rc-main.c 39.5 KB
Newer Older
1
/* rc-main.c - Remote Controller core module
2
 *
3
 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14
 */

15
#include <media/rc-core.h>
16 17
#include <linux/spinlock.h>
#include <linux/delay.h>
18
#include <linux/input.h>
19
#include <linux/leds.h>
20
#include <linux/slab.h>
21
#include <linux/device.h>
22
#include <linux/module.h>
23
#include "rc-core-priv.h"
24

25 26
/* Bitmap to store allocated device numbers from 0 to IRRCV_NUM_DEVICES - 1 */
#define IRRCV_NUM_DEVICES      256
27
static DECLARE_BITMAP(ir_core_dev_number, IRRCV_NUM_DEVICES);
28

29 30 31
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE	256
#define IR_TAB_MAX_SIZE	8192
32

33 34 35
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

36
/* Used to keep track of known keymaps */
37 38
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);
39
static struct led_trigger *led_feedback;
40

41
static struct rc_map_list *seek_rc_map(const char *name)
42
{
43
	struct rc_map_list *map = NULL;
44 45 46 47 48 49 50 51 52 53 54 55 56

	spin_lock(&rc_map_lock);
	list_for_each_entry(map, &rc_map_list, list) {
		if (!strcmp(name, map->map.name)) {
			spin_unlock(&rc_map_lock);
			return map;
		}
	}
	spin_unlock(&rc_map_lock);

	return NULL;
}

57
struct rc_map *rc_map_get(const char *name)
58 59
{

60
	struct rc_map_list *map;
61 62 63 64

	map = seek_rc_map(name);
#ifdef MODULE
	if (!map) {
65
		int rc = request_module("%s", name);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
		if (rc < 0) {
			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
			return NULL;
		}
		msleep(20);	/* Give some time for IR to register */

		map = seek_rc_map(name);
	}
#endif
	if (!map) {
		printk(KERN_ERR "IR keymap %s not found\n", name);
		return NULL;
	}

	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);

	return &map->map;
}
84
EXPORT_SYMBOL_GPL(rc_map_get);
85

86
int rc_map_register(struct rc_map_list *map)
87 88 89 90 91 92
{
	spin_lock(&rc_map_lock);
	list_add_tail(&map->list, &rc_map_list);
	spin_unlock(&rc_map_lock);
	return 0;
}
93
EXPORT_SYMBOL_GPL(rc_map_register);
94

95
void rc_map_unregister(struct rc_map_list *map)
96 97 98 99 100
{
	spin_lock(&rc_map_lock);
	list_del(&map->list);
	spin_unlock(&rc_map_lock);
}
101
EXPORT_SYMBOL_GPL(rc_map_unregister);
102 103


104
static struct rc_map_table empty[] = {
105 106 107
	{ 0x2a, KEY_COFFEE },
};

108
static struct rc_map_list empty_map = {
109 110 111
	.map = {
		.scan    = empty,
		.size    = ARRAY_SIZE(empty),
112
		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
113 114 115 116
		.name    = RC_MAP_EMPTY,
	}
};

117 118
/**
 * ir_create_table() - initializes a scancode table
119
 * @rc_map:	the rc_map to initialize
120
 * @name:	name to assign to the table
121
 * @rc_type:	ir type to assign to the new table
122 123 124
 * @size:	initial size of the table
 * @return:	zero on success or a negative error code
 *
125
 * This routine will initialize the rc_map and will allocate
126
 * memory to hold at least the specified number of elements.
127
 */
128
static int ir_create_table(struct rc_map *rc_map,
129
			   const char *name, u64 rc_type, size_t size)
130
{
131 132
	rc_map->name = name;
	rc_map->rc_type = rc_type;
133 134
	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
135 136
	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
	if (!rc_map->scan)
137 138 139
		return -ENOMEM;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
140
		   rc_map->size, rc_map->alloc);
141 142 143 144 145
	return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
146
 * @rc_map:	the table whose mappings need to be freed
147 148 149 150
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
151
static void ir_free_table(struct rc_map *rc_map)
152
{
153 154 155
	rc_map->size = 0;
	kfree(rc_map->scan);
	rc_map->scan = NULL;
156 157
}

158
/**
159
 * ir_resize_table() - resizes a scancode table if necessary
160
 * @rc_map:	the rc_map to resize
161
 * @gfp_flags:	gfp flags to use when allocating memory
162
 * @return:	zero on success or a negative error code
163
 *
164
 * This routine will shrink the rc_map if it has lots of
165
 * unused entries and grow it if it is full.
166
 */
167
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
168
{
169
	unsigned int oldalloc = rc_map->alloc;
170
	unsigned int newalloc = oldalloc;
171 172
	struct rc_map_table *oldscan = rc_map->scan;
	struct rc_map_table *newscan;
173

174
	if (rc_map->size == rc_map->len) {
175
		/* All entries in use -> grow keytable */
176
		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
177
			return -ENOMEM;
178

179 180 181
		newalloc *= 2;
		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
	}
182

183
	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
184 185 186 187
		/* Less than 1/3 of entries in use -> shrink keytable */
		newalloc /= 2;
		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
	}
188

189 190
	if (newalloc == oldalloc)
		return 0;
191

192
	newscan = kmalloc(newalloc, gfp_flags);
193 194 195 196
	if (!newscan) {
		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
		return -ENOMEM;
	}
197

198
	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
199 200
	rc_map->scan = newscan;
	rc_map->alloc = newalloc;
201
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
202 203
	kfree(oldscan);
	return 0;
204 205
}

