cgroup.c 108.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
26
#include <linux/ctype.h>
27 28 29 30 31 32 33 34
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
35
#include <linux/proc_fs.h>
36 37
#include <linux/rcupdate.h>
#include <linux/sched.h>
38
#include <linux/backing-dev.h>
39 40 41 42 43
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
44
#include <linux/sort.h>
45
#include <linux/kmod.h>
B
Balbir Singh 已提交
46 47
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
48
#include <linux/hash.h>
49
#include <linux/namei.h>
50
#include <linux/smp_lock.h>
L
Li Zefan 已提交
51
#include <linux/pid_namespace.h>
52
#include <linux/idr.h>
53
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
B
Balbir Singh 已提交
54

55 56
#include <asm/atomic.h>

57 58
static DEFINE_MUTEX(cgroup_mutex);

59 60 61 62 63 64 65
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

66 67
#define MAX_CGROUP_ROOT_NAMELEN 64

68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

82 83 84
	/* Unique id for this hierarchy. */
	int hierarchy_id;

85 86 87 88 89 90 91 92 93 94 95 96
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

97
	/* A list running through the active hierarchies */
98 99 100 101
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
102

103
	/* The path to use for release notifications. */
104
	char release_agent_path[PATH_MAX];
105 106 107

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
108 109 110 111 112 113 114 115 116
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


150 151 152
/* The list of hierarchy roots */

static LIST_HEAD(roots);
153
static int root_count;
154

155 156 157 158
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

159 160 161 162
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
163 164 165
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
166
 */
167
static int need_forkexit_callback __read_mostly;
168 169

/* convenient tests for these bits */
170
inline int cgroup_is_removed(const struct cgroup *cgrp)
171
{
172
	return test_bit(CGRP_REMOVED, &cgrp->flags);
173 174 175 176 177 178 179
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

180
static int cgroup_is_releasable(const struct cgroup *cgrp)
181 182
{
	const int bits =
183 184 185
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
186 187
}

188
static int notify_on_release(const struct cgroup *cgrp)
189
{
190
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
191 192
}

193 194 195 196 197 198 199
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

200 201
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
202 203
list_for_each_entry(_root, &roots, root_list)

204 205 206 207 208 209
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
210
static void check_for_release(struct cgroup *cgrp);
211

212 213 214 215 216 217
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
218
	struct list_head cgrp_link_list;
219
	struct cgroup *cgrp;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

K
KAMEZAWA Hiroyuki 已提交
238 239
static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);

240 241 242 243 244 245
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

246 247 248 249 250
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

270 271 272 273
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
274
static int use_task_css_set_links __read_mostly;
275

276
static void __put_css_set(struct css_set *cg, int taskexit)
277
{
K
KOSAKI Motohiro 已提交
278 279
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
280 281 282 283 284 285 286 287 288 289 290 291
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
292

293 294 295 296 297 298 299 300 301
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
302 303
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
304
			if (taskexit)
305 306
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
307
		}
308 309

		kfree(link);
310
	}
311 312

	write_unlock(&css_set_lock);
313
	kfree(cg);
314 315
}

316 317 318 319 320
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
321
	atomic_inc(&cg->refcount);
322 323 324 325
}

static inline void put_css_set(struct css_set *cg)
{
326
	__put_css_set(cg, 0);
327 328
}

329 330
static inline void put_css_set_taskexit(struct css_set *cg)
{
331
	__put_css_set(cg, 1);
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

406 407 408
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
409
 * css_set is suitable.
410 411 412 413
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
414
 * cgrp: the cgroup that we're moving into
415 416 417 418 419 420
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
421
	struct cgroup *cgrp,
422
	struct cgroup_subsys_state *template[])
423 424
{
	int i;
425
	struct cgroupfs_root *root = cgrp->root;
426 427 428
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
429 430 431 432

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
433
		if (root->subsys_bits & (1UL << i)) {
434 435 436
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
437
			template[i] = cgrp->subsys[i];
438 439 440 441 442 443 444
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

445 446
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
447 448 449 450 451
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
452
	}
453 454 455 456 457

	/* No existing cgroup group matched */
	return NULL;
}

458 459 460 461 462 463 464 465 466 467 468
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

