delayed-inode.c 50.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Copyright (C) 2011 Fujitsu.  All rights reserved.
 * Written by Miao Xie <miaox@cn.fujitsu.com>
 */

#include <linux/slab.h>
8
#include <linux/iversion.h>
9 10 11
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
12
#include "ctree.h"
13
#include "qgroup.h"
14

15 16 17
#define BTRFS_DELAYED_WRITEBACK		512
#define BTRFS_DELAYED_BACKGROUND	128
#define BTRFS_DELAYED_BATCH		16
18 19 20 21 22

static struct kmem_cache *delayed_node_cache;

int __init btrfs_delayed_inode_init(void)
{
D
David Sterba 已提交
23
	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
24 25
					sizeof(struct btrfs_delayed_node),
					0,
26
					SLAB_MEM_SPREAD,
27 28 29 30 31 32
					NULL);
	if (!delayed_node_cache)
		return -ENOMEM;
	return 0;
}

33
void __cold btrfs_delayed_inode_exit(void)
34
{
35
	kmem_cache_destroy(delayed_node_cache);
36 37 38 39 40 41 42 43
}

static inline void btrfs_init_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				struct btrfs_root *root, u64 inode_id)
{
	delayed_node->root = root;
	delayed_node->inode_id = inode_id;
44
	refcount_set(&delayed_node->refs, 0);
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	delayed_node->ins_root = RB_ROOT;
	delayed_node->del_root = RB_ROOT;
	mutex_init(&delayed_node->mutex);
	INIT_LIST_HEAD(&delayed_node->n_list);
	INIT_LIST_HEAD(&delayed_node->p_list);
}

static inline int btrfs_is_continuous_delayed_item(
					struct btrfs_delayed_item *item1,
					struct btrfs_delayed_item *item2)
{
	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
	    item1->key.objectid == item2->key.objectid &&
	    item1->key.type == item2->key.type &&
	    item1->key.offset + 1 == item2->key.offset)
		return 1;
	return 0;
}

64 65
static struct btrfs_delayed_node *btrfs_get_delayed_node(
		struct btrfs_inode *btrfs_inode)
66 67
{
	struct btrfs_root *root = btrfs_inode->root;
68
	u64 ino = btrfs_ino(btrfs_inode);
69
	struct btrfs_delayed_node *node;
70

S
Seraphime Kirkovski 已提交
71
	node = READ_ONCE(btrfs_inode->delayed_node);
72
	if (node) {
73
		refcount_inc(&node->refs);
74 75 76 77
		return node;
	}

	spin_lock(&root->inode_lock);
78
	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
79

80 81
	if (node) {
		if (btrfs_inode->delayed_node) {
82
			refcount_inc(&node->refs);	/* can be accessed */
83
			BUG_ON(btrfs_inode->delayed_node != node);
84
			spin_unlock(&root->inode_lock);
85
			return node;
86
		}
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

		/*
		 * It's possible that we're racing into the middle of removing
		 * this node from the radix tree.  In this case, the refcount
		 * was zero and it should never go back to one.  Just return
		 * NULL like it was never in the radix at all; our release
		 * function is in the process of removing it.
		 *
		 * Some implementations of refcount_inc refuse to bump the
		 * refcount once it has hit zero.  If we don't do this dance
		 * here, refcount_inc() may decide to just WARN_ONCE() instead
		 * of actually bumping the refcount.
		 *
		 * If this node is properly in the radix, we want to bump the
		 * refcount twice, once for the inode and once for this get
		 * operation.
		 */
		if (refcount_inc_not_zero(&node->refs)) {
			refcount_inc(&node->refs);
			btrfs_inode->delayed_node = node;
		} else {
			node = NULL;
		}

111 112 113 114 115
		spin_unlock(&root->inode_lock);
		return node;
	}
	spin_unlock(&root->inode_lock);

116 117 118
	return NULL;
}

119
/* Will return either the node or PTR_ERR(-ENOMEM) */
120
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121
		struct btrfs_inode *btrfs_inode)
122 123 124
{
	struct btrfs_delayed_node *node;
	struct btrfs_root *root = btrfs_inode->root;
125
	u64 ino = btrfs_ino(btrfs_inode);
126 127 128
	int ret;

again:
129
	node = btrfs_get_delayed_node(btrfs_inode);
130 131 132
	if (node)
		return node;

133
	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
134 135
	if (!node)
		return ERR_PTR(-ENOMEM);
136
	btrfs_init_delayed_node(node, root, ino);
137

138
	/* cached in the btrfs inode and can be accessed */
139
	refcount_set(&node->refs, 2);
140

141
	ret = radix_tree_preload(GFP_NOFS);
142 143 144 145 146 147
	if (ret) {
		kmem_cache_free(delayed_node_cache, node);
		return ERR_PTR(ret);
	}

	spin_lock(&root->inode_lock);
148
	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 150
	if (ret == -EEXIST) {
		spin_unlock(&root->inode_lock);
151
		kmem_cache_free(delayed_node_cache, node);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
		radix_tree_preload_end();
		goto again;
	}
	btrfs_inode->delayed_node = node;
	spin_unlock(&root->inode_lock);
	radix_tree_preload_end();

	return node;
}

/*
 * Call it when holding delayed_node->mutex
 *
 * If mod = 1, add this node into the prepared list.
 */
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
				     struct btrfs_delayed_node *node,
				     int mod)
{
	spin_lock(&root->lock);
172
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
173 174 175 176 177 178 179
		if (!list_empty(&node->p_list))
			list_move_tail(&node->p_list, &root->prepare_list);
		else if (mod)
			list_add_tail(&node->p_list, &root->prepare_list);
	} else {
		list_add_tail(&node->n_list, &root->node_list);
		list_add_tail(&node->p_list, &root->prepare_list);
180
		refcount_inc(&node->refs);	/* inserted into list */
181
		root->nodes++;
182
		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
183 184 185 186 187 188 189 190 191
	}
	spin_unlock(&root->lock);
}

