delayed-inode.c 52.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2011 Fujitsu.  All rights reserved.
 * Written by Miao Xie <miaox@cn.fujitsu.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/slab.h>
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
24
#include "ctree.h"
25

26 27 28
#define BTRFS_DELAYED_WRITEBACK		512
#define BTRFS_DELAYED_BACKGROUND	128
#define BTRFS_DELAYED_BATCH		16
29 30 31 32 33

static struct kmem_cache *delayed_node_cache;

int __init btrfs_delayed_inode_init(void)
{
D
David Sterba 已提交
34
	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 36
					sizeof(struct btrfs_delayed_node),
					0,
37
					SLAB_MEM_SPREAD,
38 39 40 41 42 43 44 45
					NULL);
	if (!delayed_node_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_delayed_inode_exit(void)
{
46
	kmem_cache_destroy(delayed_node_cache);
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
}

static inline void btrfs_init_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				struct btrfs_root *root, u64 inode_id)
{
	delayed_node->root = root;
	delayed_node->inode_id = inode_id;
	atomic_set(&delayed_node->refs, 0);
	delayed_node->ins_root = RB_ROOT;
	delayed_node->del_root = RB_ROOT;
	mutex_init(&delayed_node->mutex);
	INIT_LIST_HEAD(&delayed_node->n_list);
	INIT_LIST_HEAD(&delayed_node->p_list);
}

static inline int btrfs_is_continuous_delayed_item(
					struct btrfs_delayed_item *item1,
					struct btrfs_delayed_item *item2)
{
	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
	    item1->key.objectid == item2->key.objectid &&
	    item1->key.type == item2->key.type &&
	    item1->key.offset + 1 == item2->key.offset)
		return 1;
	return 0;
}

75
static struct btrfs_delayed_node *btrfs_get_delayed_node(struct btrfs_inode *btrfs_inode)
76 77
{
	struct btrfs_root *root = btrfs_inode->root;
78
	u64 ino = btrfs_ino(btrfs_inode);
79
	struct btrfs_delayed_node *node;
80

S
Seraphime Kirkovski 已提交
81
	node = READ_ONCE(btrfs_inode->delayed_node);
82
	if (node) {
83
		atomic_inc(&node->refs);
84 85 86 87
		return node;
	}

	spin_lock(&root->inode_lock);
88
	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
89 90
	if (node) {
		if (btrfs_inode->delayed_node) {
91 92
			atomic_inc(&node->refs);	/* can be accessed */
			BUG_ON(btrfs_inode->delayed_node != node);
93
			spin_unlock(&root->inode_lock);
94
			return node;
95 96
		}
		btrfs_inode->delayed_node = node;
97 98
		/* can be accessed and cached in the inode */
		atomic_add(2, &node->refs);
99 100 101 102 103
		spin_unlock(&root->inode_lock);
		return node;
	}
	spin_unlock(&root->inode_lock);

104 105 106
	return NULL;
}

107
/* Will return either the node or PTR_ERR(-ENOMEM) */
108
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
109
							struct btrfs_inode *btrfs_inode)
110 111 112
{
	struct btrfs_delayed_node *node;
	struct btrfs_root *root = btrfs_inode->root;
113
	u64 ino = btrfs_ino(btrfs_inode);
114 115 116
	int ret;

again:
117
	node = btrfs_get_delayed_node(btrfs_inode);
118 119 120
	if (node)
		return node;

121
	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
122 123
	if (!node)
		return ERR_PTR(-ENOMEM);
124
	btrfs_init_delayed_node(node, root, ino);
125

126 127
	/* cached in the btrfs inode and can be accessed */
	atomic_add(2, &node->refs);
128

129
	ret = radix_tree_preload(GFP_NOFS);
130 131 132 133 134 135
	if (ret) {
		kmem_cache_free(delayed_node_cache, node);
		return ERR_PTR(ret);
	}

	spin_lock(&root->inode_lock);
136
	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
137 138
	if (ret == -EEXIST) {
		spin_unlock(&root->inode_lock);
139
		kmem_cache_free(delayed_node_cache, node);
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
		radix_tree_preload_end();
		goto again;
	}
	btrfs_inode->delayed_node = node;
	spin_unlock(&root->inode_lock);
	radix_tree_preload_end();

	return node;
}

/*
 * Call it when holding delayed_node->mutex
 *
 * If mod = 1, add this node into the prepared list.
 */
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
				     struct btrfs_delayed_node *node,
				     int mod)
{
	spin_lock(&root->lock);
160
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
161 162 163 164 165 166 167 168 169
		if (!list_empty(&node->p_list))
			list_move_tail(&node->p_list, &root->prepare_list);
		else if (mod)
			list_add_tail(&node->p_list, &root->prepare_list);
	} else {
		list_add_tail(&node->n_list, &root->node_list);
		list_add_tail(&node->p_list, &root->prepare_list);
		atomic_inc(&node->refs);	/* inserted into list */
		root->nodes++;
170
		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
171 172 173 174 175 176 177 178 179
	}
	spin_unlock(&root->lock);
}

/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
				       struct btrfs_delayed_node *node)
{
	spin_lock(&root->lock);
180
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
181 182 183 184 185
		root->nodes--;
		atomic_dec(&node->refs);	/* not in the list */
		list_del_init(&node->n_list);
		if (!list_empty(&node->p_list))
			list_del_init(&node->p_list);
186
		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
187 188 189 190
	}
	spin_unlock(&root->lock);
}

191
static struct btrfs_delayed_node *btrfs_first_delayed_node(
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
			struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->node_list))
		goto out;

	p = delayed_root->node_list.next;
	node = list_entry(p, struct btrfs_delayed_node, n_list);
	atomic_inc(&node->refs);
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