469 470
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
471
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
472 473 474 475 476 477 478 479 480 481
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
482
			free_cg_links(tmp);
483 484
			return -ENOMEM;
		}
485
		list_add(&link->cgrp_link_list, tmp);
486 487 488 489
	}
	return 0;
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
505
	link->cgrp = cgrp;
506
	atomic_inc(&cgrp->count);
507
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
508 509 510 511 512
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
513 514
}

515 516 517 518 519 520 521 522
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
523
	struct css_set *oldcg, struct cgroup *cgrp)
524 525 526 527 528 529
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

530
	struct hlist_head *hhead;
531
	struct cg_cgroup_link *link;
532

533 534
	/* First see if we already have a cgroup group that matches
	 * the desired set */
535
	read_lock(&css_set_lock);
536
	res = find_existing_css_set(oldcg, cgrp, template);
537 538
	if (res)
		get_css_set(res);
539
	read_unlock(&css_set_lock);
540 541 542 543 544 545 546 547 548 549 550 551 552 553

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

554
	atomic_set(&res->refcount, 1);
555 556
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
557
	INIT_HLIST_NODE(&res->hlist);
558 559 560 561 562 563 564

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
565 566 567 568 569 570
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
571 572 573 574

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
575 576 577 578 579

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

580 581 582
	write_unlock(&css_set_lock);

	return res;
583 584
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

620 621 622 623 624 625 626 627 628 629
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
630
 * cgroup_attach_task() can increment it again.  Because a count of zero
631 632 633 634 635 636 637 638 639 640 641 642 643
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
644 645
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
646 647 648 649 650 651 652 653 654 655 656
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
657
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
658
 * another.  It does so using cgroup_mutex, however there are
659 660 661
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
662
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
663 664 665 666
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
667
 * update of a tasks cgroup pointer by cgroup_attach_task()
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
698
static int cgroup_populate_dir(struct cgroup *cgrp);
699
static const struct inode_operations cgroup_dir_inode_operations;
700 701 702
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
703
	.name		= "cgroup",
704
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
705
};
706

K
KAMEZAWA Hiroyuki 已提交
707 708 709
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

710 711 712 713 714 715
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
716 717
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
718 719 720 721 722 723
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

724 725 726 727
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
728
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
729 730
{
	struct cgroup_subsys *ss;
731 732
	int ret = 0;

733
	for_each_subsys(cgrp->root, ss)
734 735 736 737 738 739
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
740 741
}

742 743 744 745 746 747 748
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

749 750 751 752
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
753
		struct cgroup *cgrp = dentry->d_fsdata;
754
		struct cgroup_subsys *ss;
755
		BUG_ON(!(cgroup_is_removed(cgrp)));
756 757 758 759 760 761 762
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
763 764 765 766 767

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
768 769
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
770 771 772 773

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

774 775 776 777
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
778 779
		deactivate_super(cgrp->root->sb);

780 781 782 783 784 785
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

786
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

839 840 841 842 843 844
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
845
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
846 847 848
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

849
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
850
{
851
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
852 853 854
		wake_up_all(&cgroup_rmdir_waitq);
}

855 856 857 858 859 860 861 862 863 864 865 866
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}


867 868 869 870
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
871
	struct cgroup *cgrp = &root->top_cgroup;
872 873 874 875 876 877
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
878
		unsigned long bit = 1UL << i;
879 880 881 882 883 884 885 886 887 888 889 890 891
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
892
	if (root->number_of_cgroups > 1)
893 894 895 896 897 898 899 900
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
901
			BUG_ON(cgrp->subsys[i]);
902 903
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
904
			mutex_lock(&ss->hierarchy_mutex);
905 906
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
907
			list_move(&ss->sibling, &root->subsys_list);
908
			ss->root = root;
909
			if (ss->bind)
910
				ss->bind(ss, cgrp);
911
			mutex_unlock(&ss->hierarchy_mutex);
912 913
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
914 915
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
916
			mutex_lock(&ss->hierarchy_mutex);
917 918 919
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
920
			cgrp->subsys[i] = NULL;
921
			subsys[i]->root = &rootnode;
922
			list_move(&ss->sibling, &rootnode.subsys_list);
923
			mutex_unlock(&ss->hierarchy_mutex);
924 925
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
926
			BUG_ON(!cgrp->subsys[i]);
927 928
		} else {
			/* Subsystem state shouldn't exist */
929
			BUG_ON(cgrp->subsys[i]);
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
948 949
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
950 951
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
952 953 954 955 956 957 958
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
959
	char *release_agent;
960
	char *name;
961 962
	/* User explicitly requested empty subsystem */
	bool none;
963 964