206
/**
207
 * ir_update_mapping() - set a keycode in the scancode->keycode table
208
 * @dev:	the struct rc_dev device descriptor
209
 * @rc_map:	scancode table to be adjusted
210 211 212 213
 * @index:	index of the mapping that needs to be updated
 * @keycode:	the desired keycode
 * @return:	previous keycode assigned to the mapping
 *
214
 * This routine is used to update scancode->keycode mapping at given
215 216
 * position.
 */
217
static unsigned int ir_update_mapping(struct rc_dev *dev,
218
				      struct rc_map *rc_map,
219 220 221
				      unsigned int index,
				      unsigned int new_keycode)
{
222
	int old_keycode = rc_map->scan[index].keycode;
223 224 225 226 227
	int i;

	/* Did the user wish to remove the mapping? */
	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
228 229 230
			   index, rc_map->scan[index].scancode);
		rc_map->len--;
		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
231
			(rc_map->len - index) * sizeof(struct rc_map_table));
232 233 234 235
	} else {
		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
			   index,
			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
236 237
			   rc_map->scan[index].scancode, new_keycode);
		rc_map->scan[index].keycode = new_keycode;
238
		__set_bit(new_keycode, dev->input_dev->keybit);
239 240 241 242
	}

	if (old_keycode != KEY_RESERVED) {
		/* A previous mapping was updated... */
243
		__clear_bit(old_keycode, dev->input_dev->keybit);
244
		/* ... but another scancode might use the same keycode */
245 246
		for (i = 0; i < rc_map->len; i++) {
			if (rc_map->scan[i].keycode == old_keycode) {
247
				__set_bit(old_keycode, dev->input_dev->keybit);
248 249 250 251 252
				break;
			}
		}

		/* Possibly shrink the keytable, failure is not a problem */
253
		ir_resize_table(rc_map, GFP_ATOMIC);
254 255 256 257 258 259
	}

	return old_keycode;
}

/**
260
 * ir_establish_scancode() - set a keycode in the scancode->keycode table
261
 * @dev:	the struct rc_dev device descriptor
262
 * @rc_map:	scancode table to be searched
263 264
 * @scancode:	the desired scancode
 * @resize:	controls whether we allowed to resize the table to
L
Lucas De Marchi 已提交
265
 *		accommodate not yet present scancodes
266 267
 * @return:	index of the mapping containing scancode in question
 *		or -1U in case of failure.
268
 *
269
 * This routine is used to locate given scancode in rc_map.
270 271
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
272
 */
273
static unsigned int ir_establish_scancode(struct rc_dev *dev,
274
					  struct rc_map *rc_map,
275 276
					  unsigned int scancode,
					  bool resize)
277
{
278
	unsigned int i;
279 280 281 282 283 284

	/*
	 * Unfortunately, some hardware-based IR decoders don't provide
	 * all bits for the complete IR code. In general, they provide only
	 * the command part of the IR code. Yet, as it is possible to replace
	 * the provided IR with another one, it is needed to allow loading
285 286
	 * IR tables from other remotes. So, we support specifying a mask to
	 * indicate the valid bits of the scancodes.
287
	 */
288 289
	if (dev->scancode_mask)
		scancode &= dev->scancode_mask;
290 291

	/* First check if we already have a mapping for this ir command */
292 293
	for (i = 0; i < rc_map->len; i++) {
		if (rc_map->scan[i].scancode == scancode)
294 295
			return i;

296
		/* Keytable is sorted from lowest to highest scancode */
297
		if (rc_map->scan[i].scancode >= scancode)
298 299
			break;
	}
300

301
	/* No previous mapping found, we might need to grow the table */
302 303
	if (rc_map->size == rc_map->len) {
		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
304 305
			return -1U;
	}
306

307
	/* i is the proper index to insert our new keycode */
308 309
	if (i < rc_map->len)
		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
310
			(rc_map->len - i) * sizeof(struct rc_map_table));
311 312 313
	rc_map->scan[i].scancode = scancode;
	rc_map->scan[i].keycode = KEY_RESERVED;
	rc_map->len++;
314

315
	return i;
316 317
}

318
/**
319
 * ir_setkeycode() - set a keycode in the scancode->keycode table
320
 * @idev:	the struct input_dev device descriptor
321
 * @scancode:	the desired scancode
322 323
 * @keycode:	result
 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
324
 *
325
 * This routine is used to handle evdev EVIOCSKEY ioctl.
326
 */
327
static int ir_setkeycode(struct input_dev *idev,
328 329
			 const struct input_keymap_entry *ke,
			 unsigned int *old_keycode)
330
{
331
	struct rc_dev *rdev = input_get_drvdata(idev);
332
	struct rc_map *rc_map = &rdev->rc_map;
333 334
	unsigned int index;
	unsigned int scancode;
335
	int retval = 0;
336
	unsigned long flags;
337

338
	spin_lock_irqsave(&rc_map->lock, flags);
339 340 341

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
342
		if (index >= rc_map->len) {
343 344 345 346 347 348 349 350
			retval = -EINVAL;
			goto out;
		}
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

351 352
		index = ir_establish_scancode(rdev, rc_map, scancode, true);
		if (index >= rc_map->len) {
353 354 355 356 357
			retval = -ENOMEM;
			goto out;
		}
	}

358
	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
359 360

out:
361
	spin_unlock_irqrestore(&rc_map->lock, flags);
362
	return retval;
363 364 365
}