210
static struct btrfs_delayed_node *btrfs_next_delayed_node(
211 212 213 214 215 216 217 218
						struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_root *delayed_root;
	struct list_head *p;
	struct btrfs_delayed_node *next = NULL;

	delayed_root = node->root->fs_info->delayed_root;
	spin_lock(&delayed_root->lock);
219 220
	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
		/* not in the list */
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
		if (list_empty(&delayed_root->node_list))
			goto out;
		p = delayed_root->node_list.next;
	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
		goto out;
	else
		p = node->n_list.next;

	next = list_entry(p, struct btrfs_delayed_node, n_list);
	atomic_inc(&next->refs);
out:
	spin_unlock(&delayed_root->lock);

	return next;
}

static void __btrfs_release_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				int mod)
{
	struct btrfs_delayed_root *delayed_root;

	if (!delayed_node)
		return;

	delayed_root = delayed_node->root->fs_info->delayed_root;

	mutex_lock(&delayed_node->mutex);
	if (delayed_node->count)
		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
	else
		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
	mutex_unlock(&delayed_node->mutex);

	if (atomic_dec_and_test(&delayed_node->refs)) {
256
		bool free = false;
257 258 259 260 261
		struct btrfs_root *root = delayed_node->root;
		spin_lock(&root->inode_lock);
		if (atomic_read(&delayed_node->refs) == 0) {
			radix_tree_delete(&root->delayed_nodes_tree,
					  delayed_node->inode_id);
262
			free = true;
263 264
		}
		spin_unlock(&root->inode_lock);
265 266
		if (free)
			kmem_cache_free(delayed_node_cache, delayed_node);
267 268 269 270 271 272 273 274
	}
}

static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 0);
}

275
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
					struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->prepare_list))
		goto out;

	p = delayed_root->prepare_list.next;
	list_del_init(p);
	node = list_entry(p, struct btrfs_delayed_node, p_list);
	atomic_inc(&node->refs);
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

static inline void btrfs_release_prepared_delayed_node(
					struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 1);
}

301
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
{
	struct btrfs_delayed_item *item;
	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
	if (item) {
		item->data_len = data_len;
		item->ins_or_del = 0;
		item->bytes_reserved = 0;
		item->delayed_node = NULL;
		atomic_set(&item->refs, 1);
	}
	return item;
}

/*
 * __btrfs_lookup_delayed_item - look up the delayed item by key
 * @delayed_node: pointer to the delayed node
 * @key:	  the key to look up
 * @prev:	  used to store the prev item if the right item isn't found
 * @next:	  used to store the next item if the right item isn't found
 *
 * Note: if we don't find the right item, we will return the prev item and
 * the next item.
 */
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
				struct rb_root *root,
				struct btrfs_key *key,
				struct btrfs_delayed_item **prev,
				struct btrfs_delayed_item **next)
{
	struct rb_node *node, *prev_node = NULL;
	struct btrfs_delayed_item *delayed_item = NULL;
	int ret = 0;

	node = root->rb_node;

	while (node) {
		delayed_item = rb_entry(node, struct btrfs_delayed_item,
					rb_node);
		prev_node = node;
		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
		if (ret < 0)
			node = node->rb_right;
		else if (ret > 0)
			node = node->rb_left;
		else
			return delayed_item;
	}

	if (prev) {
		if (!prev_node)
			*prev = NULL;
		else if (ret < 0)
			*prev = delayed_item;
		else if ((node = rb_prev(prev_node)) != NULL) {
			*prev = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*prev = NULL;
	}

	if (next) {
		if (!prev_node)
			*next = NULL;
		else if (ret > 0)
			*next = delayed_item;
		else if ((node = rb_next(prev_node)) != NULL) {
			*next = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*next = NULL;
	}
	return NULL;
}

376
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
377 378 379
					struct btrfs_delayed_node *delayed_node,
					struct btrfs_key *key)
{
380
	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
					   NULL, NULL);
}

static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
				    struct btrfs_delayed_item *ins,
				    int action)
{
	struct rb_node **p, *node;
	struct rb_node *parent_node = NULL;
	struct rb_root *root;
	struct btrfs_delayed_item *item;
	int cmp;

	if (action == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_node->ins_root;
	else if (action == BTRFS_DELAYED_DELETION_ITEM)
		root = &delayed_node->del_root;
	else
		BUG();
	p = &root->rb_node;
	node = &ins->rb_node;

	while (*p) {
		parent_node = *p;
		item = rb_entry(parent_node, struct btrfs_delayed_item,
				 rb_node);

		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
		if (cmp < 0)
			p = &(*p)->rb_right;
		else if (cmp > 0)
			p = &(*p)->rb_left;
		else
			return -EEXIST;
	}

	rb_link_node(node, parent_node, p);
	rb_insert_color(node, root);
	ins->delayed_node = delayed_node;
	ins->ins_or_del = action;

	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
	    action == BTRFS_DELAYED_INSERTION_ITEM &&
	    ins->key.offset >= delayed_node->index_cnt)
			delayed_node->index_cnt = ins->key.offset + 1;

	delayed_node->count++;
	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
	return 0;
}

static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
					      struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_INSERTION_ITEM);
}

static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
					     struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_DELETION_ITEM);
}

446 447 448
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
	int seq = atomic_inc_return(&delayed_root->items_seq);
449 450 451 452

	/*
	 * atomic_dec_return implies a barrier for waitqueue_active
	 */
453 454 455 456 457 458
	if ((atomic_dec_return(&delayed_root->items) <
	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
	    waitqueue_active(&delayed_root->wait))
		wake_up(&delayed_root->wait);
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
	struct rb_root *root;
	struct btrfs_delayed_root *delayed_root;

	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;

	BUG_ON(!delayed_root);
	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);

	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_item->delayed_node->ins_root;
	else
		root = &delayed_item->delayed_node->del_root;

	rb_erase(&delayed_item->rb_node, root);
	delayed_item->delayed_node->count--;
477 478

	finish_one_item(delayed_root);
479 480 481 482 483 484 485 486 487 488 489
}

static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
	if (item) {
		__btrfs_remove_delayed_item(item);
		if (atomic_dec_and_test(&item->refs))
			kfree(item);
	}
}