	struct cgroupfs_root *new_root;
965

966 967 968 969 970 971 972 973
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";
974 975 976 977 978
	unsigned long mask = (unsigned long)-1;

#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
979

980
	memset(opts, 0, sizeof(*opts));
981 982 983 984 985

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
986 987 988 989 990 991 992 993
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
994 995 996
		} else if (!strcmp(token, "none")) {
			/* Explicitly have no subsystems */
			opts->none = true;
997 998
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
999 1000 1001 1002
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1003 1004
			opts->release_agent =
				kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
1005 1006
			if (!opts->release_agent)
				return -ENOMEM;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		} else if (!strncmp(token, "name=", 5)) {
			int i;
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
					      MAX_CGROUP_ROOT_NAMELEN,
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1030 1031 1032 1033 1034 1035
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
1036 1037
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
1038 1039 1040 1041 1042 1043 1044 1045
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

1046 1047
	/* Consistency checks */

1048 1049 1050 1051 1052 1053 1054 1055 1056
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1057 1058 1059 1060 1061 1062 1063 1064 1065

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1066
	if (!opts->subsys_bits && !opts->name)
1067 1068 1069 1070 1071 1072 1073 1074 1075
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1076
	struct cgroup *cgrp = &root->top_cgroup;
1077 1078
	struct cgroup_sb_opts opts;

1079
	lock_kernel();
1080
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

1094 1095 1096 1097 1098 1099
	/* Don't allow name to change at remount */
	if (opts.name && strcmp(opts.name, root->name)) {
		ret = -EINVAL;
		goto out_unlock;
	}

1100
	ret = rebind_subsystems(root, opts.subsys_bits);
1101 1102
	if (ret)
		goto out_unlock;
1103 1104

	/* (re)populate subsystem files */
1105
	cgroup_populate_dir(cgrp);
1106

1107 1108
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1109
 out_unlock:
1110
	kfree(opts.release_agent);
1111
	kfree(opts.name);
1112
	mutex_unlock(&cgroup_mutex);
1113
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1114
	unlock_kernel();
1115 1116 1117
	return ret;
}

1118
static const struct super_operations cgroup_ops = {
1119 1120 1121 1122 1123 1124
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1125 1126 1127 1128 1129 1130
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1131 1132
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1133
}
1134

1135 1136
static void init_cgroup_root(struct cgroupfs_root *root)
{
1137
	struct cgroup *cgrp = &root->top_cgroup;
1138 1139 1140
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1141 1142
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1143
	init_cgroup_housekeeping(cgrp);
1144 1145
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1171 1172
static int cgroup_test_super(struct super_block *sb, void *data)
{
1173
	struct cgroup_sb_opts *opts = data;
1174 1175
	struct cgroupfs_root *root = sb->s_fs_info;

1176 1177 1178
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1179

1180 1181 1182 1183 1184 1185
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1186 1187 1188 1189 1190
		return 0;

	return 1;
}

1191 1192 1193 1194
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1195
	if (!opts->subsys_bits && !opts->none)
1196 1197 1198 1199 1200 1201
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1202 1203 1204 1205
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1206
	init_cgroup_root(root);
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
	return root;
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1229 1230 1231
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1232 1233 1234 1235 1236 1237
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1238
	BUG_ON(!opts->subsys_bits && !opts->none);
1239 1240 1241 1242 1243

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1244 1245
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
1282
	struct cgroupfs_root *root;
1283 1284
	int ret = 0;
	struct super_block *sb;
1285
	struct cgroupfs_root *new_root;
1286 1287 1288

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
1289 1290
	if (ret)
		goto out_err;
1291