/**
366
 * ir_setkeytable() - sets several entries in the scancode->keycode table
367
 * @dev:	the struct rc_dev device descriptor
368 369
 * @to:		the struct rc_map to copy entries to
 * @from:	the struct rc_map to copy entries from
370
 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
371
 *
372
 * This routine is used to handle table initialization.
373
 */
374
static int ir_setkeytable(struct rc_dev *dev,
375
			  const struct rc_map *from)
376
{
377
	struct rc_map *rc_map = &dev->rc_map;
378 379 380
	unsigned int i, index;
	int rc;

381
	rc = ir_create_table(rc_map, from->name,
382
			     from->rc_type, from->size);
383 384 385 386
	if (rc)
		return rc;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
387
		   rc_map->size, rc_map->alloc);
388

389
	for (i = 0; i < from->size; i++) {
390
		index = ir_establish_scancode(dev, rc_map,
391
					      from->scan[i].scancode, false);
392
		if (index >= rc_map->len) {
393
			rc = -ENOMEM;
394
			break;
395 396
		}

397
		ir_update_mapping(dev, rc_map, index,
398
				  from->scan[i].keycode);
399
	}
400 401

	if (rc)
402
		ir_free_table(rc_map);
403

404
	return rc;
405 406
}

407 408
/**
 * ir_lookup_by_scancode() - locate mapping by scancode
409
 * @rc_map:	the struct rc_map to search
410 411 412 413 414 415
 * @scancode:	scancode to look for in the table
 * @return:	index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
416
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
417 418
					  unsigned int scancode)
{
419
	int start = 0;
420
	int end = rc_map->len - 1;
421
	int mid;
422 423 424

	while (start <= end) {
		mid = (start + end) / 2;
425
		if (rc_map->scan[mid].scancode < scancode)
426
			start = mid + 1;
427
		else if (rc_map->scan[mid].scancode > scancode)
428 429 430 431 432 433 434 435
			end = mid - 1;
		else
			return mid;
	}

	return -1U;
}

436
/**
437
 * ir_getkeycode() - get a keycode from the scancode->keycode table
438
 * @idev:	the struct input_dev device descriptor
439
 * @scancode:	the desired scancode
440 441
 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 * @return:	always returns zero.
442
 *
443
 * This routine is used to handle evdev EVIOCGKEY ioctl.
444
 */
445
static int ir_getkeycode(struct input_dev *idev,
446
			 struct input_keymap_entry *ke)
447
{
448
	struct rc_dev *rdev = input_get_drvdata(idev);
449
	struct rc_map *rc_map = &rdev->rc_map;
450
	struct rc_map_table *entry;
451 452 453 454
	unsigned long flags;
	unsigned int index;
	unsigned int scancode;
	int retval;
455

456
	spin_lock_irqsave(&rc_map->lock, flags);
457 458 459 460 461 462 463 464

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

465
		index = ir_lookup_by_scancode(rc_map, scancode);
466 467
	}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	if (index < rc_map->len) {
		entry = &rc_map->scan[index];

		ke->index = index;
		ke->keycode = entry->keycode;
		ke->len = sizeof(entry->scancode);
		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
		/*
		 * We do not really know the valid range of scancodes
		 * so let's respond with KEY_RESERVED to anything we
		 * do not have mapping for [yet].
		 */
		ke->index = index;
		ke->keycode = KEY_RESERVED;
	} else {
485 486
		retval = -EINVAL;
		goto out;
487 488
	}

489 490
	retval = 0;

491
out:
492
	spin_unlock_irqrestore(&rc_map->lock, flags);
493
	return retval;
494 495 496
}

/**
497
 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
498 499 500
 * @dev:	the struct rc_dev descriptor of the device
 * @scancode:	the scancode to look for
 * @return:	the corresponding keycode, or KEY_RESERVED
501
 *
502 503 504
 * This routine is used by drivers which need to convert a scancode to a
 * keycode. Normally it should not be used since drivers should have no
 * interest in keycodes.
505
 */
506
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
507
{
508
	struct rc_map *rc_map = &dev->rc_map;
509 510 511 512
	unsigned int keycode;
	unsigned int index;
	unsigned long flags;

513
	spin_lock_irqsave(&rc_map->lock, flags);
514

515 516 517
	index = ir_lookup_by_scancode(rc_map, scancode);
	keycode = index < rc_map->len ?
			rc_map->scan[index].keycode : KEY_RESERVED;
518

519
	spin_unlock_irqrestore(&rc_map->lock, flags);
520

521 522
	if (keycode != KEY_RESERVED)
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
523
			   dev->input_name, scancode, keycode);
524

525
	return keycode;
526
}
527
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
528

529
/**
530
 * ir_do_keyup() - internal function to signal the release of a keypress
531
 * @dev:	the struct rc_dev descriptor of the device
532
 * @sync:	whether or not to call input_sync
533
 *
534 535
 * This function is used internally to release a keypress, it must be
 * called with keylock held.
536
 */
537
static void ir_do_keyup(struct rc_dev *dev, bool sync)
538
{
539
	if (!dev->keypressed)
540 541
		return;

542 543
	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
	input_report_key(dev->input_dev, dev->last_keycode, 0);
544
	led_trigger_event(led_feedback, LED_OFF);
545 546
	if (sync)
		input_sync(dev->input_dev);
547
	dev->keypressed = false;
548
}
549 550

/**
551
 * rc_keyup() - signals the release of a keypress
552
 * @dev:	the struct rc_dev descriptor of the device
553 554 555 556
 *
 * This routine is used to signal that a key has been released on the
 * remote control.
 */
557
void rc_keyup(struct rc_dev *dev)
558 559 560
{
	unsigned long flags;