490
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
491 492 493 494 495 496 497 498 499 500 501 502
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->ins_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

503
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
504 505 506 507 508 509 510 511 512 513 514 515
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->del_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

516
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
517 518 519 520 521 522 523 524 525 526 527 528 529
						struct btrfs_delayed_item *item)
{
	struct rb_node *p;
	struct btrfs_delayed_item *next = NULL;

	p = rb_next(&item->rb_node);
	if (p)
		next = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return next;
}

static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
530
					       struct btrfs_fs_info *fs_info,
531 532 533 534 535 536 537 538 539 540 541
					       struct btrfs_delayed_item *item)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	if (!trans->bytes_reserved)
		return 0;

	src_rsv = trans->block_rsv;
542
	dst_rsv = &fs_info->delayed_block_rsv;
543

544
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
545
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
J
Josef Bacik 已提交
546
	if (!ret) {
547
		trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
548 549
					      item->key.objectid,
					      num_bytes, 1);
550
		item->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
551
	}
552 553 554 555

	return ret;
}

556
static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
557 558
						struct btrfs_delayed_item *item)
{
559 560
	struct btrfs_block_rsv *rsv;

561 562 563
	if (!item->bytes_reserved)
		return;

564 565
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
566 567
				      item->key.objectid, item->bytes_reserved,
				      0);
568
	btrfs_block_rsv_release(fs_info, rsv,
569 570 571 572 573 574
				item->bytes_reserved);
}

static int btrfs_delayed_inode_reserve_metadata(
					struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
575
					struct btrfs_inode *inode,
576 577
					struct btrfs_delayed_node *node)
{
578
	struct btrfs_fs_info *fs_info = root->fs_info;
579 580 581 582
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;
J
Josef Bacik 已提交
583
	bool release = false;
584 585

	src_rsv = trans->block_rsv;
586
	dst_rsv = &fs_info->delayed_block_rsv;
587

588
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
589

590 591 592 593 594 595 596 597 598 599 600 601 602 603
	/*
	 * If our block_rsv is the delalloc block reserve then check and see if
	 * we have our extra reservation for updating the inode.  If not fall
	 * through and try to reserve space quickly.
	 *
	 * We used to try and steal from the delalloc block rsv or the global
	 * reserve, but we'd steal a full reservation, which isn't kind.  We are
	 * here through delalloc which means we've likely just cowed down close
	 * to the leaf that contains the inode, so we would steal less just
	 * doing the fallback inode update, so if we do end up having to steal
	 * from the global block rsv we hopefully only steal one or two blocks
	 * worth which is less likely to hurt us.
	 */
	if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
604
		spin_lock(&inode->lock);
605
		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
606
				       &inode->runtime_flags))
607 608 609
			release = true;
		else
			src_rsv = NULL;
610
		spin_unlock(&inode->lock);
611 612
	}

613 614 615 616 617 618 619 620 621
	/*
	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
	 * which doesn't reserve space for speed.  This is a problem since we
	 * still need to reserve space for this update, so try to reserve the
	 * space.
	 *
	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
	 * we're accounted for.
	 */
622
	if (!src_rsv || (!trans->bytes_reserved &&
623
			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
M
Miao Xie 已提交
624 625
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
626 627 628 629 630 631 632 633
		/*
		 * Since we're under a transaction reserve_metadata_bytes could
		 * try to commit the transaction which will make it return
		 * EAGAIN to make us stop the transaction we have, so return
		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
		 */
		if (ret == -EAGAIN)
			ret = -ENOSPC;
J
Josef Bacik 已提交
634
		if (!ret) {
635
			node->bytes_reserved = num_bytes;
636
			trace_btrfs_space_reservation(fs_info,
J
Josef Bacik 已提交
637
						      "delayed_inode",
638
						      btrfs_ino(inode),
J
Josef Bacik 已提交
639 640
						      num_bytes, 1);
		}
641 642 643
		return ret;
	}

644
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
645 646 647 648 649 650 651 652 653 654 655 656 657 658

	/*
	 * Migrate only takes a reservation, it doesn't touch the size of the
	 * block_rsv.  This is to simplify people who don't normally have things
	 * migrated from their block rsv.  If they go to release their
	 * reservation, that will decrease the size as well, so if migrate
	 * reduced size we'd end up with a negative size.  But for the
	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
	 * but we could in fact do this reserve/migrate dance several times
	 * between the time we did the original reservation and we'd clean it
	 * up.  So to take care of this, release the space for the meta
	 * reservation here.  I think it may be time for a documentation page on
	 * how block rsvs. work.
	 */
J
Josef Bacik 已提交
659
	if (!ret) {
660
		trace_btrfs_space_reservation(fs_info, "delayed_inode",
661
					      btrfs_ino(inode), num_bytes, 1);
662
		node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
663
	}
664

J
Josef Bacik 已提交
665
	if (release) {
666
		trace_btrfs_space_reservation(fs_info, "delalloc",
667
					      btrfs_ino(inode), num_bytes, 0);
668
		btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
J
Josef Bacik 已提交
669
	}
670 671 672 673

	return ret;
}

674
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
675 676 677 678 679 680 681
						struct btrfs_delayed_node *node)
{
	struct btrfs_block_rsv *rsv;

	if (!node->bytes_reserved)
		return;

682 683
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_inode",
J
Josef Bacik 已提交
684
				      node->inode_id, node->bytes_reserved, 0);
685
	btrfs_block_rsv_release(fs_info, rsv,
686 687 688 689 690 691 692 693
				node->bytes_reserved);
	node->bytes_reserved = 0;
}

/*
 * This helper will insert some continuous items into the same leaf according
 * to the free space of the leaf.
 */
694 695 696
static int btrfs_batch_insert_items(struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
697
{
698
	struct btrfs_fs_info *fs_info = root->fs_info;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	struct btrfs_delayed_item *curr, *next;
	int free_space;
	int total_data_size = 0, total_size = 0;
	struct extent_buffer *leaf;
	char *data_ptr;
	struct btrfs_key *keys;
	u32 *data_size;
	struct list_head head;
	int slot;
	int nitems;
	int i;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];
715
	free_space = btrfs_leaf_free_space(fs_info, leaf);
716 717 718
	INIT_LIST_HEAD(&head);

	next = item;
719
	nitems = 0;
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