1292 1293 1294 1295 1296 1297 1298 1299
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
		goto out_err;
1300
	}
1301
	opts.new_root = new_root;
1302

1303 1304
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1305
	if (IS_ERR(sb)) {
1306
		ret = PTR_ERR(sb);
1307
		cgroup_drop_root(opts.new_root);
1308
		goto out_err;
1309 1310
	}

1311 1312 1313 1314 1315
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1316
		struct cgroup *root_cgrp = &root->top_cgroup;
1317
		struct inode *inode;
1318
		struct cgroupfs_root *existing_root;
1319
		int i;
1320 1321 1322 1323 1324 1325

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1326
		inode = sb->s_root->d_inode;
1327

1328
		mutex_lock(&inode->i_mutex);
1329 1330
		mutex_lock(&cgroup_mutex);

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		if (strlen(root->name)) {
			/* Check for name clashes with existing mounts */
			for_each_active_root(existing_root) {
				if (!strcmp(existing_root->name, root->name)) {
					ret = -EBUSY;
					mutex_unlock(&cgroup_mutex);
					mutex_unlock(&inode->i_mutex);
					goto drop_new_super;
				}
			}
		}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1357 1358 1359
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1360
			mutex_unlock(&inode->i_mutex);
1361 1362
			free_cg_links(&tmp_cg_links);
			goto drop_new_super;
1363 1364 1365 1366 1367 1368
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1369
		root_count++;
1370

1371
		sb->s_root->d_fsdata = root_cgrp;
1372 1373
		root->top_cgroup.dentry = sb->s_root;

1374 1375 1376
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1377 1378 1379
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1380
			struct css_set *cg;
1381

1382 1383
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1384
		}
1385 1386 1387 1388
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1389 1390
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1391 1392
		BUG_ON(root->number_of_cgroups != 1);

1393
		cgroup_populate_dir(root_cgrp);
1394
		mutex_unlock(&cgroup_mutex);
1395
		mutex_unlock(&inode->i_mutex);
1396 1397 1398 1399 1400
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1401
		cgroup_drop_root(opts.new_root);
1402 1403
	}

1404
	simple_set_mnt(mnt, sb);
1405 1406
	kfree(opts.release_agent);
	kfree(opts.name);
1407
	return 0;
1408 1409

 drop_new_super:
1410
	deactivate_locked_super(sb);
1411 1412 1413 1414
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);

1415 1416 1417 1418 1419
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1420
	struct cgroup *cgrp = &root->top_cgroup;
1421
	int ret;
K
KOSAKI Motohiro 已提交
1422 1423
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1424 1425 1426 1427

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1428 1429
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1430 1431 1432 1433 1434 1435 1436 1437

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1438 1439 1440 1441 1442
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1443 1444 1445

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1446
		list_del(&link->cg_link_list);
1447
		list_del(&link->cgrp_link_list);
1448 1449 1450 1451
		kfree(link);
	}
	write_unlock(&css_set_lock);

1452 1453 1454 1455
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1456

1457 1458 1459
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1460
	cgroup_drop_root(root);
1461 1462 1463 1464 1465 1466 1467 1468
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1469
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1470 1471 1472 1473 1474 1475 1476 1477 1478
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1479 1480 1481 1482 1483 1484
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1485 1486 1487
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1488
 */
1489
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1490 1491
{
	char *start;
1492
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1493

1494
	if (!dentry || cgrp == dummytop) {
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1507
		int len = dentry->d_name.len;
1508 1509
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1510 1511 1512
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1513
			break;
1514
		dentry = rcu_dereference(cgrp->dentry);
1515
		if (!cgrp->parent)
1516 1517 1518 1519 1520 1521 1522 1523 1524
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

L
Li Zefan 已提交
1525 1526 1527 1528
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1529
 *
L
Li Zefan 已提交
1530 1531
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1532
 */
1533
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1534 1535 1536
{
	int retval = 0;
	struct cgroup_subsys *ss;
1537
	struct cgroup *oldcgrp;
1538
	struct css_set *cg;
1539
	struct css_set *newcg;
1540
	struct cgroupfs_root *root = cgrp->root;
1541 1542