561
	spin_lock_irqsave(&dev->keylock, flags);
562
	ir_do_keyup(dev, true);
563
	spin_unlock_irqrestore(&dev->keylock, flags);
564
}
565
EXPORT_SYMBOL_GPL(rc_keyup);
566 567 568

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
569
 * @cookie:	a pointer to the struct rc_dev for the device
570 571 572
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
573
 */
574
static void ir_timer_keyup(unsigned long cookie)
575
{
576
	struct rc_dev *dev = (struct rc_dev *)cookie;
577 578 579 580 581 582 583 584 585 586 587 588
	unsigned long flags;

	/*
	 * ir->keyup_jiffies is used to prevent a race condition if a
	 * hardware interrupt occurs at this point and the keyup timer
	 * event is moved further into the future as a result.
	 *
	 * The timer will then be reactivated and this function called
	 * again in the future. We need to exit gracefully in that case
	 * to allow the input subsystem to do its auto-repeat magic or
	 * a keyup event might follow immediately after the keydown.
	 */
589 590
	spin_lock_irqsave(&dev->keylock, flags);
	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
591
		ir_do_keyup(dev, true);
592
	spin_unlock_irqrestore(&dev->keylock, flags);
593 594 595
}

/**
596
 * rc_repeat() - signals that a key is still pressed
597
 * @dev:	the struct rc_dev descriptor of the device
598 599 600 601 602
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
603
void rc_repeat(struct rc_dev *dev)
604 605
{
	unsigned long flags;
606

607
	spin_lock_irqsave(&dev->keylock, flags);
608

609
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
610
	input_sync(dev->input_dev);
611

612
	if (!dev->keypressed)
613
		goto out;
614

615 616
	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
617 618

out:
619
	spin_unlock_irqrestore(&dev->keylock, flags);
620
}
621
EXPORT_SYMBOL_GPL(rc_repeat);
622 623

/**
624
 * ir_do_keydown() - internal function to process a keypress
625
 * @dev:	the struct rc_dev descriptor of the device
626
 * @protocol:	the protocol of the keypress
627 628 629
 * @scancode:   the scancode of the keypress
 * @keycode:    the keycode of the keypress
 * @toggle:     the toggle value of the keypress
630
 *
631 632
 * This function is used internally to register a keypress, it must be
 * called with keylock held.
633
 */
634 635
static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u32 keycode, u8 toggle)
636
{
637
	bool new_event = (!dev->keypressed		 ||
638
			  dev->last_protocol != protocol ||
639
			  dev->last_scancode != scancode ||
640
			  dev->last_toggle   != toggle);
641

642 643
	if (new_event && dev->keypressed)
		ir_do_keyup(dev, false);
644

645
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
646

647 648 649
	if (new_event && keycode != KEY_RESERVED) {
		/* Register a keypress */
		dev->keypressed = true;
650
		dev->last_protocol = protocol;
651 652 653 654 655
		dev->last_scancode = scancode;
		dev->last_toggle = toggle;
		dev->last_keycode = keycode;

		IR_dprintk(1, "%s: key down event, "
656 657
			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
			   dev->input_name, keycode, protocol, scancode);
658
		input_report_key(dev->input_dev, keycode, 1);
659 660

		led_trigger_event(led_feedback, LED_FULL);
661
	}
662

663
	input_sync(dev->input_dev);
664
}
665

666
/**
667
 * rc_keydown() - generates input event for a key press
668
 * @dev:	the struct rc_dev descriptor of the device
669 670
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
671 672 673
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
674 675
 * This routine is used to signal that a key has been pressed on the
 * remote control.
676
 */
677
void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
678 679
{
	unsigned long flags;
680
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
681

682
	spin_lock_irqsave(&dev->keylock, flags);
683
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
684

685 686 687
	if (dev->keypressed) {
		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
688
	}
689
	spin_unlock_irqrestore(&dev->keylock, flags);
690
}
691
EXPORT_SYMBOL_GPL(rc_keydown);
692

693
/**
694
 * rc_keydown_notimeout() - generates input event for a key press without
695
 *                          an automatic keyup event at a later time
696
 * @dev:	the struct rc_dev descriptor of the device
697 698
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
699 700 701
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
702
 * This routine is used to signal that a key has been pressed on the
703
 * remote control. The driver must manually call rc_keyup() at a later stage.
704
 */
705 706
void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u8 toggle)
707 708
{
	unsigned long flags;
709
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
710

711
	spin_lock_irqsave(&dev->keylock, flags);
712
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
713
	spin_unlock_irqrestore(&dev->keylock, flags);
714
}
715
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
716

717 718 719 720 721 722 723 724
int rc_open(struct rc_dev *rdev)
{
	int rval = 0;

	if (!rdev)
		return -EINVAL;

	mutex_lock(&rdev->lock);
725
	if (!rdev->users++ && rdev->open != NULL)
726 727 728 729 730 731 732 733 734 735 736
		rval = rdev->open(rdev);

	if (rval)
		rdev->users--;

	mutex_unlock(&rdev->lock);

	return rval;
}
EXPORT_SYMBOL_GPL(rc_open);

737
static int ir_open(struct input_dev *idev)
738
{
739
	struct rc_dev *rdev = input_get_drvdata(idev);
740

741 742 743 744 745 746 747 748
	return rc_open(rdev);
}

void rc_close(struct rc_dev *rdev)
{
	if (rdev) {
		mutex_lock(&rdev->lock);

