit = 1;
	val.totalram <<= bitcount;
	val.freeram <<= bitcount;
	val.sharedram <<= bitcount;
	val.bufferram <<= bitcount;
	val.totalswap <<= bitcount;
	val.freeswap <<= bitcount;
	val.totalhigh <<= bitcount;
	val.freehigh <<= bitcount;

 out:
	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
		return -EFAULT;

	return 0;
}

1352 1353 1354 1355 1356 1357 1358
/*
 * lockdep: we want to track each per-CPU base as a separate lock-class,
 * but timer-bases are kmalloc()-ed, so we need to attach separate
 * keys to them:
 */
static struct lock_class_key base_lock_keys[NR_CPUS];

1359
static int __devinit init_timers_cpu(int cpu)
L
Linus Torvalds 已提交
1360 1361 1362
{
	int j;
	tvec_base_t *base;
A
Andrew Morton 已提交
1363
	static char __devinitdata tvec_base_done[NR_CPUS];
1364

A
Andrew Morton 已提交
1365
	if (!tvec_base_done[cpu]) {
1366 1367 1368
		static char boot_done;

		if (boot_done) {
A
Andrew Morton 已提交
1369 1370 1371
			/*
			 * The APs use this path later in boot
			 */
1372 1373 1374 1375 1376
			base = kmalloc_node(sizeof(*base), GFP_KERNEL,
						cpu_to_node(cpu));
			if (!base)
				return -ENOMEM;
			memset(base, 0, sizeof(*base));
A
Andrew Morton 已提交
1377
			per_cpu(tvec_bases, cpu) = base;
1378
		} else {
A
Andrew Morton 已提交
1379 1380 1381 1382 1383 1384
			/*
			 * This is for the boot CPU - we use compile-time
			 * static initialisation because per-cpu memory isn't
			 * ready yet and because the memory allocators are not
			 * initialised either.
			 */
1385
			boot_done = 1;
A
Andrew Morton 已提交
1386
			base = &boot_tvec_bases;
1387
		}
A
Andrew Morton 已提交
1388 1389 1390
		tvec_base_done[cpu] = 1;
	} else {
		base = per_cpu(tvec_bases, cpu);
1391
	}
A
Andrew Morton 已提交
1392

1393
	spin_lock_init(&base->lock);
1394 1395
	lockdep_set_class(&base->lock, base_lock_keys + cpu);

L
Linus Torvalds 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	for (j = 0; j < TVN_SIZE; j++) {
		INIT_LIST_HEAD(base->tv5.vec + j);
		INIT_LIST_HEAD(base->tv4.vec + j);
		INIT_LIST_HEAD(base->tv3.vec + j);
		INIT_LIST_HEAD(base->tv2.vec + j);
	}
	for (j = 0; j < TVR_SIZE; j++)
		INIT_LIST_HEAD(base->tv1.vec + j);

	base->timer_jiffies = jiffies;
1406
	return 0;
L
Linus Torvalds 已提交
1407 1408 1409
}

#ifdef CONFIG_HOTPLUG_CPU
1410
static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415
{
	struct timer_list *timer;

	while (!list_empty(head)) {
		timer = list_entry(head->next, struct timer_list, entry);
1416
		detach_timer(timer, 0);
1417
		timer->base = new_base;
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
		internal_add_timer(new_base, timer);
	}
}

static void __devinit migrate_timers(int cpu)
{
	tvec_base_t *old_base;
	tvec_base_t *new_base;
	int i;

	BUG_ON(cpu_online(cpu));
1429 1430
	old_base = per_cpu(tvec_bases, cpu);
	new_base = get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
1431 1432

	local_irq_disable();
1433 1434 1435 1436
	spin_lock(&new_base->lock);
	spin_lock(&old_base->lock);

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1437 1438

	for (i = 0; i < TVR_SIZE; i++)
1439 1440 1441 1442 1443 1444 1445 1446
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1447 1448
	spin_unlock(&old_base->lock);
	spin_unlock(&new_base->lock);
L
Linus Torvalds 已提交
1449 1450 1451 1452 1453
	local_irq_enable();
	put_cpu_var(tvec_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1454
static int __cpuinit timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1455 1456 1457 1458 1459
				unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	switch(action) {
	case CPU_UP_PREPARE:
1460 1461
		if (init_timers_cpu(cpu) < 0)
			return NOTIFY_BAD;
L
Linus Torvalds 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
		migrate_timers(cpu);
		break;
#endif
	default:
		break;
	}
	return NOTIFY_OK;
}

1474
static struct notifier_block __cpuinitdata timers_nb = {
L
Linus Torvalds 已提交
1475 1476 1477 1478 1479 1480
	.notifier_call	= timer_cpu_notify,
};


void __init init_timers(void)
{
1481
	int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
L
Linus Torvalds 已提交
1482
				(void *)(long)smp_processor_id());
1483 1484

	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
1485 1486 1487 1488 1489 1490
	register_cpu_notifier(&timers_nb);
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
}