	/* Nothing to do if the task is already in that cgroup */
1543
	oldcgrp = task_cgroup_from_root(tsk, root);
1544
	if (cgrp == oldcgrp)
1545 1546 1547 1548
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1549
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1550
			if (retval)
1551 1552 1553 1554
				return retval;
		}
	}

1555 1556 1557 1558
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1559 1560 1561 1562
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1563
	newcg = find_css_set(cg, cgrp);
1564
	put_css_set(cg);
P
Paul Jackson 已提交
1565
	if (!newcg)
1566 1567
		return -ENOMEM;

1568 1569 1570
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1571
		put_css_set(newcg);
1572 1573
		return -ESRCH;
	}
1574
	rcu_assign_pointer(tsk->cgroups, newcg);
1575 1576
	task_unlock(tsk);

1577 1578 1579 1580 1581 1582 1583 1584
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1585
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1586
		if (ss->attach)
1587
			ss->attach(ss, cgrp, oldcgrp, tsk);
1588
	}
1589
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1590
	synchronize_rcu();
1591
	put_css_set(cg);
1592 1593 1594 1595 1596

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1597
	cgroup_wakeup_rmdir_waiter(cgrp);
1598 1599 1600 1601
	return 0;
}

/*
1602 1603
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1604
 */
1605
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1606 1607
{
	struct task_struct *tsk;
1608
	const struct cred *cred = current_cred(), *tcred;
1609 1610 1611 1612
	int ret;

	if (pid) {
		rcu_read_lock();
1613
		tsk = find_task_by_vpid(pid);
1614 1615 1616 1617 1618
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1619 1620 1621 1622 1623
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1624 1625
			return -EACCES;
		}
1626 1627
		get_task_struct(tsk);
		rcu_read_unlock();
1628 1629 1630 1631 1632
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1633
	ret = cgroup_attach_task(cgrp, tsk);
1634 1635 1636 1637
	put_task_struct(tsk);
	return ret;
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1648 1649 1650 1651
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1652 1653
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1654
 */
1655
bool cgroup_lock_live_group(struct cgroup *cgrp)
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1672
	cgroup_unlock();
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1683
	cgroup_unlock();
1684 1685 1686
	return 0;
}

1687 1688 1689
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1690
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1691 1692 1693
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1694
{
1695
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1707
	strstrip(buffer);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1719 1720 1721 1722 1723
	if (!retval)
		retval = nbytes;
	return retval;
}

1724 1725 1726 1727 1728
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1729
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1744 1745 1746 1747
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1748 1749 1750 1751 1752 1753

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1754
out:
1755 1756 1757 1758 1759
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1760 1761 1762 1763
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1764
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1765

1766
	if (cgroup_is_removed(cgrp))
1767
		return -ENODEV;
1768
	if (cft->write)
1769
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1770 1771
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1772 1773
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1774 1775 1776 1777
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1778
	return -EINVAL;
1779 1780
}

1781 1782 1783 1784
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1785
{
1786
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1787
	u64 val = cft->read_u64(cgrp, cft);
1788 1789 1790 1791 1792
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1793 1794 1795 1796 1797
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1798
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1799 1800 1801 1802 1803 1804
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1805 1806 1807 1808
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1809
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1810

1811
	if (cgroup_is_removed(cgrp))
1812 1813 1814
		return -ENODEV;

	if (cft->read)
1815
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1816 1817
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1818 1819
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1820 1821 1822
	return -EINVAL;
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1843 1844 1845 1846 1847 1848 1849 1850
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1851 1852
}

1853
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1854 1855 1856 1857 1858 1859 1860 1861
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1862
	.write = cgroup_file_write,
1863 1864 1865 1866
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1867 1868 1869 1870 1871 1872 1873 1874 1875
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1876

1877
	if (cft->read_map || cft->read_seq_string) {
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

1927
static const struct inode_operations cgroup_dir_inode_operations = {
1928 1929 1930 1931 1932 1933
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

L
Li Zefan 已提交
1934
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1935 1936
				struct super_block *sb)
{
A
Al Viro 已提交
1937
	static const struct dentry_operations cgroup_dops = {
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1961
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1973 1974 1975 1976 1977
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1978
 */
1979
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
1980
				mode_t mode)
1981 1982 1983 1984
{
	struct dentry *parent;
	int error = 0;