749
		 if (!--rdev->users && rdev->close != NULL)
750 751 752 753
			rdev->close(rdev);

		mutex_unlock(&rdev->lock);
	}
754
}
755
EXPORT_SYMBOL_GPL(rc_close);
756

757
static void ir_close(struct input_dev *idev)
758
{
759
	struct rc_dev *rdev = input_get_drvdata(idev);
760
	rc_close(rdev);
761 762
}

763
/* class for /sys/class/rc */
764
static char *rc_devnode(struct device *dev, umode_t *mode)
765 766 767 768
{
	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}

769
static struct class rc_class = {
770
	.name		= "rc",
771
	.devnode	= rc_devnode,
772 773
};

774 775 776 777 778
/*
 * These are the protocol textual descriptions that are
 * used by the sysfs protocols file. Note that the order
 * of the entries is relevant.
 */
779 780 781 782
static struct {
	u64	type;
	char	*name;
} proto_names[] = {
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	{ RC_BIT_NONE,		"none"		},
	{ RC_BIT_OTHER,		"other"		},
	{ RC_BIT_UNKNOWN,	"unknown"	},
	{ RC_BIT_RC5 |
	  RC_BIT_RC5X,		"rc-5"		},
	{ RC_BIT_NEC,		"nec"		},
	{ RC_BIT_RC6_0 |
	  RC_BIT_RC6_6A_20 |
	  RC_BIT_RC6_6A_24 |
	  RC_BIT_RC6_6A_32 |
	  RC_BIT_RC6_MCE,	"rc-6"		},
	{ RC_BIT_JVC,		"jvc"		},
	{ RC_BIT_SONY12 |
	  RC_BIT_SONY15 |
	  RC_BIT_SONY20,	"sony"		},
	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
	{ RC_BIT_SANYO,		"sanyo"		},
800
	{ RC_BIT_SHARP,		"sharp"		},
801 802
	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
	{ RC_BIT_LIRC,		"lirc"		},
803
	{ RC_BIT_XMP,		"xmp"		},
804 805 806
};

/**
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
 * struct rc_filter_attribute - Device attribute relating to a filter type.
 * @attr:	Device attribute.
 * @type:	Filter type.
 * @mask:	false for filter value, true for filter mask.
 */
struct rc_filter_attribute {
	struct device_attribute		attr;
	enum rc_filter_type		type;
	bool				mask;
};
#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)

#define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
	}
#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
		.mask = (_mask),					\
	}

/**
 * show_protocols() - shows the current/wakeup IR protocol(s)
833
 * @device:	the device descriptor
834
 * @mattr:	the device attribute struct
835 836 837
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
838
 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
839 840
 * It returns the protocol names of supported protocols.
 * Enabled protocols are printed in brackets.
841 842 843
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
844
 */
845
static ssize_t show_protocols(struct device *device,
846 847
			      struct device_attribute *mattr, char *buf)
{
848
	struct rc_dev *dev = to_rc_dev(device);
849
	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
850 851 852 853 854
	u64 allowed, enabled;
	char *tmp = buf;
	int i;

	/* Device is being removed */
855
	if (!dev)
856 857
		return -EINVAL;

858 859
	mutex_lock(&dev->lock);

860
	if (fattr->type == RC_FILTER_NORMAL) {
861
		enabled = dev->enabled_protocols;
862 863
		allowed = dev->allowed_protocols;
		if (dev->raw && !allowed)
864 865
			allowed = ir_raw_get_allowed_protocols();
	} else {
866 867
		enabled = dev->enabled_wakeup_protocols;
		allowed = dev->allowed_wakeup_protocols;
868
	}
869

870 871 872 873
	mutex_unlock(&dev->lock);

	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
		   __func__, (long long)allowed, (long long)enabled);
874 875 876 877 878 879

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (allowed & enabled & proto_names[i].type)
			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
		else if (allowed & proto_names[i].type)
			tmp += sprintf(tmp, "%s ", proto_names[i].name);
880 881 882

		if (allowed & proto_names[i].type)
			allowed &= ~proto_names[i].type;
883 884 885 886 887
	}

	if (tmp != buf)
		tmp--;
	*tmp = '\n';
888

889 890 891 892
	return tmp + 1 - buf;
}

/**
893 894 895
 * parse_protocol_change() - parses a protocol change request
 * @protocols:	pointer to the bitmask of current protocols
 * @buf:	pointer to the buffer with a list of changes
896
 *
897 898
 * Writing "+proto" will add a protocol to the protocol mask.
 * Writing "-proto" will remove a protocol from protocol mask.
899 900
 * Writing "proto" will enable only "proto".
 * Writing "none" will disable all protocols.
901
 * Returns the number of changes performed or a negative error code.
902
 */
903
static int parse_protocol_change(u64 *protocols, const char *buf)
904 905
{
	const char *tmp;
906 907
	unsigned count = 0;
	bool enable, disable;
908
	u64 mask;
909
	int i;
910

911
	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		if (!*tmp)
			break;

		if (*tmp == '+') {
			enable = true;
			disable = false;
			tmp++;
		} else if (*tmp == '-') {
			enable = false;
			disable = true;
			tmp++;
		} else {
			enable = false;
			disable = false;
		}

928 929 930 931
		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
			if (!strcasecmp(tmp, proto_names[i].name)) {
				mask = proto_names[i].type;
				break;
932 933 934
			}
		}

935 936
		if (i == ARRAY_SIZE(proto_names)) {
			IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
937
			return -EINVAL;
938 939 940 941
		}

		count++;