#ifdef CONFIG_TIME_INTERPOLATION

1491 1492
struct time_interpolator *time_interpolator __read_mostly;
static struct time_interpolator *time_interpolator_list __read_mostly;
L
Linus Torvalds 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static DEFINE_SPINLOCK(time_interpolator_lock);

static inline u64 time_interpolator_get_cycles(unsigned int src)
{
	unsigned long (*x)(void);

	switch (src)
	{
		case TIME_SOURCE_FUNCTION:
			x = time_interpolator->addr;
			return x();

		case TIME_SOURCE_MMIO64	:
1506
			return readq_relaxed((void __iomem *)time_interpolator->addr);
L
Linus Torvalds 已提交
1507 1508

		case TIME_SOURCE_MMIO32	:
1509
			return readl_relaxed((void __iomem *)time_interpolator->addr);
L
Linus Torvalds 已提交
1510 1511 1512 1513 1514

		default: return get_cycles();
	}
}

1515
static inline u64 time_interpolator_get_counter(int writelock)
L
Linus Torvalds 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
{
	unsigned int src = time_interpolator->source;

	if (time_interpolator->jitter)
	{
		u64 lcycle;
		u64 now;

		do {
			lcycle = time_interpolator->last_cycle;
			now = time_interpolator_get_cycles(src);
			if (lcycle && time_after(lcycle, now))
				return lcycle;
1529 1530 1531 1532 1533 1534 1535 1536 1537

			/* When holding the xtime write lock, there's no need
			 * to add the overhead of the cmpxchg.  Readers are
			 * force to retry until the write lock is released.
			 */
			if (writelock) {
				time_interpolator->last_cycle = now;
				return now;
			}
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
			/* Keep track of the last timer value returned. The use of cmpxchg here
			 * will cause contention in an SMP environment.
			 */
		} while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
		return now;
	}
	else
		return time_interpolator_get_cycles(src);
}

void time_interpolator_reset(void)
{
	time_interpolator->offset = 0;
1551
	time_interpolator->last_counter = time_interpolator_get_counter(1);
L
Linus Torvalds 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
}

#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)

unsigned long time_interpolator_get_offset(void)
{
	/* If we do not have a time interpolator set up then just return zero */
	if (!time_interpolator)
		return 0;

	return time_interpolator->offset +
1563
		GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
L
Linus Torvalds 已提交
1564 1565 1566 1567 1568
}

#define INTERPOLATOR_ADJUST 65536
#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST

1569
void time_interpolator_update(long delta_nsec)
L
Linus Torvalds 已提交
1570 1571 1572 1573 1574 1575 1576 1577
{
	u64 counter;
	unsigned long offset;

	/* If there is no time interpolator set up then do nothing */
	if (!time_interpolator)
		return;

A
Andrew Morton 已提交
1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * The interpolator compensates for late ticks by accumulating the late
	 * time in time_interpolator->offset. A tick earlier than expected will
	 * lead to a reset of the offset and a corresponding jump of the clock
	 * forward. Again this only works if the interpolator clock is running
	 * slightly slower than the regular clock and the tuning logic insures
	 * that.
	 */
L
Linus Torvalds 已提交
1586

1587
	counter = time_interpolator_get_counter(1);
A
Andrew Morton 已提交
1588 1589
	offset = time_interpolator->offset +
			GET_TI_NSECS(counter, time_interpolator);
L
Linus Torvalds 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
		time_interpolator->offset = offset - delta_nsec;
	else {
		time_interpolator->skips++;
		time_interpolator->ns_skipped += delta_nsec - offset;
		time_interpolator->offset = 0;
	}
	time_interpolator->last_counter = counter;

	/* Tuning logic for time interpolator invoked every minute or so.
	 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
	 * Increase interpolator clock speed if we skip too much time.
	 */
	if (jiffies % INTERPOLATOR_ADJUST == 0)
	{
1606
		if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
L
Linus Torvalds 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
			time_interpolator->nsec_per_cyc--;
		if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
			time_interpolator->nsec_per_cyc++;
		time_interpolator->skips = 0;
		time_interpolator->ns_skipped = 0;
	}
}

static inline int
is_better_time_interpolator(struct time_interpolator *new)
{
	if (!time_interpolator)
		return 1;
	return new->frequency > 2*time_interpolator->frequency ||
	    (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
}

void
register_time_interpolator(struct time_interpolator *ti)
{
	unsigned long flags;

	/* Sanity check */
1630
	BUG_ON(ti->frequency == 0 || ti->mask == 0);
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
	spin_lock(&time_interpolator_lock);
	write_seqlock_irqsave(&xtime_lock, flags);
	if (is_better_time_interpolator(ti)) {
		time_interpolator = ti;
		time_interpolator_reset();
	}
	write_sequnlock_irqrestore(&xtime_lock, flags);

	ti->next = time_interpolator_list;
	time_interpolator_list = ti;
	spin_unlock(&time_interpolator_lock);
}

void
unregister_time_interpolator(struct time_interpolator *ti)
{
	struct time_interpolator *curr, **prev;
	unsigned long flags;

	spin_lock(&time_interpolator_lock);
	prev = &time_interpolator_list;
	for (curr = *prev; curr; curr = curr->next) {
		if (curr == ti) {
			*prev = curr->next;
			break;
		}
		prev = &curr->next;
	}

	write_seqlock_irqsave(&xtime_lock, flags);
	if (ti == time_interpolator) {
		/* we lost the best time-interpolator: */
		time_interpolator = NULL;
		/* find the next-best interpolator */
		for (curr = time_interpolator_list; curr; curr = curr->next)
			if (is_better_time_interpolator(curr))
				time_interpolator = curr;
		time_interpolator_reset();
	}
	write_sequnlock_irqrestore(&xtime_lock, flags);
	spin_unlock(&time_interpolator_lock);
}
#endif /* CONFIG_TIME_INTERPOLATION */

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1685 1686
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1687 1688 1689 1690 1691
}

EXPORT_SYMBOL(msleep);

/**
1692
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1693 1694 1695 1696 1697 1698
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1699 1700
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1701 1702 1703 1704
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);