1985 1986
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1987
	if (!error) {
1988
		dentry->d_fsdata = cgrp;
1989
		inc_nlink(parent->d_inode);
1990
		rcu_assign_pointer(cgrp->dentry, dentry);
1991 1992 1993 1994 1995 1996 1997
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2025
int cgroup_add_file(struct cgroup *cgrp,
2026 2027 2028
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
2029
	struct dentry *dir = cgrp->dentry;
2030 2031
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
2032
	mode_t mode;
2033 2034

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2035
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2036 2037 2038 2039 2040 2041 2042
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2043 2044
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2045
						cgrp->root->sb);
2046 2047 2048 2049 2050 2051 2052 2053
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

2054
int cgroup_add_files(struct cgroup *cgrp,
2055 2056 2057 2058 2059 2060
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2061
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2062 2063 2064 2065 2066 2067
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
2068 2069 2070 2071 2072 2073
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2074
int cgroup_task_count(const struct cgroup *cgrp)
2075 2076
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2077
	struct cg_cgroup_link *link;
2078 2079

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2080
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2081
		count += atomic_read(&link->cg->refcount);
2082 2083
	}
	read_unlock(&css_set_lock);
2084 2085 2086
	return count;
}

2087 2088 2089 2090
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2091
static void cgroup_advance_iter(struct cgroup *cgrp,
2092
				struct cgroup_iter *it)
2093 2094 2095 2096 2097 2098 2099 2100
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2101
		if (l == &cgrp->css_sets) {
2102 2103 2104
			it->cg_link = NULL;
			return;
		}
2105
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2106 2107 2108 2109 2110 2111
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2112 2113 2114 2115 2116 2117 2118 2119 2120
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
2121
static void cgroup_enable_task_cg_lists(void)
2122 2123 2124 2125 2126 2127
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
2128 2129 2130 2131 2132 2133
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2134 2135 2136 2137 2138 2139
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

2140
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2141 2142 2143 2144 2145 2146
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2147 2148 2149
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2150
	read_lock(&css_set_lock);
2151 2152
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2153 2154
}

2155
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2156 2157 2158 2159
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2160
	struct cg_cgroup_link *link;
2161 2162 2163 2164 2165 2166 2167

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2168 2169
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2170 2171
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2172
		cgroup_advance_iter(cgrp, it);
2173 2174 2175 2176 2177 2178
	} else {
		it->task = l;
	}
	return res;
}

2179
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2180 2181 2182 2183
{
	read_unlock(&css_set_lock);
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2321
			struct task_struct *q = heap->ptrs[i];
2322
			if (i == 0) {
2323 2324
				latest_time = q->start_time;
				latest_task = q;
2325 2326
			}
			/* Process the task per the caller's callback */
2327 2328
			scan->process_task(q, scan);
			put_task_struct(q);
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2344
/*
2345
 * Stuff for reading the 'tasks'/'procs' files.
2346 2347 2348 2349 2350 2351 2352 2353
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

2390
/*
2391 2392 2393 2394
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
2395
 */
2396 2397 2398
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
2399
{
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2429
		newlist = pidlist_resize(list, dest);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
	struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns);
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* found a matching list - drop the extra refcount */
			put_pid_ns(ns);
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			l->use_count++;
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		put_pid_ns(ns);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
	l->key.ns = ns;
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

2490 2491 2492
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
2493 2494
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
2495 2496 2497 2498
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
2499 2500
	struct cgroup_iter it;
	struct task_struct *tsk;
2501 2502 2503 2504 2505 2506 2507 2508 2509
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
2510
	array = pidlist_allocate(length);
2511 2512 2513
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
2514 2515
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2516
		if (unlikely(n == length))
2517
			break;
2518
		/* get tgid or pid for procs or tasks file respectively */
2519 2520 2521 2522
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
2523 2524
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
2525
	}
2526
	cgroup_iter_end(cgrp, &it);
2527 2528 2529
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
2530
	if (type == CGROUP_FILE_PROCS)
2531
		length = pidlist_uniq(&array, length);
2532 2533
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
2534
		pidlist_free(array);
2535
		return -ENOMEM;
2536
	}
2537
	/* store array, freeing old if necessary - lock already held */
2538
	pidlist_free(l->list);
2539 2540 2541 2542
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
2543
	*lp = l;
2544
	return 0;
2545 2546
}