942
		if (enable)
943
			*protocols |= mask;
944
		else if (disable)
945
			*protocols &= ~mask;
946
		else
947
			*protocols = mask;
948 949 950 951
	}

	if (!count) {
		IR_dprintk(1, "Protocol not specified\n");
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
		return -EINVAL;
	}

	return count;
}

/**
 * store_protocols() - changes the current/wakeup IR protocol(s)
 * @device:	the device descriptor
 * @mattr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing the IR protocol type.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
 * See parse_protocol_change() for the valid commands.
 * Returns @len on success or a negative error code.
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
 */
static ssize_t store_protocols(struct device *device,
			       struct device_attribute *mattr,
			       const char *buf, size_t len)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
	u64 *current_protocols;
	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
	struct rc_scancode_filter *filter;
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
	u64 old_protocols, new_protocols;
	ssize_t rc;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

	if (fattr->type == RC_FILTER_NORMAL) {
		IR_dprintk(1, "Normal protocol change requested\n");
992
		current_protocols = &dev->enabled_protocols;
993
		change_protocol = dev->change_protocol;
994
		filter = &dev->scancode_filter;
995 996 997
		set_filter = dev->s_filter;
	} else {
		IR_dprintk(1, "Wakeup protocol change requested\n");
998
		current_protocols = &dev->enabled_wakeup_protocols;
999
		change_protocol = dev->change_wakeup_protocol;
1000
		filter = &dev->scancode_wakeup_filter;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
		set_filter = dev->s_wakeup_filter;
	}

	if (!change_protocol) {
		IR_dprintk(1, "Protocol switching not supported\n");
		return -EINVAL;
	}

	mutex_lock(&dev->lock);

	old_protocols = *current_protocols;
	new_protocols = old_protocols;
	rc = parse_protocol_change(&new_protocols, buf);
	if (rc < 0)
		goto out;

	rc = change_protocol(dev, &new_protocols);
	if (rc < 0) {
		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
			   (long long)new_protocols);
1021
		goto out;
1022 1023
	}

1024 1025 1026
	if (new_protocols == old_protocols) {
		rc = len;
		goto out;
1027 1028
	}

1029 1030
	*current_protocols = new_protocols;
	IR_dprintk(1, "Protocols changed to 0x%llx\n", (long long)new_protocols);
1031

1032 1033 1034 1035 1036
	/*
	 * If the protocol is changed the filter needs updating.
	 * Try setting the same filter with the new protocol (if any).
	 * Fall back to clearing the filter.
	 */
1037 1038 1039 1040 1041
	if (set_filter && filter->mask) {
		if (new_protocols)
			rc = set_filter(dev, filter);
		else
			rc = -1;
1042

1043 1044 1045 1046 1047
		if (rc < 0) {
			filter->data = 0;
			filter->mask = 0;
			set_filter(dev, filter);
		}
1048 1049
	}

1050
	rc = len;
1051 1052 1053

out:
	mutex_unlock(&dev->lock);
1054
	return rc;
1055 1056
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/**
 * show_filter() - shows the current scancode filter value or mask
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine to read a scancode filter value or mask.
 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * It prints the current scancode filter value or mask of the appropriate filter
 * type in hexadecimal into @buf and returns the size of the buffer.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t show_filter(struct device *device,
			   struct device_attribute *attr,
			   char *buf)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1080
	struct rc_scancode_filter *filter;
1081 1082 1083 1084 1085 1086
	u32 val;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1087
	if (fattr->type == RC_FILTER_NORMAL)
1088
		filter = &dev->scancode_filter;
1089
	else
1090
		filter = &dev->scancode_wakeup_filter;
1091

1092
	mutex_lock(&dev->lock);
1093 1094
	if (fattr->mask)
		val = filter->mask;
1095
	else
1096
		val = filter->data;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	mutex_unlock(&dev->lock);

	return sprintf(buf, "%#x\n", val);
}

/**
 * store_filter() - changes the scancode filter value
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing a scancode filter value or mask.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * Returns -EINVAL if an invalid filter value for the current protocol was
 * specified or if scancode filtering is not supported by the driver, otherwise
 * returns @len.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t store_filter(struct device *device,
			    struct device_attribute *attr,
1123
			    const char *buf, size_t len)
1124 1125 1126
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1127
	struct rc_scancode_filter new_filter, *filter;
1128 1129
	int ret;
	unsigned long val;
1130
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1131
	u64 *enabled_protocols;
1132 1133 1134 1135 1136 1137 1138 1139 1140

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

	ret = kstrtoul(buf, 0, &val);
	if (ret < 0)
		return ret;

1141 1142
	if (fattr->type == RC_FILTER_NORMAL) {
		set_filter = dev->s_filter;
1143 1144
		enabled_protocols = &dev->enabled_protocols;
		filter = &dev->scancode_filter;
1145 1146
	} else {
		set_filter = dev->s_wakeup_filter;
1147 1148
		enabled_protocols = &dev->enabled_wakeup_protocols;
		filter = &dev->scancode_wakeup_filter;
1149 1150
	}

1151 1152
	if (!set_filter)
		return -EINVAL;
1153 1154 1155

	mutex_lock(&dev->lock);

1156
	new_filter = *filter;
1157
	if (fattr->mask)
1158
		new_filter.mask = val;
1159
	else
1160
		new_filter.data = val;
1161

1162
	if (!*enabled_protocols && val) {
1163 1164 1165 1166
		/* refuse to set a filter unless a protocol is enabled */
		ret = -EINVAL;
		goto unlock;
	}
1167