/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
				       struct btrfs_delayed_node *node)
{
	spin_lock(&root->lock);
192
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
193
		root->nodes--;
194
		refcount_dec(&node->refs);	/* not in the list */
195 196 197
		list_del_init(&node->n_list);
		if (!list_empty(&node->p_list))
			list_del_init(&node->p_list);
198
		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
199 200 201 202
	}
	spin_unlock(&root->lock);
}

203
static struct btrfs_delayed_node *btrfs_first_delayed_node(
204 205 206 207 208 209 210 211 212 213 214
			struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->node_list))
		goto out;

	p = delayed_root->node_list.next;
	node = list_entry(p, struct btrfs_delayed_node, n_list);
215
	refcount_inc(&node->refs);
216 217 218 219 220 221
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

222
static struct btrfs_delayed_node *btrfs_next_delayed_node(
223 224 225 226 227 228 229 230
						struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_root *delayed_root;
	struct list_head *p;
	struct btrfs_delayed_node *next = NULL;

	delayed_root = node->root->fs_info->delayed_root;
	spin_lock(&delayed_root->lock);
231 232
	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
		/* not in the list */
233 234 235 236 237 238 239 240 241
		if (list_empty(&delayed_root->node_list))
			goto out;
		p = delayed_root->node_list.next;
	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
		goto out;
	else
		p = node->n_list.next;

	next = list_entry(p, struct btrfs_delayed_node, n_list);
242
	refcount_inc(&next->refs);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
out:
	spin_unlock(&delayed_root->lock);

	return next;
}

static void __btrfs_release_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				int mod)
{
	struct btrfs_delayed_root *delayed_root;

	if (!delayed_node)
		return;

	delayed_root = delayed_node->root->fs_info->delayed_root;

	mutex_lock(&delayed_node->mutex);
	if (delayed_node->count)
		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
	else
		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
	mutex_unlock(&delayed_node->mutex);

267
	if (refcount_dec_and_test(&delayed_node->refs)) {
268
		struct btrfs_root *root = delayed_node->root;
269

270
		spin_lock(&root->inode_lock);
271 272 273 274 275 276 277
		/*
		 * Once our refcount goes to zero, nobody is allowed to bump it
		 * back up.  We can delete it now.
		 */
		ASSERT(refcount_read(&delayed_node->refs) == 0);
		radix_tree_delete(&root->delayed_nodes_tree,
				  delayed_node->inode_id);
278
		spin_unlock(&root->inode_lock);
279
		kmem_cache_free(delayed_node_cache, delayed_node);
280 281 282 283 284 285 286 287
	}
}

static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 0);
}

288
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289 290 291 292 293 294 295 296 297 298 299 300
					struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->prepare_list))
		goto out;

	p = delayed_root->prepare_list.next;
	list_del_init(p);
	node = list_entry(p, struct btrfs_delayed_node, p_list);
301
	refcount_inc(&node->refs);
302 303 304 305 306 307 308 309 310 311 312 313
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

static inline void btrfs_release_prepared_delayed_node(
					struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 1);
}

314
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
315 316 317 318 319 320 321 322
{
	struct btrfs_delayed_item *item;
	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
	if (item) {
		item->data_len = data_len;
		item->ins_or_del = 0;
		item->bytes_reserved = 0;
		item->delayed_node = NULL;
323
		refcount_set(&item->refs, 1);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	}
	return item;
}

/*
 * __btrfs_lookup_delayed_item - look up the delayed item by key
 * @delayed_node: pointer to the delayed node
 * @key:	  the key to look up
 * @prev:	  used to store the prev item if the right item isn't found
 * @next:	  used to store the next item if the right item isn't found
 *
 * Note: if we don't find the right item, we will return the prev item and
 * the next item.
 */
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
				struct rb_root *root,
				struct btrfs_key *key,
				struct btrfs_delayed_item **prev,
				struct btrfs_delayed_item **next)
{
	struct rb_node *node, *prev_node = NULL;
	struct btrfs_delayed_item *delayed_item = NULL;
	int ret = 0;

	node = root->rb_node;

	while (node) {
		delayed_item = rb_entry(node, struct btrfs_delayed_item,
					rb_node);
		prev_node = node;
		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
		if (ret < 0)
			node = node->rb_right;
		else if (ret > 0)
			node = node->rb_left;
		else
			return delayed_item;
	}

	if (prev) {
		if (!prev_node)
			*prev = NULL;
		else if (ret < 0)
			*prev = delayed_item;
		else if ((node = rb_prev(prev_node)) != NULL) {
			*prev = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*prev = NULL;
	}

	if (next) {
		if (!prev_node)
			*next = NULL;
		else if (ret > 0)
			*next = delayed_item;
		else if ((node = rb_next(prev_node)) != NULL) {
			*next = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*next = NULL;
	}
	return NULL;
}

389
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
390 391 392
					struct btrfs_delayed_node *delayed_node,
					struct btrfs_key *key)
{
393
	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
					   NULL, NULL);
}

static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
				    struct btrfs_delayed_item *ins,
				    int action)
{
	struct rb_node **p, *node;
	struct rb_node *parent_node = NULL;
	struct rb_root *root;
	struct btrfs_delayed_item *item;
	int cmp;

	if (action == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_node->ins_root;
	else if (action == BTRFS_DELAYED_DELETION_ITEM)
		root = &delayed_node->del_root;
	else
		BUG();
	p = &root->rb_node;
	node = &ins->rb_node;

	while (*p) {
		parent_node = *p;
		item = rb_entry(parent_node, struct btrfs_delayed_item,
				 rb_node);

		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
		if (cmp < 0)
			p = &(*p)->rb_right;
		else if (cmp > 0)
			p = &(*p)->rb_left;
		else
			return -EEXIST;
	}

	rb_link_node(node, parent_node, p);
	rb_insert_color(node, root);
	ins->delayed_node = delayed_node;
	ins->ins_or_del = action;

	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
	    action == BTRFS_DELAYED_INSERTION_ITEM &&
	    ins->key.offset >= delayed_node->index_cnt)
			delayed_node->index_cnt = ins->key.offset + 1;

	delayed_node->count++;
	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
	return 0;
}

static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
					      struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_INSERTION_ITEM);
}

static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
					     struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_DELETION_ITEM);
}