	/*
	 * count the number of the continuous items that we can insert in batch
	 */
	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
	       free_space) {
		total_data_size += next->data_len;
		total_size += next->data_len + sizeof(struct btrfs_item);
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;
	}

	if (!nitems) {
		ret = 0;
		goto out;
	}

	/*
	 * we need allocate some memory space, but it might cause the task
	 * to sleep, so we set all locked nodes in the path to blocking locks
	 * first.
	 */
	btrfs_set_path_blocking(path);

752
	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
753 754 755 756 757
	if (!keys) {
		ret = -ENOMEM;
		goto out;
	}

758
	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
759 760 761 762 763 764 765 766 767 768 769 770 771 772
	if (!data_size) {
		ret = -ENOMEM;
		goto error;
	}

	/* get keys of all the delayed items */
	i = 0;
	list_for_each_entry(next, &head, tree_list) {
		keys[i] = next->key;
		data_size[i] = next->data_len;
		i++;
	}

	/* reset all the locked nodes in the patch to spinning locks. */
773
	btrfs_clear_path_blocking(path, NULL, 0);
774 775

	/* insert the keys of the items */
776
	setup_items_for_insert(root, path, keys, data_size,
777
			       total_data_size, total_size, nitems);
778 779 780 781 782 783 784 785 786 787

	/* insert the dir index items */
	slot = path->slots[0];
	list_for_each_entry_safe(curr, next, &head, tree_list) {
		data_ptr = btrfs_item_ptr(leaf, slot, char);
		write_extent_buffer(leaf, &curr->data,
				    (unsigned long)data_ptr,
				    curr->data_len);
		slot++;

788
		btrfs_delayed_item_release_metadata(fs_info, curr);
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

error:
	kfree(data_size);
	kfree(keys);
out:
	return ret;
}

/*
 * This helper can just do simple insertion that needn't extend item for new
 * data, such as directory name index insertion, inode insertion.
 */
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path,
				     struct btrfs_delayed_item *delayed_item)
{
810
	struct btrfs_fs_info *fs_info = root->fs_info;
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	struct extent_buffer *leaf;
	char *ptr;
	int ret;

	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
				      delayed_item->data_len);
	if (ret < 0 && ret != -EEXIST)
		return ret;

	leaf = path->nodes[0];

	ptr = btrfs_item_ptr(leaf, path->slots[0], char);

	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
			    delayed_item->data_len);
	btrfs_mark_buffer_dirty(leaf);

828
	btrfs_delayed_item_release_metadata(fs_info, delayed_item);
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	return 0;
}

/*
 * we insert an item first, then if there are some continuous items, we try
 * to insert those items into the same leaf.
 */
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_insertion_item(node);
	if (!curr)
		goto insert_end;

	ret = btrfs_insert_delayed_item(trans, root, path, curr);
	if (ret < 0) {
852
		btrfs_release_path(path);
853 854 855 856 857 858 859 860
		goto insert_end;
	}

	prev = curr;
	curr = __btrfs_next_delayed_item(prev);
	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
		/* insert the continuous items into the same leaf */
		path->slots[0]++;
861
		btrfs_batch_insert_items(root, path, curr);
862 863 864 865
	}
	btrfs_release_delayed_item(prev);
	btrfs_mark_buffer_dirty(path->nodes[0]);

866
	btrfs_release_path(path);
867 868 869 870 871 872 873 874 875 876 877 878 879
	mutex_unlock(&node->mutex);
	goto do_again;

insert_end:
	mutex_unlock(&node->mutex);
	return ret;
}

static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
{
880
	struct btrfs_fs_info *fs_info = root->fs_info;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	struct btrfs_delayed_item *curr, *next;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct list_head head;
	int nitems, i, last_item;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];

	i = path->slots[0];
	last_item = btrfs_header_nritems(leaf) - 1;
	if (i > last_item)
		return -ENOENT;	/* FIXME: Is errno suitable? */

	next = item;
	INIT_LIST_HEAD(&head);
	btrfs_item_key_to_cpu(leaf, &key, i);
	nitems = 0;
	/*
	 * count the number of the dir index items that we can delete in batch
	 */
	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;

		i++;
		if (i > last_item)
			break;
		btrfs_item_key_to_cpu(leaf, &key, i);
	}

	if (!nitems)
		return 0;

	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
	if (ret)
		goto out;

	list_for_each_entry_safe(curr, next, &head, tree_list) {
930
		btrfs_delayed_item_release_metadata(fs_info, curr);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

out:
	return ret;
}

static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_deletion_item(node);
	if (!curr)
		goto delete_fail;

	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
	if (ret < 0)
		goto delete_fail;
	else if (ret > 0) {
		/*
		 * can't find the item which the node points to, so this node
		 * is invalid, just drop it.
		 */
		prev = curr;
		curr = __btrfs_next_delayed_item(prev);
		btrfs_release_delayed_item(prev);
		ret = 0;
965
		btrfs_release_path(path);
966 967
		if (curr) {
			mutex_unlock(&node->mutex);
968
			goto do_again;
969
		} else
970 971 972 973
			goto delete_fail;
	}

	btrfs_batch_delete_items(trans, root, path, curr);
974
	btrfs_release_path(path);
975 976 977 978
	mutex_unlock(&node->mutex);
	goto do_again;

delete_fail:
979
	btrfs_release_path(path);
980 981 982 983 984 985 986 987
	mutex_unlock(&node->mutex);
	return ret;
}

static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

988 989
	if (delayed_node &&
	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
990
		BUG_ON(!delayed_node->root);
991
		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
992 993 994
		delayed_node->count--;

		delayed_root = delayed_node->root->fs_info->delayed_root;
995
		finish_one_item(delayed_root);
996 997 998
	}
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