1168
	ret = set_filter(dev, &new_filter);
1169 1170
	if (ret < 0)
		goto unlock;
1171

1172
	*filter = new_filter;
1173 1174 1175

unlock:
	mutex_unlock(&dev->lock);
1176
	return (ret < 0) ? ret : len;
1177 1178
}

1179 1180 1181 1182
static void rc_dev_release(struct device *device)
{
}

1183 1184 1185 1186 1187 1188 1189 1190 1191
#define ADD_HOTPLUG_VAR(fmt, val...)					\
	do {								\
		int err = add_uevent_var(env, fmt, val);		\
		if (err)						\
			return err;					\
	} while (0)

static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
1192
	struct rc_dev *dev = to_rc_dev(device);
1193

1194 1195 1196
	if (!dev || !dev->input_dev)
		return -ENODEV;

1197 1198
	if (dev->rc_map.name)
		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1199 1200
	if (dev->driver_name)
		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1201 1202 1203 1204 1205 1206 1207

	return 0;
}

/*
 * Static device attribute struct with the sysfs attributes for IR's
 */
1208 1209 1210 1211
static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
		     show_protocols, store_protocols, RC_FILTER_NORMAL);
static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1212 1213 1214 1215 1216 1217 1218 1219
static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, false);
static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, true);
static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1220

1221
static struct attribute *rc_dev_protocol_attrs[] = {
1222
	&dev_attr_protocols.attr.attr,
1223 1224 1225 1226 1227 1228 1229 1230
	NULL,
};

static struct attribute_group rc_dev_protocol_attr_grp = {
	.attrs	= rc_dev_protocol_attrs,
};

static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1231
	&dev_attr_wakeup_protocols.attr.attr,
1232 1233 1234 1235 1236 1237 1238 1239
	NULL,
};

static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
	.attrs	= rc_dev_wakeup_protocol_attrs,
};

static struct attribute *rc_dev_filter_attrs[] = {
1240 1241
	&dev_attr_filter.attr.attr,
	&dev_attr_filter_mask.attr.attr,
1242 1243 1244
	NULL,
};

1245 1246
static struct attribute_group rc_dev_filter_attr_grp = {
	.attrs	= rc_dev_filter_attrs,
1247 1248
};

1249 1250 1251 1252 1253 1254 1255 1256
static struct attribute *rc_dev_wakeup_filter_attrs[] = {
	&dev_attr_wakeup_filter.attr.attr,
	&dev_attr_wakeup_filter_mask.attr.attr,
	NULL,
};

static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
	.attrs	= rc_dev_wakeup_filter_attrs,
1257 1258 1259
};

static struct device_type rc_dev_type = {
1260
	.release	= rc_dev_release,
1261 1262 1263
	.uevent		= rc_dev_uevent,
};

1264
struct rc_dev *rc_allocate_device(void)
1265
{
1266
	struct rc_dev *dev;
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

	dev->input_dev = input_allocate_device();
	if (!dev->input_dev) {
		kfree(dev);
		return NULL;
	}

1278 1279
	dev->input_dev->getkeycode = ir_getkeycode;
	dev->input_dev->setkeycode = ir_setkeycode;
1280 1281
	input_set_drvdata(dev->input_dev, dev);

1282
	spin_lock_init(&dev->rc_map.lock);
1283
	spin_lock_init(&dev->keylock);
1284
	mutex_init(&dev->lock);
1285
	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1286

1287
	dev->dev.type = &rc_dev_type;
1288
	dev->dev.class = &rc_class;
1289 1290 1291 1292 1293 1294 1295 1296
	device_initialize(&dev->dev);

	__module_get(THIS_MODULE);
	return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);

void rc_free_device(struct rc_dev *dev)
1297
{
1298 1299 1300 1301
	if (!dev)
		return;

	if (dev->input_dev)
1302
		input_free_device(dev->input_dev);
1303 1304 1305 1306 1307

	put_device(&dev->dev);

	kfree(dev);
	module_put(THIS_MODULE);
1308 1309 1310 1311 1312
}
EXPORT_SYMBOL_GPL(rc_free_device);

int rc_register_device(struct rc_dev *dev)
{
1313
	static bool raw_init = false; /* raw decoders loaded? */
1314
	struct rc_map *rc_map;
1315
	const char *path;
1316
	int rc, devno, attr = 0;
1317

1318 1319
	if (!dev || !dev->map_name)
		return -EINVAL;
1320

1321
	rc_map = rc_map_get(dev->map_name);
1322
	if (!rc_map)
1323
		rc_map = rc_map_get(RC_MAP_EMPTY);
1324
	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		return -EINVAL;

	set_bit(EV_KEY, dev->input_dev->evbit);
	set_bit(EV_REP, dev->input_dev->evbit);
	set_bit(EV_MSC, dev->input_dev->evbit);
	set_bit(MSC_SCAN, dev->input_dev->mscbit);
	if (dev->open)
		dev->input_dev->open = ir_open;
	if (dev->close)
		dev->input_dev->close = ir_close;

1336 1337 1338 1339 1340 1341 1342 1343
	do {
		devno = find_first_zero_bit(ir_core_dev_number,
					    IRRCV_NUM_DEVICES);
		/* No free device slots */
		if (devno >= IRRCV_NUM_DEVICES)
			return -ENOMEM;
	} while (test_and_set_bit(devno, ir_core_dev_number));

1344 1345 1346
	dev->dev.groups = dev->sysfs_groups;
	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
	if (dev->s_filter)
1347
		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1348 1349 1350 1351 1352 1353
	if (dev->s_wakeup_filter)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
	if (dev->change_wakeup_protocol)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
	dev->sysfs_groups[attr++] = NULL;