459 460 461
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
	int seq = atomic_inc_return(&delayed_root->items_seq);
462 463 464 465

	/*
	 * atomic_dec_return implies a barrier for waitqueue_active
	 */
466 467 468 469 470 471
	if ((atomic_dec_return(&delayed_root->items) <
	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
	    waitqueue_active(&delayed_root->wait))
		wake_up(&delayed_root->wait);
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
	struct rb_root *root;
	struct btrfs_delayed_root *delayed_root;

	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;

	BUG_ON(!delayed_root);
	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);

	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_item->delayed_node->ins_root;
	else
		root = &delayed_item->delayed_node->del_root;

	rb_erase(&delayed_item->rb_node, root);
	delayed_item->delayed_node->count--;
490 491

	finish_one_item(delayed_root);
492 493 494 495 496 497
}

static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
	if (item) {
		__btrfs_remove_delayed_item(item);
498
		if (refcount_dec_and_test(&item->refs))
499 500 501 502
			kfree(item);
	}
}

503
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
504 505 506 507 508 509 510 511 512 513 514 515
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->ins_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

516
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
517 518 519 520 521 522 523 524 525 526 527 528
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->del_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

529
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
530 531 532 533 534 535 536 537 538 539 540 541 542
						struct btrfs_delayed_item *item)
{
	struct rb_node *p;
	struct btrfs_delayed_item *next = NULL;

	p = rb_next(&item->rb_node);
	if (p)
		next = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return next;
}

static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
543
					       struct btrfs_root *root,
544 545 546 547
					       struct btrfs_delayed_item *item)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
548
	struct btrfs_fs_info *fs_info = root->fs_info;
549 550 551 552 553 554 555
	u64 num_bytes;
	int ret;

	if (!trans->bytes_reserved)
		return 0;

	src_rsv = trans->block_rsv;
556
	dst_rsv = &fs_info->delayed_block_rsv;
557

558
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
559 560 561 562 563 564

	/*
	 * Here we migrate space rsv from transaction rsv, since have already
	 * reserved space when starting a transaction.  So no need to reserve
	 * qgroup space here.
	 */
565
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
J
Josef Bacik 已提交
566
	if (!ret) {
567
		trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
568 569
					      item->key.objectid,
					      num_bytes, 1);
570
		item->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
571
	}
572 573 574 575

	return ret;
}

576
static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
577 578
						struct btrfs_delayed_item *item)
{
579
	struct btrfs_block_rsv *rsv;
580
	struct btrfs_fs_info *fs_info = root->fs_info;
581

582 583 584
	if (!item->bytes_reserved)
		return;

585
	rsv = &fs_info->delayed_block_rsv;
586 587 588 589
	/*
	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
	 * to release/reserve qgroup space.
	 */
590
	trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
591 592
				      item->key.objectid, item->bytes_reserved,
				      0);
593
	btrfs_block_rsv_release(fs_info, rsv,
594 595 596 597 598 599
				item->bytes_reserved);
}

static int btrfs_delayed_inode_reserve_metadata(
					struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
600
					struct btrfs_inode *inode,
601 602
					struct btrfs_delayed_node *node)
{
603
	struct btrfs_fs_info *fs_info = root->fs_info;
604 605 606 607 608 609
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	src_rsv = trans->block_rsv;
610
	dst_rsv = &fs_info->delayed_block_rsv;
611

612
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
613 614 615 616 617 618 619 620

	/*
	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
	 * which doesn't reserve space for speed.  This is a problem since we
	 * still need to reserve space for this update, so try to reserve the
	 * space.
	 *
	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
621
	 * we always reserve enough to update the inode item.
622
	 */
623
	if (!src_rsv || (!trans->bytes_reserved &&
624
			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
625 626 627 628
		ret = btrfs_qgroup_reserve_meta_prealloc(root,
				fs_info->nodesize, true);
		if (ret < 0)
			return ret;
M
Miao Xie 已提交
629 630
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
631 632 633 634 635 636
		/*
		 * Since we're under a transaction reserve_metadata_bytes could
		 * try to commit the transaction which will make it return
		 * EAGAIN to make us stop the transaction we have, so return
		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
		 */
637
		if (ret == -EAGAIN) {
638
			ret = -ENOSPC;
639 640
			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
		}
J
Josef Bacik 已提交
641
		if (!ret) {
642
			node->bytes_reserved = num_bytes;
643
			trace_btrfs_space_reservation(fs_info,
J
Josef Bacik 已提交
644
						      "delayed_inode",
645
						      btrfs_ino(inode),
J
Josef Bacik 已提交
646
						      num_bytes, 1);
647 648
		} else {
			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
J
Josef Bacik 已提交
649
		}
650 651 652
		return ret;
	}

653
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
J
Josef Bacik 已提交
654
	if (!ret) {
655
		trace_btrfs_space_reservation(fs_info, "delayed_inode",
656
					      btrfs_ino(inode), num_bytes, 1);
657
		node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
658
	}
659 660 661 662

	return ret;
}

663
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
664 665
						struct btrfs_delayed_node *node,
						bool qgroup_free)
666 667 668 669 670 671
{
	struct btrfs_block_rsv *rsv;

	if (!node->bytes_reserved)
		return;

672 673
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_inode",
J
Josef Bacik 已提交
674
				      node->inode_id, node->bytes_reserved, 0);
675
	btrfs_block_rsv_release(fs_info, rsv,
676
				node->bytes_reserved);
677 678 679 680 681 682
	if (qgroup_free)
		btrfs_qgroup_free_meta_prealloc(node->root,
				node->bytes_reserved);
	else
		btrfs_qgroup_convert_reserved_meta(node->root,
				node->bytes_reserved);
683 684 685 686 687 688 689
	node->bytes_reserved = 0;
}

/*
 * This helper will insert some continuous items into the same leaf according
 * to the free space of the leaf.
 */
690 691 692
static int btrfs_batch_insert_items(struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
693
{
694
	struct btrfs_fs_info *fs_info = root->fs_info;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	struct btrfs_delayed_item *curr, *next;
	int free_space;
	int total_data_size = 0, total_size = 0;
	struct extent_buffer *leaf;
	char *data_ptr;
	struct btrfs_key *keys;
	u32 *data_size;
	struct list_head head;
	int slot;
	int nitems;
	int i;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];
711
	free_space = btrfs_leaf_free_space(fs_info, leaf);
712 713 714
	INIT_LIST_HEAD(&head);

	next = item;
715
	nitems = 0;
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