	ASSERT(delayed_node->root);
	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count--;

	delayed_root = delayed_node->root->fs_info->delayed_root;
	finish_one_item(delayed_root);
}

1011 1012 1013 1014
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct btrfs_delayed_node *node)
1015
{
1016
	struct btrfs_fs_info *fs_info = root->fs_info;
1017 1018 1019
	struct btrfs_key key;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
1020
	int mod;
1021 1022 1023
	int ret;

	key.objectid = node->inode_id;
1024
	key.type = BTRFS_INODE_ITEM_KEY;
1025
	key.offset = 0;
1026

1027 1028 1029 1030 1031 1032
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		mod = -1;
	else
		mod = 1;

	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1033
	if (ret > 0) {
1034
		btrfs_release_path(path);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		return -ENOENT;
	} else if (ret < 0) {
		return ret;
	}

	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
			    sizeof(struct btrfs_inode_item));
	btrfs_mark_buffer_dirty(leaf);

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		goto no_iref;

	path->slots[0]++;
	if (path->slots[0] >= btrfs_header_nritems(leaf))
		goto search;
again:
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != node->inode_id)
		goto out;

	if (key.type != BTRFS_INODE_REF_KEY &&
	    key.type != BTRFS_INODE_EXTREF_KEY)
		goto out;

	/*
	 * Delayed iref deletion is for the inode who has only one link,
	 * so there is only one iref. The case that several irefs are
	 * in the same item doesn't exist.
	 */
	btrfs_del_item(trans, root, path);
out:
	btrfs_release_delayed_iref(node);
no_iref:
	btrfs_release_path(path);
err_out:
1073
	btrfs_delayed_inode_release_metadata(fs_info, node);
1074 1075
	btrfs_release_delayed_inode(node);

1076 1077 1078 1079 1080
	return ret;

search:
	btrfs_release_path(path);

1081
	key.type = BTRFS_INODE_EXTREF_KEY;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	key.offset = -1;
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto err_out;
	ASSERT(ret);

	ret = 0;
	leaf = path->nodes[0];
	path->slots[0]--;
	goto again;
1092 1093
}

1094 1095 1096 1097 1098 1099 1100 1101
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					     struct btrfs_root *root,
					     struct btrfs_path *path,
					     struct btrfs_delayed_node *node)
{
	int ret;

	mutex_lock(&node->mutex);
1102
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1103 1104 1105 1106 1107 1108 1109 1110 1111
		mutex_unlock(&node->mutex);
		return 0;
	}

	ret = __btrfs_update_delayed_inode(trans, root, path, node);
	mutex_unlock(&node->mutex);
	return ret;
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_delayed_node *node)
{
	int ret;

	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
	return ret;
}

1131 1132 1133 1134 1135 1136
/*
 * Called when committing the transaction.
 * Returns 0 on success.
 * Returns < 0 on error and returns with an aborted transaction with any
 * outstanding delayed items cleaned up.
 */
1137
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1138
				     struct btrfs_fs_info *fs_info, int nr)
1139 1140 1141 1142
{
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;
	struct btrfs_path *path;
1143
	struct btrfs_block_rsv *block_rsv;
1144
	int ret = 0;
1145
	bool count = (nr > 0);
1146

1147 1148 1149
	if (trans->aborted)
		return -EIO;

1150 1151 1152 1153 1154
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->leave_spinning = 1;

1155
	block_rsv = trans->block_rsv;
1156
	trans->block_rsv = &fs_info->delayed_block_rsv;
1157

1158
	delayed_root = fs_info->delayed_root;
1159 1160

	curr_node = btrfs_first_delayed_node(delayed_root);
1161
	while (curr_node && (!count || (count && nr--))) {
1162 1163
		ret = __btrfs_commit_inode_delayed_items(trans, path,
							 curr_node);
1164 1165
		if (ret) {
			btrfs_release_delayed_node(curr_node);
1166
			curr_node = NULL;
1167
			btrfs_abort_transaction(trans, ret);
1168 1169 1170 1171 1172 1173 1174 1175
			break;
		}

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}

1176 1177
	if (curr_node)
		btrfs_release_delayed_node(curr_node);
1178
	btrfs_free_path(path);
1179
	trans->block_rsv = block_rsv;
1180

1181 1182 1183
	return ret;
}

1184
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1185
			    struct btrfs_fs_info *fs_info)
1186
{
1187
	return __btrfs_run_delayed_items(trans, fs_info, -1);
1188 1189 1190
}

int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1191
			       struct btrfs_fs_info *fs_info, int nr)
1192
{
1193
	return __btrfs_run_delayed_items(trans, fs_info, nr);
1194 1195
}

1196 1197 1198
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				     struct inode *inode)
{
1199
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1200 1201
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
	if (!delayed_node->count) {
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

1215
	path = btrfs_alloc_path();
1216 1217
	if (!path) {
		btrfs_release_delayed_node(delayed_node);
1218
		return -ENOMEM;
1219
	}
1220 1221 1222 1223 1224 1225 1226
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);

1227
	btrfs_release_delayed_node(delayed_node);
1228 1229 1230
	btrfs_free_path(path);
	trans->block_rsv = block_rsv;

1231 1232 1233
	return ret;
}

1234 1235
int btrfs_commit_inode_delayed_inode(struct inode *inode)
{
1236
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1237
	struct btrfs_trans_handle *trans;
1238
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1239 1240 1241 1242 1243 1244 1245 1246
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
1247
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

	trans = btrfs_join_transaction(delayed_node->root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto out;
	}

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto trans_out;
	}
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
1268
	trans->block_rsv = &fs_info->delayed_block_rsv;
1269 1270

	mutex_lock(&delayed_node->mutex);
1271
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1272 1273 1274 1275 1276 1277 1278 1279 1280
		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
						   path, delayed_node);
	else
		ret = 0;
	mutex_unlock(&delayed_node->mutex);

	btrfs_free_path(path);
	trans->block_rsv = block_rsv;
trans_out:
1281
	btrfs_end_transaction(trans);
1282
	btrfs_btree_balance_dirty(fs_info);
1283 1284 1285 1286 1287 1288
out:
	btrfs_release_delayed_node(delayed_node);

	return ret;
}

1289 1290 1291 1292
void btrfs_remove_delayed_node(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