1354 1355 1356 1357 1358 1359 1360 1361
	/*
	 * Take the lock here, as the device sysfs node will appear
	 * when device_add() is called, which may trigger an ir-keytable udev
	 * rule, which will in turn call show_protocols and access
	 * dev->enabled_protocols before it has been initialized.
	 */
	mutex_lock(&dev->lock);

1362
	dev->devno = devno;
1363 1364 1365 1366
	dev_set_name(&dev->dev, "rc%ld", dev->devno);
	dev_set_drvdata(&dev->dev, dev);
	rc = device_add(&dev->dev);
	if (rc)
1367
		goto out_unlock;
1368

1369
	rc = ir_setkeytable(dev, rc_map);
1370 1371 1372 1373 1374 1375 1376
	if (rc)
		goto out_dev;

	dev->input_dev->dev.parent = &dev->dev;
	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
	dev->input_dev->phys = dev->input_phys;
	dev->input_dev->name = dev->input_name;
1377 1378 1379 1380

	/* input_register_device can call ir_open, so unlock mutex here */
	mutex_unlock(&dev->lock);

1381
	rc = input_register_device(dev->input_dev);
1382 1383 1384

	mutex_lock(&dev->lock);

1385 1386
	if (rc)
		goto out_table;
1387

1388
	/*
L
Lucas De Marchi 已提交
1389
	 * Default delay of 250ms is too short for some protocols, especially
1390 1391 1392 1393 1394 1395
	 * since the timeout is currently set to 250ms. Increase it to 500ms,
	 * to avoid wrong repetition of the keycodes. Note that this must be
	 * set after the call to input_register_device().
	 */
	dev->input_dev->rep[REP_DELAY] = 500;

1396 1397 1398 1399 1400 1401 1402
	/*
	 * As a repeat event on protocols like RC-5 and NEC take as long as
	 * 110/114ms, using 33ms as a repeat period is not the right thing
	 * to do.
	 */
	dev->input_dev->rep[REP_PERIOD] = 125;

1403
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1404
	printk(KERN_INFO "%s: %s as %s\n",
1405 1406
		dev_name(&dev->dev),
		dev->input_name ? dev->input_name : "Unspecified device",
1407 1408 1409
		path ? path : "N/A");
	kfree(path);

1410
	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1411 1412 1413 1414 1415 1416
		/* Load raw decoders, if they aren't already */
		if (!raw_init) {
			IR_dprintk(1, "Loading raw decoders\n");
			ir_raw_init();
			raw_init = true;
		}
1417 1418 1419 1420 1421 1422
		rc = ir_raw_event_register(dev);
		if (rc < 0)
			goto out_input;
	}

	if (dev->change_protocol) {
1423 1424
		u64 rc_type = (1 << rc_map->rc_type);
		rc = dev->change_protocol(dev, &rc_type);
1425 1426
		if (rc < 0)
			goto out_raw;
1427
		dev->enabled_protocols = rc_type;
1428 1429
	}

1430 1431
	mutex_unlock(&dev->lock);

1432 1433 1434
	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
		   dev->devno,
		   dev->driver_name ? dev->driver_name : "unknown",
1435
		   rc_map->name ? rc_map->name : "unknown",
1436 1437
		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");

1438
	return 0;
1439 1440 1441 1442 1443 1444 1445 1446

out_raw:
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);
out_input:
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;
out_table:
1447
	ir_free_table(&dev->rc_map);
1448 1449
out_dev:
	device_del(&dev->dev);
1450 1451
out_unlock:
	mutex_unlock(&dev->lock);
1452
	clear_bit(dev->devno, ir_core_dev_number);
1453
	return rc;
1454
}
1455
EXPORT_SYMBOL_GPL(rc_register_device);
1456

1457
void rc_unregister_device(struct rc_dev *dev)
1458
{
1459 1460
	if (!dev)
		return;
1461

1462
	del_timer_sync(&dev->timer_keyup);
1463

1464 1465
	clear_bit(dev->devno, ir_core_dev_number);

1466 1467 1468
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);

1469 1470 1471 1472
	/* Freeing the table should also call the stop callback */
	ir_free_table(&dev->rc_map);
	IR_dprintk(1, "Freed keycode table\n");

1473 1474 1475
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;

1476
	device_del(&dev->dev);
1477

1478
	rc_free_device(dev);
1479
}
1480

1481
EXPORT_SYMBOL_GPL(rc_unregister_device);
1482 1483 1484 1485 1486

/*
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 */

1487
static int __init rc_core_init(void)
1488
{
1489
	int rc = class_register(&rc_class);
1490
	if (rc) {
1491
		printk(KERN_ERR "rc_core: unable to register rc class\n");
1492 1493 1494
		return rc;
	}

1495
	led_trigger_register_simple("rc-feedback", &led_feedback);
1496
	rc_map_register(&empty_map);
1497 1498 1499 1500

	return 0;
}

1501
static void __exit rc_core_exit(void)
1502
{
1503
	class_unregister(&rc_class);
1504
	led_trigger_unregister_simple(led_feedback);
1505
	rc_map_unregister(&empty_map);
1506 1507
}

1508
subsys_initcall(rc_core_init);
1509
module_exit(rc_core_exit);
1510

1511 1512 1513
int rc_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);
1514

1515
MODULE_AUTHOR("Mauro Carvalho Chehab");
1516
MODULE_LICENSE("GPL");