	/*
	 * count the number of the continuous items that we can insert in batch
	 */
	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
	       free_space) {
		total_data_size += next->data_len;
		total_size += next->data_len + sizeof(struct btrfs_item);
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;
	}

	if (!nitems) {
		ret = 0;
		goto out;
	}

	/*
	 * we need allocate some memory space, but it might cause the task
	 * to sleep, so we set all locked nodes in the path to blocking locks
	 * first.
	 */
	btrfs_set_path_blocking(path);

748
	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
749 750 751 752 753
	if (!keys) {
		ret = -ENOMEM;
		goto out;
	}

754
	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
755 756 757 758 759 760 761 762 763 764 765 766 767 768
	if (!data_size) {
		ret = -ENOMEM;
		goto error;
	}

	/* get keys of all the delayed items */
	i = 0;
	list_for_each_entry(next, &head, tree_list) {
		keys[i] = next->key;
		data_size[i] = next->data_len;
		i++;
	}

	/* reset all the locked nodes in the patch to spinning locks. */
769
	btrfs_clear_path_blocking(path, NULL, 0);
770 771

	/* insert the keys of the items */
772
	setup_items_for_insert(root, path, keys, data_size,
773
			       total_data_size, total_size, nitems);
774 775 776 777 778 779 780 781 782 783

	/* insert the dir index items */
	slot = path->slots[0];
	list_for_each_entry_safe(curr, next, &head, tree_list) {
		data_ptr = btrfs_item_ptr(leaf, slot, char);
		write_extent_buffer(leaf, &curr->data,
				    (unsigned long)data_ptr,
				    curr->data_len);
		slot++;

784
		btrfs_delayed_item_release_metadata(root, curr);
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

error:
	kfree(data_size);
	kfree(keys);
out:
	return ret;
}

/*
 * This helper can just do simple insertion that needn't extend item for new
 * data, such as directory name index insertion, inode insertion.
 */
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path,
				     struct btrfs_delayed_item *delayed_item)
{
	struct extent_buffer *leaf;
	char *ptr;
	int ret;

	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
				      delayed_item->data_len);
	if (ret < 0 && ret != -EEXIST)
		return ret;

	leaf = path->nodes[0];

	ptr = btrfs_item_ptr(leaf, path->slots[0], char);

	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
			    delayed_item->data_len);
	btrfs_mark_buffer_dirty(leaf);

823
	btrfs_delayed_item_release_metadata(root, delayed_item);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	return 0;
}

/*
 * we insert an item first, then if there are some continuous items, we try
 * to insert those items into the same leaf.
 */
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_insertion_item(node);
	if (!curr)
		goto insert_end;

	ret = btrfs_insert_delayed_item(trans, root, path, curr);
	if (ret < 0) {
847
		btrfs_release_path(path);
848 849 850 851 852 853 854 855
		goto insert_end;
	}

	prev = curr;
	curr = __btrfs_next_delayed_item(prev);
	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
		/* insert the continuous items into the same leaf */
		path->slots[0]++;
856
		btrfs_batch_insert_items(root, path, curr);
857 858 859 860
	}
	btrfs_release_delayed_item(prev);
	btrfs_mark_buffer_dirty(path->nodes[0]);

861
	btrfs_release_path(path);
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	mutex_unlock(&node->mutex);
	goto do_again;

insert_end:
	mutex_unlock(&node->mutex);
	return ret;
}

static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
{
	struct btrfs_delayed_item *curr, *next;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct list_head head;
	int nitems, i, last_item;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];

	i = path->slots[0];
	last_item = btrfs_header_nritems(leaf) - 1;
	if (i > last_item)
		return -ENOENT;	/* FIXME: Is errno suitable? */

	next = item;
	INIT_LIST_HEAD(&head);
	btrfs_item_key_to_cpu(leaf, &key, i);
	nitems = 0;
	/*
	 * count the number of the dir index items that we can delete in batch
	 */
	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;

		i++;
		if (i > last_item)
			break;
		btrfs_item_key_to_cpu(leaf, &key, i);
	}

	if (!nitems)
		return 0;

	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
	if (ret)
		goto out;

	list_for_each_entry_safe(curr, next, &head, tree_list) {
924
		btrfs_delayed_item_release_metadata(root, curr);
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

out:
	return ret;
}

static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_deletion_item(node);
	if (!curr)
		goto delete_fail;

	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
	if (ret < 0)
		goto delete_fail;
	else if (ret > 0) {
		/*
		 * can't find the item which the node points to, so this node
		 * is invalid, just drop it.
		 */
		prev = curr;
		curr = __btrfs_next_delayed_item(prev);
		btrfs_release_delayed_item(prev);
		ret = 0;
959
		btrfs_release_path(path);
960 961
		if (curr) {
			mutex_unlock(&node->mutex);
962
			goto do_again;
963
		} else
964 965 966 967
			goto delete_fail;
	}

	btrfs_batch_delete_items(trans, root, path, curr);
968
	btrfs_release_path(path);
969 970 971 972
	mutex_unlock(&node->mutex);
	goto do_again;

delete_fail:
973
	btrfs_release_path(path);
974 975 976 977 978 979 980 981
	mutex_unlock(&node->mutex);
	return ret;
}

static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

982 983
	if (delayed_node &&
	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
984
		BUG_ON(!delayed_node->root);
985
		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
986 987 988
		delayed_node->count--;

		delayed_root = delayed_node->root->fs_info->delayed_root;
989
		finish_one_item(delayed_root);
990 991 992
	}
}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

	ASSERT(delayed_node->root);
	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count--;

	delayed_root = delayed_node->root->fs_info->delayed_root;
	finish_one_item(delayed_root);
}