S
Seraphime Kirkovski 已提交
1293
	delayed_node = READ_ONCE(BTRFS_I(inode)->delayed_node);
1294 1295 1296 1297 1298 1299 1300
	if (!delayed_node)
		return;

	BTRFS_I(inode)->delayed_node = NULL;
	btrfs_release_delayed_node(delayed_node);
}

1301 1302 1303
struct btrfs_async_delayed_work {
	struct btrfs_delayed_root *delayed_root;
	int nr;
1304
	struct btrfs_work work;
1305 1306
};

1307
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1308
{
1309 1310
	struct btrfs_async_delayed_work *async_work;
	struct btrfs_delayed_root *delayed_root;
1311 1312 1313 1314
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_delayed_node *delayed_node = NULL;
	struct btrfs_root *root;
1315
	struct btrfs_block_rsv *block_rsv;
1316
	int total_done = 0;
1317

1318 1319
	async_work = container_of(work, struct btrfs_async_delayed_work, work);
	delayed_root = async_work->delayed_root;
1320 1321 1322 1323 1324

	path = btrfs_alloc_path();
	if (!path)
		goto out;

1325 1326 1327 1328 1329 1330 1331 1332 1333
again:
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
		goto free_path;

	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
	if (!delayed_node)
		goto free_path;

	path->leave_spinning = 1;
1334 1335
	root = delayed_node->root;

C
Chris Mason 已提交
1336
	trans = btrfs_join_transaction(root);
1337
	if (IS_ERR(trans))
1338
		goto release_path;
1339

1340
	block_rsv = trans->block_rsv;
1341
	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1342

1343
	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1344

1345
	trans->block_rsv = block_rsv;
1346
	btrfs_end_transaction(trans);
1347
	btrfs_btree_balance_dirty_nodelay(root->fs_info);
1348 1349 1350 1351 1352 1353

release_path:
	btrfs_release_path(path);
	total_done++;

	btrfs_release_prepared_delayed_node(delayed_node);
1354 1355
	if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
	    total_done < async_work->nr)
1356 1357
		goto again;

1358 1359 1360
free_path:
	btrfs_free_path(path);
out:
1361 1362
	wake_up(&delayed_root->wait);
	kfree(async_work);
1363 1364
}

1365

1366
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1367
				     struct btrfs_fs_info *fs_info, int nr)
1368
{
1369
	struct btrfs_async_delayed_work *async_work;
1370

1371 1372
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
	    btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1373 1374
		return 0;

1375 1376
	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
	if (!async_work)
1377 1378
		return -ENOMEM;

1379
	async_work->delayed_root = delayed_root;
1380 1381
	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
			btrfs_async_run_delayed_root, NULL, NULL);
1382
	async_work->nr = nr;
1383

1384
	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1385 1386 1387
	return 0;
}

1388
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1389
{
1390
	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1391 1392
}

1393
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1394 1395 1396
{
	int val = atomic_read(&delayed_root->items_seq);

1397
	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1398
		return 1;
1399 1400 1401 1402

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return 1;

1403 1404 1405
	return 0;
}

1406
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1407
{
1408
	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1409 1410 1411 1412 1413

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return;

	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1414
		int seq;
1415
		int ret;
1416 1417

		seq = atomic_read(&delayed_root->items_seq);
1418

1419
		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1420 1421 1422
		if (ret)
			return;

1423 1424
		wait_event_interruptible(delayed_root->wait,
					 could_end_wait(delayed_root, seq));
1425
		return;
1426 1427
	}

1428
	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1429 1430
}

1431
/* Will return 0 or -ENOMEM */
1432
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1433 1434
				   struct btrfs_fs_info *fs_info,
				   const char *name, int name_len,
1435
				   struct btrfs_inode *dir,
1436 1437 1438 1439 1440 1441 1442 1443
				   struct btrfs_disk_key *disk_key, u8 type,
				   u64 index)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *delayed_item;
	struct btrfs_dir_item *dir_item;
	int ret;

1444
	delayed_node = btrfs_get_or_create_delayed_node(dir);
1445 1446 1447 1448 1449 1450 1451 1452 1453
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
	if (!delayed_item) {
		ret = -ENOMEM;
		goto release_node;
	}

1454
	delayed_item->key.objectid = btrfs_ino(dir);
1455
	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1456 1457 1458 1459
	delayed_item->key.offset = index;

	dir_item = (struct btrfs_dir_item *)delayed_item->data;
	dir_item->location = *disk_key;
1460 1461 1462 1463
	btrfs_set_stack_dir_transid(dir_item, trans->transid);
	btrfs_set_stack_dir_data_len(dir_item, 0);
	btrfs_set_stack_dir_name_len(dir_item, name_len);
	btrfs_set_stack_dir_type(dir_item, type);
1464 1465
	memcpy((char *)(dir_item + 1), name, name_len);

1466
	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
J
Josef Bacik 已提交
1467 1468 1469 1470 1471 1472 1473
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible
	 */
	BUG_ON(ret);


1474 1475 1476
	mutex_lock(&delayed_node->mutex);
	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
	if (unlikely(ret)) {
1477
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1478 1479 1480
			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  name_len, name, delayed_node->root->objectid,
			  delayed_node->inode_id, ret);
1481 1482 1483 1484 1485 1486 1487 1488 1489
		BUG();
	}
	mutex_unlock(&delayed_node->mutex);

release_node:
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1490
static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
					       struct btrfs_delayed_node *node,
					       struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	mutex_lock(&node->mutex);
	item = __btrfs_lookup_delayed_insertion_item(node, key);
	if (!item) {
		mutex_unlock(&node->mutex);
		return 1;
	}