1005 1006 1007 1008
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct btrfs_delayed_node *node)
1009
{
1010
	struct btrfs_fs_info *fs_info = root->fs_info;
1011 1012 1013
	struct btrfs_key key;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
1014
	int mod;
1015 1016 1017
	int ret;

	key.objectid = node->inode_id;
1018
	key.type = BTRFS_INODE_ITEM_KEY;
1019
	key.offset = 0;
1020

1021 1022 1023 1024 1025 1026
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		mod = -1;
	else
		mod = 1;

	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1027
	if (ret > 0) {
1028
		btrfs_release_path(path);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		return -ENOENT;
	} else if (ret < 0) {
		return ret;
	}

	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
			    sizeof(struct btrfs_inode_item));
	btrfs_mark_buffer_dirty(leaf);

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		goto no_iref;

	path->slots[0]++;
	if (path->slots[0] >= btrfs_header_nritems(leaf))
		goto search;
again:
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != node->inode_id)
		goto out;

	if (key.type != BTRFS_INODE_REF_KEY &&
	    key.type != BTRFS_INODE_EXTREF_KEY)
		goto out;

	/*
	 * Delayed iref deletion is for the inode who has only one link,
	 * so there is only one iref. The case that several irefs are
	 * in the same item doesn't exist.
	 */
	btrfs_del_item(trans, root, path);
out:
	btrfs_release_delayed_iref(node);
no_iref:
	btrfs_release_path(path);
err_out:
1067
	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1068 1069
	btrfs_release_delayed_inode(node);

1070 1071 1072 1073 1074
	return ret;

search:
	btrfs_release_path(path);

1075
	key.type = BTRFS_INODE_EXTREF_KEY;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	key.offset = -1;
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto err_out;
	ASSERT(ret);

	ret = 0;
	leaf = path->nodes[0];
	path->slots[0]--;
	goto again;
1086 1087
}

1088 1089 1090 1091 1092 1093 1094 1095
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					     struct btrfs_root *root,
					     struct btrfs_path *path,
					     struct btrfs_delayed_node *node)
{
	int ret;

	mutex_lock(&node->mutex);
1096
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1097 1098 1099 1100 1101 1102 1103 1104 1105
		mutex_unlock(&node->mutex);
		return 0;
	}

	ret = __btrfs_update_delayed_inode(trans, root, path, node);
	mutex_unlock(&node->mutex);
	return ret;
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_delayed_node *node)
{
	int ret;

	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
	return ret;
}

1125 1126 1127 1128 1129 1130
/*
 * Called when committing the transaction.
 * Returns 0 on success.
 * Returns < 0 on error and returns with an aborted transaction with any
 * outstanding delayed items cleaned up.
 */
1131
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1132
{
1133
	struct btrfs_fs_info *fs_info = trans->fs_info;
1134 1135 1136
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;
	struct btrfs_path *path;
1137
	struct btrfs_block_rsv *block_rsv;
1138
	int ret = 0;
1139
	bool count = (nr > 0);
1140

1141 1142 1143
	if (trans->aborted)
		return -EIO;

1144 1145 1146 1147 1148
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->leave_spinning = 1;

1149
	block_rsv = trans->block_rsv;
1150
	trans->block_rsv = &fs_info->delayed_block_rsv;
1151

1152
	delayed_root = fs_info->delayed_root;
1153 1154

	curr_node = btrfs_first_delayed_node(delayed_root);
1155
	while (curr_node && (!count || (count && nr--))) {
1156 1157
		ret = __btrfs_commit_inode_delayed_items(trans, path,
							 curr_node);
1158 1159
		if (ret) {
			btrfs_release_delayed_node(curr_node);
1160
			curr_node = NULL;
1161
			btrfs_abort_transaction(trans, ret);
1162 1163 1164 1165 1166 1167 1168 1169
			break;
		}

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}

1170 1171
	if (curr_node)
		btrfs_release_delayed_node(curr_node);
1172
	btrfs_free_path(path);
1173
	trans->block_rsv = block_rsv;
1174

1175 1176 1177
	return ret;
}

1178
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1179
{
1180
	return __btrfs_run_delayed_items(trans, -1);
1181 1182
}

1183
int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1184
{
1185
	return __btrfs_run_delayed_items(trans, nr);
1186 1187
}

1188
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1189
				     struct btrfs_inode *inode)
1190
{
1191
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1192 1193
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
	if (!delayed_node->count) {
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

1207
	path = btrfs_alloc_path();
1208 1209
	if (!path) {
		btrfs_release_delayed_node(delayed_node);
1210
		return -ENOMEM;
1211
	}
1212 1213 1214 1215 1216 1217 1218
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);

1219
	btrfs_release_delayed_node(delayed_node);
1220 1221 1222
	btrfs_free_path(path);
	trans->block_rsv = block_rsv;

1223 1224 1225
	return ret;
}

1226
int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1227
{
1228
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1229
	struct btrfs_trans_handle *trans;
1230
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1231 1232 1233 1234 1235 1236 1237 1238
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
1239
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

	trans = btrfs_join_transaction(delayed_node->root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto out;
	}

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto trans_out;
	}
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
1260
	trans->block_rsv = &fs_info->delayed_block_rsv;
1261 1262

	mutex_lock(&delayed_node->mutex);
1263
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1264 1265 1266 1267 1268 1269 1270 1271 1272
		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
						   path, delayed_node);
	else
		ret = 0;
	mutex_unlock(&delayed_node->mutex);

	btrfs_free_path(path);
	trans->block_rsv = block_rsv;
trans_out:
1273
	btrfs_end_transaction(trans);
1274
	btrfs_btree_balance_dirty(fs_info);
1275 1276 1277 1278 1279 1280
out:
	btrfs_release_delayed_node(delayed_node);

	return ret;
}

1281
void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1282 1283 1284
{
	struct btrfs_delayed_node *delayed_node;

1285
	delayed_node = READ_ONCE(inode->delayed_node);
1286 1287 1288
	if (!delayed_node)
		return;

1289
	inode->delayed_node = NULL;
1290 1291 1292
	btrfs_release_delayed_node(delayed_node);
}

1293 1294 1295
struct btrfs_async_delayed_work {
	struct btrfs_delayed_root *delayed_root;
	int nr;
1296
	struct btrfs_work work;
1297 1298
};