1503
	btrfs_delayed_item_release_metadata(fs_info, item);
1504 1505 1506 1507 1508 1509
	btrfs_release_delayed_item(item);
	mutex_unlock(&node->mutex);
	return 0;
}

int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1510
				   struct btrfs_fs_info *fs_info,
1511
				   struct btrfs_inode *dir, u64 index)
1512 1513 1514 1515 1516 1517
{
	struct btrfs_delayed_node *node;
	struct btrfs_delayed_item *item;
	struct btrfs_key item_key;
	int ret;

1518
	node = btrfs_get_or_create_delayed_node(dir);
1519 1520 1521
	if (IS_ERR(node))
		return PTR_ERR(node);

1522
	item_key.objectid = btrfs_ino(dir);
1523
	item_key.type = BTRFS_DIR_INDEX_KEY;
1524 1525
	item_key.offset = index;

1526
	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	if (!ret)
		goto end;

	item = btrfs_alloc_delayed_item(0);
	if (!item) {
		ret = -ENOMEM;
		goto end;
	}

	item->key = item_key;

1538
	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1539 1540 1541 1542 1543 1544 1545 1546 1547
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible.
	 */
	BUG_ON(ret);

	mutex_lock(&node->mutex);
	ret = __btrfs_add_delayed_deletion_item(node, item);
	if (unlikely(ret)) {
1548
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1549 1550
			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  index, node->root->objectid, node->inode_id, ret);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
		BUG();
	}
	mutex_unlock(&node->mutex);
end:
	btrfs_release_delayed_node(node);
	return ret;
}

int btrfs_inode_delayed_dir_index_count(struct inode *inode)
{
1561
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1562 1563 1564 1565 1566 1567 1568 1569 1570

	if (!delayed_node)
		return -ENOENT;

	/*
	 * Since we have held i_mutex of this directory, it is impossible that
	 * a new directory index is added into the delayed node and index_cnt
	 * is updated now. So we needn't lock the delayed node.
	 */
1571 1572
	if (!delayed_node->index_cnt) {
		btrfs_release_delayed_node(delayed_node);
1573
		return -EINVAL;
1574
	}
1575 1576

	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1577 1578
	btrfs_release_delayed_node(delayed_node);
	return 0;
1579 1580
}

1581 1582 1583
bool btrfs_readdir_get_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1584 1585 1586 1587
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *item;

1588
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1589
	if (!delayed_node)
1590 1591 1592 1593 1594 1595 1596 1597
		return false;

	/*
	 * We can only do one readdir with delayed items at a time because of
	 * item->readdir_list.
	 */
	inode_unlock_shared(inode);
	inode_lock(inode);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

	mutex_lock(&delayed_node->mutex);
	item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (item) {
		atomic_inc(&item->refs);
		list_add_tail(&item->readdir_list, ins_list);
		item = __btrfs_next_delayed_item(item);
	}

	item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (item) {
		atomic_inc(&item->refs);
		list_add_tail(&item->readdir_list, del_list);
		item = __btrfs_next_delayed_item(item);
	}
	mutex_unlock(&delayed_node->mutex);
	/*
	 * This delayed node is still cached in the btrfs inode, so refs
	 * must be > 1 now, and we needn't check it is going to be freed
	 * or not.
	 *
	 * Besides that, this function is used to read dir, we do not
	 * insert/delete delayed items in this period. So we also needn't
	 * requeue or dequeue this delayed node.
	 */
	atomic_dec(&delayed_node->refs);
1624 1625

	return true;
1626 1627
}

1628 1629 1630
void btrfs_readdir_put_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
{
	struct btrfs_delayed_item *curr, *next;

	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);
		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);
	}

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		list_del(&curr->readdir_list);
		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);
	}
1645 1646 1647 1648 1649 1650

	/*
	 * The VFS is going to do up_read(), so we need to downgrade back to a
	 * read lock.
	 */
	downgrade_write(&inode->i_rwsem);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
}

int btrfs_should_delete_dir_index(struct list_head *del_list,
				  u64 index)
{
	struct btrfs_delayed_item *curr, *next;
	int ret;

	if (list_empty(del_list))
		return 0;

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		if (curr->key.offset > index)
			break;

		list_del(&curr->readdir_list);
		ret = (curr->key.offset == index);

		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);

		if (ret)
			return 1;
		else
			continue;
	}
	return 0;
}

/*
 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
 *
 */
A
Al Viro 已提交
1684
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1685
				    struct list_head *ins_list)
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
{
	struct btrfs_dir_item *di;
	struct btrfs_delayed_item *curr, *next;
	struct btrfs_key location;
	char *name;
	int name_len;
	int over = 0;
	unsigned char d_type;

	if (list_empty(ins_list))
		return 0;

	/*
	 * Changing the data of the delayed item is impossible. So
	 * we needn't lock them. And we have held i_mutex of the
	 * directory, nobody can delete any directory indexes now.
	 */
	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);

A
Al Viro 已提交
1706
		if (curr->key.offset < ctx->pos) {
1707 1708 1709 1710 1711
			if (atomic_dec_and_test(&curr->refs))
				kfree(curr);
			continue;
		}

A
Al Viro 已提交
1712
		ctx->pos = curr->key.offset;
1713 1714 1715

		di = (struct btrfs_dir_item *)curr->data;
		name = (char *)(di + 1);
1716
		name_len = btrfs_stack_dir_name_len(di);
1717 1718 1719 1720

		d_type = btrfs_filetype_table[di->type];
		btrfs_disk_key_to_cpu(&location, &di->location);

A
Al Viro 已提交
1721
		over = !dir_emit(ctx, name, name_len,
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
			       location.objectid, d_type);

		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);

		if (over)
			return 1;
	}
	return 0;
}

static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
				  struct btrfs_inode_item *inode_item,
				  struct inode *inode)
{
1737 1738
	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1739 1740 1741 1742 1743 1744
	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
	btrfs_set_stack_inode_generation(inode_item,
					 BTRFS_I(inode)->generation);
1745
	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1746 1747 1748
	btrfs_set_stack_inode_transid(inode_item, trans->transid);
	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
C
Chris Mason 已提交
1749
	btrfs_set_stack_inode_block_group(inode_item, 0);
1750