1299
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1300
{
1301 1302
	struct btrfs_async_delayed_work *async_work;
	struct btrfs_delayed_root *delayed_root;
1303 1304 1305 1306
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_delayed_node *delayed_node = NULL;
	struct btrfs_root *root;
1307
	struct btrfs_block_rsv *block_rsv;
1308
	int total_done = 0;
1309

1310 1311
	async_work = container_of(work, struct btrfs_async_delayed_work, work);
	delayed_root = async_work->delayed_root;
1312 1313 1314 1315 1316

	path = btrfs_alloc_path();
	if (!path)
		goto out;

1317 1318 1319 1320
	do {
		if (atomic_read(&delayed_root->items) <
		    BTRFS_DELAYED_BACKGROUND / 2)
			break;
1321

1322 1323 1324
		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
		if (!delayed_node)
			break;
1325

1326 1327
		path->leave_spinning = 1;
		root = delayed_node->root;
1328

1329 1330 1331 1332 1333 1334 1335
		trans = btrfs_join_transaction(root);
		if (IS_ERR(trans)) {
			btrfs_release_path(path);
			btrfs_release_prepared_delayed_node(delayed_node);
			total_done++;
			continue;
		}
1336

1337 1338
		block_rsv = trans->block_rsv;
		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1339

1340
		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1341

1342 1343 1344
		trans->block_rsv = block_rsv;
		btrfs_end_transaction(trans);
		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1345

1346 1347 1348
		btrfs_release_path(path);
		btrfs_release_prepared_delayed_node(delayed_node);
		total_done++;
1349

1350 1351
	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
		 || total_done < async_work->nr);
1352

1353 1354
	btrfs_free_path(path);
out:
1355 1356
	wake_up(&delayed_root->wait);
	kfree(async_work);
1357 1358
}

1359

1360
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1361
				     struct btrfs_fs_info *fs_info, int nr)
1362
{
1363
	struct btrfs_async_delayed_work *async_work;
1364

1365 1366
	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
	if (!async_work)
1367 1368
		return -ENOMEM;

1369
	async_work->delayed_root = delayed_root;
1370 1371
	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
			btrfs_async_run_delayed_root, NULL, NULL);
1372
	async_work->nr = nr;
1373

1374
	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375 1376 1377
	return 0;
}

1378
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379
{
1380
	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1381 1382
}

1383
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1384 1385 1386
{
	int val = atomic_read(&delayed_root->items_seq);

1387
	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1388
		return 1;
1389 1390 1391 1392

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return 1;

1393 1394 1395
	return 0;
}

1396
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1397
{
1398
	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1399

1400 1401
	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1402 1403 1404
		return;

	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1405
		int seq;
1406
		int ret;
1407 1408

		seq = atomic_read(&delayed_root->items_seq);
1409

1410
		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1411 1412 1413
		if (ret)
			return;

1414 1415
		wait_event_interruptible(delayed_root->wait,
					 could_end_wait(delayed_root, seq));
1416
		return;
1417 1418
	}

1419
	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1420 1421
}

1422
/* Will return 0 or -ENOMEM */
1423
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1424 1425
				   struct btrfs_fs_info *fs_info,
				   const char *name, int name_len,
1426
				   struct btrfs_inode *dir,
1427 1428 1429 1430 1431 1432 1433 1434
				   struct btrfs_disk_key *disk_key, u8 type,
				   u64 index)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *delayed_item;
	struct btrfs_dir_item *dir_item;
	int ret;

1435
	delayed_node = btrfs_get_or_create_delayed_node(dir);
1436 1437 1438 1439 1440 1441 1442 1443 1444
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
	if (!delayed_item) {
		ret = -ENOMEM;
		goto release_node;
	}

1445
	delayed_item->key.objectid = btrfs_ino(dir);
1446
	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1447 1448 1449 1450
	delayed_item->key.offset = index;

	dir_item = (struct btrfs_dir_item *)delayed_item->data;
	dir_item->location = *disk_key;
1451 1452 1453 1454
	btrfs_set_stack_dir_transid(dir_item, trans->transid);
	btrfs_set_stack_dir_data_len(dir_item, 0);
	btrfs_set_stack_dir_name_len(dir_item, name_len);
	btrfs_set_stack_dir_type(dir_item, type);
1455 1456
	memcpy((char *)(dir_item + 1), name, name_len);

1457
	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
J
Josef Bacik 已提交
1458 1459 1460 1461 1462 1463 1464
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible
	 */
	BUG_ON(ret);


1465 1466 1467
	mutex_lock(&delayed_node->mutex);
	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
	if (unlikely(ret)) {
1468
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1469 1470 1471
			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  name_len, name, delayed_node->root->objectid,
			  delayed_node->inode_id, ret);
1472 1473 1474 1475 1476 1477 1478 1479 1480
		BUG();
	}
	mutex_unlock(&delayed_node->mutex);

release_node:
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1481
static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
					       struct btrfs_delayed_node *node,
					       struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	mutex_lock(&node->mutex);
	item = __btrfs_lookup_delayed_insertion_item(node, key);
	if (!item) {
		mutex_unlock(&node->mutex);
		return 1;
	}

1494
	btrfs_delayed_item_release_metadata(node->root, item);
1495 1496 1497 1498 1499 1500
	btrfs_release_delayed_item(item);
	mutex_unlock(&node->mutex);
	return 0;
}

int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1501
				   struct btrfs_fs_info *fs_info,
1502
				   struct btrfs_inode *dir, u64 index)
1503 1504 1505 1506 1507 1508
{
	struct btrfs_delayed_node *node;
	struct btrfs_delayed_item *item;
	struct btrfs_key item_key;
	int ret;

1509
	node = btrfs_get_or_create_delayed_node(dir);
1510 1511 1512
	if (IS_ERR(node))
		return PTR_ERR(node);

1513
	item_key.objectid = btrfs_ino(dir);
1514
	item_key.type = BTRFS_DIR_INDEX_KEY;
1515 1516
	item_key.offset = index;

1517
	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	if (!ret)
		goto end;

	item = btrfs_alloc_delayed_item(0);
	if (!item) {
		ret = -ENOMEM;
		goto end;
	}

	item->key = item_key;

1529
	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1530 1531 1532 1533 1534 1535 1536 1537 1538
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible.
	 */
	BUG_ON(ret);

	mutex_lock(&node->mutex);
	ret = __btrfs_add_delayed_deletion_item(node, item);
	if (unlikely(ret)) {
1539
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1540 1541
			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  index, node->root->objectid, node->inode_id, ret);
1542 1543 1544 1545 1546 1547 1548 1549
		BUG();
	}
	mutex_unlock(&node->mutex);
end:
	btrfs_release_delayed_node(node);
	return ret;
}

1550
int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1551
{
1552
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1553 1554 1555 1556 1557 1558 1559 1560 1561

	if (!delayed_node)
		return -ENOENT;

	/*
	 * Since we have held i_mutex of this directory, it is impossible that
	 * a new directory index is added into the delayed node and index_cnt
	 * is updated now. So we needn't lock the delayed node.
	 */
1562 1563
	if (!delayed_node->index_cnt) {
		btrfs_release_delayed_node(delayed_node);
1564
		return -EINVAL;
1565
	}
1566

1567
	inode->index_cnt = delayed_node->index_cnt;
1568 1569
	btrfs_release_delayed_node(delayed_node);
	return 0;
1570 1571
}

1572 1573 1574
bool btrfs_readdir_get_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1575 1576 1577 1578
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *item;

1579
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1580
	if (!delayed_node)
1581 1582 1583 1584 1585 1586 1587 1588
		return false;

	/*
	 * We can only do one readdir with delayed items at a time because of
	 * item->readdir_list.
	 */
	inode_unlock_shared(inode);
	inode_lock(inode);
1589 1590 1591 1592

	mutex_lock(&delayed_node->mutex);
	item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (item) {
1593
		refcount_inc(&item->refs);
1594 1595 1596 1597 1598 1599
		list_add_tail(&item->readdir_list, ins_list);
		item = __btrfs_next_delayed_item(item);
	}

	item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (item) {
1600
		refcount_inc(&item->refs);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		list_add_tail(&item->readdir_list, del_list);
		item = __btrfs_next_delayed_item(item);
	}
	mutex_unlock(&delayed_node->mutex);
	/*
	 * This delayed node is still cached in the btrfs inode, so refs
	 * must be > 1 now, and we needn't check it is going to be freed
	 * or not.
	 *
	 * Besides that, this function is used to read dir, we do not
	 * insert/delete delayed items in this period. So we also needn't
	 * requeue or dequeue this delayed node.
	 */
1614
	refcount_dec(&delayed_node->refs);
1615 1616

	return true;
1617 1618
}

1619 1620 1621
void btrfs_readdir_put_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1622 1623 1624 1625 1626
{
	struct btrfs_delayed_item *curr, *next;

	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);
1627
		if (refcount_dec_and_test(&curr->refs))
1628 1629 1630 1631 1632
			kfree(curr);
	}

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		list_del(&curr->readdir_list);
1633
		if (refcount_dec_and_test(&curr->refs))
1634 1635
			kfree(curr);
	}
1636 1637 1638 1639 1640 1641

	/*
	 * The VFS is going to do up_read(), so we need to downgrade back to a
	 * read lock.
	 */
	downgrade_write(&inode->i_rwsem);
1642 1643 1644 1645 1646
}

int btrfs_should_delete_dir_index(struct list_head *del_list,
				  u64 index)
{
1647 1648
	struct btrfs_delayed_item *curr;
	int ret = 0;
1649

1650
	list_for_each_entry(curr, del_list, readdir_list) {
1651 1652
		if (curr->key.offset > index)
			break;
1653 1654 1655 1656
		if (curr->key.offset == index) {
			ret = 1;
			break;
		}
1657
	}
1658
	return ret;
1659 1660 1661 1662 1663 1664
}

/*
 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
 *
 */
A
Al Viro 已提交
1665
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1666
				    struct list_head *ins_list)
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
{
	struct btrfs_dir_item *di;
	struct btrfs_delayed_item *curr, *next;
	struct btrfs_key location;
	char *name;
	int name_len;
	int over = 0;
	unsigned char d_type;

	if (list_empty(ins_list))
		return 0;

	/*
	 * Changing the data of the delayed item is impossible. So
	 * we needn't lock them. And we have held i_mutex of the
	 * directory, nobody can delete any directory indexes now.
	 */
	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);

A
Al Viro 已提交
1687
		if (curr->key.offset < ctx->pos) {
1688
			if (refcount_dec_and_test(&curr->refs))
1689 1690 1691 1692
				kfree(curr);
			continue;
		}

A
Al Viro 已提交
1693
		ctx->pos = curr->key.offset;
1694 1695 1696

		di = (struct btrfs_dir_item *)curr->data;
		name = (char *)(di + 1);
1697
		name_len = btrfs_stack_dir_name_len(di);
1698 1699 1700 1701

		d_type = btrfs_filetype_table[di->type];
		btrfs_disk_key_to_cpu(&location, &di->location);

A
Al Viro 已提交
1702
		over = !dir_emit(ctx, name, name_len,
1703 1704
			       location.objectid, d_type);

1705
		if (refcount_dec_and_test(&curr->refs))
1706 1707 1708 1709
			kfree(curr);

		if (over)
			return 1;
1710
		ctx->pos++;
1711 1712 1713 1714 1715 1716 1717 1718
	}
	return 0;
}

static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
				  struct btrfs_inode_item *inode_item,
				  struct inode *inode)
{
1719 1720
	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1721 1722 1723 1724 1725 1726
	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
	btrfs_set_stack_inode_generation(inode_item,
					 BTRFS_I(inode)->generation);
1727 1728
	btrfs_set_stack_inode_sequence(inode_item,
				       inode_peek_iversion(inode));
1729 1730 1731
	btrfs_set_stack_inode_transid(inode_item, trans->transid);
	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
C
Chris Mason 已提交
1732
	btrfs_set_stack_inode_block_group(inode_item, 0);
1733