1751
	btrfs_set_stack_timespec_sec(&inode_item->atime,
1752
				     inode->i_atime.tv_sec);
1753
	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1754 1755
				      inode->i_atime.tv_nsec);

1756
	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1757
				     inode->i_mtime.tv_sec);
1758
	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1759 1760
				      inode->i_mtime.tv_nsec);

1761
	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1762
				     inode->i_ctime.tv_sec);
1763
	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1764
				      inode->i_ctime.tv_nsec);
1765 1766 1767 1768 1769

	btrfs_set_stack_timespec_sec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_sec);
	btrfs_set_stack_timespec_nsec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_nsec);
1770 1771
}

1772 1773 1774 1775 1776
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_inode_item *inode_item;

1777
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1778 1779 1780 1781
	if (!delayed_node)
		return -ENOENT;

	mutex_lock(&delayed_node->mutex);
1782
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1783 1784 1785 1786 1787 1788 1789
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return -ENOENT;
	}

	inode_item = &delayed_node->inode_item;

1790 1791
	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1792 1793
	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
	inode->i_mode = btrfs_stack_inode_mode(inode_item);
M
Miklos Szeredi 已提交
1794
	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1795 1796
	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1797 1798
        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);

1799
	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1800 1801 1802 1803
	inode->i_rdev = 0;
	*rdev = btrfs_stack_inode_rdev(inode_item);
	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);

1804 1805
	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1806

1807 1808
	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1809

1810 1811
	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1812

1813 1814 1815 1816 1817
	BTRFS_I(inode)->i_otime.tv_sec =
		btrfs_stack_timespec_sec(&inode_item->otime);
	BTRFS_I(inode)->i_otime.tv_nsec =
		btrfs_stack_timespec_nsec(&inode_item->otime);

1818 1819 1820 1821 1822 1823 1824 1825
	inode->i_generation = BTRFS_I(inode)->generation;
	BTRFS_I(inode)->index_cnt = (u64)-1;

	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1826 1827 1828 1829
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;
1830
	int ret = 0;
1831

1832
	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1833 1834 1835 1836
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	mutex_lock(&delayed_node->mutex);
1837
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1838 1839 1840 1841
		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
		goto release_node;
	}

1842
	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1843
						   delayed_node);
1844 1845
	if (ret)
		goto release_node;
1846 1847

	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1848
	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1849 1850 1851 1852 1853 1854 1855 1856
	delayed_node->count++;
	atomic_inc(&root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1857 1858
int btrfs_delayed_delete_inode_ref(struct inode *inode)
{
1859
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1860 1861
	struct btrfs_delayed_node *delayed_node;

1862 1863 1864 1865 1866
	/*
	 * we don't do delayed inode updates during log recovery because it
	 * leads to enospc problems.  This means we also can't do
	 * delayed inode refs
	 */
1867
	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1868 1869
		return -EAGAIN;

1870
	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	/*
	 * We don't reserve space for inode ref deletion is because:
	 * - We ONLY do async inode ref deletion for the inode who has only
	 *   one link(i_nlink == 1), it means there is only one inode ref.
	 *   And in most case, the inode ref and the inode item are in the
	 *   same leaf, and we will deal with them at the same time.
	 *   Since we are sure we will reserve the space for the inode item,
	 *   it is unnecessary to reserve space for inode ref deletion.
	 * - If the inode ref and the inode item are not in the same leaf,
	 *   We also needn't worry about enospc problem, because we reserve
	 *   much more space for the inode update than it needs.
	 * - At the worst, we can steal some space from the global reservation.
	 *   It is very rare.
	 */
	mutex_lock(&delayed_node->mutex);
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		goto release_node;

	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count++;
1894
	atomic_inc(&fs_info->delayed_root->items);
1895 1896 1897 1898 1899 1900
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1901 1902 1903
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_root *root = delayed_node->root;
1904
	struct btrfs_fs_info *fs_info = root->fs_info;
1905 1906 1907 1908 1909
	struct btrfs_delayed_item *curr_item, *prev_item;

	mutex_lock(&delayed_node->mutex);
	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (curr_item) {
1910
		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1911 1912 1913 1914 1915 1916 1917
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (curr_item) {
1918
		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1919 1920 1921 1922 1923
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

1924 1925 1926
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		btrfs_release_delayed_iref(delayed_node);

1927
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1928
		btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1929 1930 1931 1932 1933 1934 1935 1936 1937
		btrfs_release_delayed_inode(delayed_node);
	}
	mutex_unlock(&delayed_node->mutex);
}

void btrfs_kill_delayed_inode_items(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

1938
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	if (!delayed_node)
		return;

	__btrfs_kill_delayed_node(delayed_node);
	btrfs_release_delayed_node(delayed_node);
}

void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
	u64 inode_id = 0;
	struct btrfs_delayed_node *delayed_nodes[8];
	int i, n;

	while (1) {
		spin_lock(&root->inode_lock);
		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
					   (void **)delayed_nodes, inode_id,
					   ARRAY_SIZE(delayed_nodes));
		if (!n) {
			spin_unlock(&root->inode_lock);
			break;
		}

		inode_id = delayed_nodes[n - 1]->inode_id + 1;

		for (i = 0; i < n; i++)
			atomic_inc(&delayed_nodes[i]->refs);
		spin_unlock(&root->inode_lock);

		for (i = 0; i < n; i++) {
			__btrfs_kill_delayed_node(delayed_nodes[i]);
			btrfs_release_delayed_node(delayed_nodes[i]);
		}
	}
}
1974

1975
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1976 1977 1978
{
	struct btrfs_delayed_node *curr_node, *prev_node;

1979
	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1980 1981 1982 1983 1984 1985 1986 1987 1988
	while (curr_node) {
		__btrfs_kill_delayed_node(curr_node);

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}
}