1734
	btrfs_set_stack_timespec_sec(&inode_item->atime,
1735
				     inode->i_atime.tv_sec);
1736
	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1737 1738
				      inode->i_atime.tv_nsec);

1739
	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1740
				     inode->i_mtime.tv_sec);
1741
	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1742 1743
				      inode->i_mtime.tv_nsec);

1744
	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1745
				     inode->i_ctime.tv_sec);
1746
	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1747
				      inode->i_ctime.tv_nsec);
1748 1749 1750 1751 1752

	btrfs_set_stack_timespec_sec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_sec);
	btrfs_set_stack_timespec_nsec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_nsec);
1753 1754
}

1755 1756 1757 1758 1759
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_inode_item *inode_item;

1760
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1761 1762 1763 1764
	if (!delayed_node)
		return -ENOENT;

	mutex_lock(&delayed_node->mutex);
1765
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1766 1767 1768 1769 1770 1771 1772
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return -ENOENT;
	}

	inode_item = &delayed_node->inode_item;

1773 1774
	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1775
	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1776
	inode->i_mode = btrfs_stack_inode_mode(inode_item);
M
Miklos Szeredi 已提交
1777
	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1778 1779
	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1780 1781
        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);

1782 1783
	inode_set_iversion_queried(inode,
				   btrfs_stack_inode_sequence(inode_item));
1784 1785 1786 1787
	inode->i_rdev = 0;
	*rdev = btrfs_stack_inode_rdev(inode_item);
	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);

1788 1789
	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1790

1791 1792
	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1793

1794 1795
	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1796

1797 1798 1799 1800 1801
	BTRFS_I(inode)->i_otime.tv_sec =
		btrfs_stack_timespec_sec(&inode_item->otime);
	BTRFS_I(inode)->i_otime.tv_nsec =
		btrfs_stack_timespec_nsec(&inode_item->otime);

1802 1803 1804 1805 1806 1807 1808 1809
	inode->i_generation = BTRFS_I(inode)->generation;
	BTRFS_I(inode)->index_cnt = (u64)-1;

	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1810 1811 1812 1813
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;
1814
	int ret = 0;
1815

1816
	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1817 1818 1819 1820
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	mutex_lock(&delayed_node->mutex);
1821
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1822 1823 1824 1825
		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
		goto release_node;
	}

1826
	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1827
						   delayed_node);
1828 1829
	if (ret)
		goto release_node;
1830 1831

	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1832
	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1833 1834 1835 1836 1837 1838 1839 1840
	delayed_node->count++;
	atomic_inc(&root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1841
int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1842
{
1843
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1844 1845
	struct btrfs_delayed_node *delayed_node;

1846 1847 1848 1849 1850
	/*
	 * we don't do delayed inode updates during log recovery because it
	 * leads to enospc problems.  This means we also can't do
	 * delayed inode refs
	 */
1851
	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1852 1853
		return -EAGAIN;

1854
	delayed_node = btrfs_get_or_create_delayed_node(inode);
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	/*
	 * We don't reserve space for inode ref deletion is because:
	 * - We ONLY do async inode ref deletion for the inode who has only
	 *   one link(i_nlink == 1), it means there is only one inode ref.
	 *   And in most case, the inode ref and the inode item are in the
	 *   same leaf, and we will deal with them at the same time.
	 *   Since we are sure we will reserve the space for the inode item,
	 *   it is unnecessary to reserve space for inode ref deletion.
	 * - If the inode ref and the inode item are not in the same leaf,
	 *   We also needn't worry about enospc problem, because we reserve
	 *   much more space for the inode update than it needs.
	 * - At the worst, we can steal some space from the global reservation.
	 *   It is very rare.
	 */
	mutex_lock(&delayed_node->mutex);
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		goto release_node;

	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count++;
1878
	atomic_inc(&fs_info->delayed_root->items);
1879 1880 1881 1882 1883 1884
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1885 1886 1887
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_root *root = delayed_node->root;
1888
	struct btrfs_fs_info *fs_info = root->fs_info;
1889 1890 1891 1892 1893
	struct btrfs_delayed_item *curr_item, *prev_item;

	mutex_lock(&delayed_node->mutex);
	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (curr_item) {
1894
		btrfs_delayed_item_release_metadata(root, curr_item);
1895 1896 1897 1898 1899 1900 1901
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (curr_item) {
1902
		btrfs_delayed_item_release_metadata(root, curr_item);
1903 1904 1905 1906 1907
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

1908 1909 1910
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		btrfs_release_delayed_iref(delayed_node);

1911
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1912
		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1913 1914 1915 1916 1917
		btrfs_release_delayed_inode(delayed_node);
	}
	mutex_unlock(&delayed_node->mutex);
}

1918
void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1919 1920 1921
{
	struct btrfs_delayed_node *delayed_node;

1922
	delayed_node = btrfs_get_delayed_node(inode);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	if (!delayed_node)
		return;

	__btrfs_kill_delayed_node(delayed_node);
	btrfs_release_delayed_node(delayed_node);
}

void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
	u64 inode_id = 0;
	struct btrfs_delayed_node *delayed_nodes[8];
	int i, n;

	while (1) {
		spin_lock(&root->inode_lock);
		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
					   (void **)delayed_nodes, inode_id,
					   ARRAY_SIZE(delayed_nodes));
		if (!n) {
			spin_unlock(&root->inode_lock);
			break;
		}

		inode_id = delayed_nodes[n - 1]->inode_id + 1;

		for (i = 0; i < n; i++)
1949
			refcount_inc(&delayed_nodes[i]->refs);
1950 1951 1952 1953 1954 1955 1956 1957
		spin_unlock(&root->inode_lock);

		for (i = 0; i < n; i++) {
			__btrfs_kill_delayed_node(delayed_nodes[i]);
			btrfs_release_delayed_node(delayed_nodes[i]);
		}
	}
}
1958

1959
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1960 1961 1962
{
	struct btrfs_delayed_node *curr_node, *prev_node;

1963
	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1964 1965 1966 1967 1968 1969 1970 1971 1972
	while (curr_node) {
		__btrfs_kill_delayed_node(curr_node);

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}
}