B
Balbir Singh 已提交
2547
/**
L
Li Zefan 已提交
2548
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2549 2550 2551
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2552 2553 2554
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2555 2556 2557 2558
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2559
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2560 2561
	struct cgroup_iter it;
	struct task_struct *tsk;
2562

B
Balbir Singh 已提交
2563
	/*
2564 2565
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2566
	 */
2567 2568
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2569 2570 2571
		 goto err;

	ret = 0;
2572
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2573

2574 2575
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2595
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2596 2597 2598 2599 2600

err:
	return ret;
}

2601

2602
/*
2603
 * seq_file methods for the tasks/procs files. The seq_file position is the
2604
 * next pid to display; the seq_file iterator is a pointer to the pid
2605
 * in the cgroup->l->list array.
2606
 */
2607

2608
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2609
{
2610 2611 2612 2613 2614 2615
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
2616
	struct cgroup_pidlist *l = s->private;
2617 2618 2619
	int index = 0, pid = *pos;
	int *iter;

2620
	down_read(&l->mutex);
2621
	if (pid) {
2622
		int end = l->length;
S
Stephen Rothwell 已提交
2623

2624 2625
		while (index < end) {
			int mid = (index + end) / 2;
2626
			if (l->list[mid] == pid) {
2627 2628
				index = mid;
				break;
2629
			} else if (l->list[mid] <= pid)
2630 2631 2632 2633 2634 2635
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
2636
	if (index >= l->length)
2637 2638
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
2639
	iter = l->list + index;
2640 2641 2642 2643
	*pos = *iter;
	return iter;
}

2644
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2645
{
2646 2647
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
2648 2649
}

2650
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2651
{
2652 2653 2654
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

2668
static int cgroup_pidlist_show(struct seq_file *s, void *v)
2669 2670 2671
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2672

2673 2674 2675 2676 2677 2678 2679 2680 2681
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
2682 2683
};

2684
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2685
{
2686 2687 2688 2689 2690 2691 2692
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
2693 2694 2695
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
2696 2697 2698
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
2699
		pidlist_free(l->list);
2700 2701 2702 2703
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
2704
	}
2705
	mutex_unlock(&l->owner->pidlist_mutex);
2706
	up_write(&l->mutex);
2707 2708
}

2709
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2710
{
2711
	struct cgroup_pidlist *l;
2712 2713
	if (!(file->f_mode & FMODE_READ))
		return 0;
2714 2715 2716 2717 2718 2719
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
2720 2721 2722
	return seq_release(inode, file);
}

2723
static const struct file_operations cgroup_pidlist_operations = {
2724 2725 2726
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
2727
	.release = cgroup_pidlist_release,
2728 2729
};

2730
/*
2731 2732 2733
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
2734
 */
2735
/* helper function for the two below it */
2736
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
2737
{
2738
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2739
	struct cgroup_pidlist *l;
2740
	int retval;
2741

2742
	/* Nothing to do for write-only files */
2743 2744 2745
	if (!(file->f_mode & FMODE_READ))
		return 0;

2746
	/* have the array populated */
2747
	retval = pidlist_array_load(cgrp, type, &l);
2748 2749 2750 2751
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
2752

2753
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
2754
	if (retval) {
2755
		cgroup_release_pid_array(l);
2756
		return retval;
2757
	}
2758
	((struct seq_file *)file->private_data)->private = l;
2759 2760
	return 0;
}
2761 2762
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2763
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
2764 2765 2766
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
2767
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
2768
}
2769

2770
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2771 2772
					    struct cftype *cft)
{
2773
	return notify_on_release(cgrp);
2774 2775
}

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2788 2789 2790
/*
 * for the common functions, 'private' gives the type of file
 */
2791 2792
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
2793 2794 2795 2796
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2797
		.write_u64 = cgroup_tasks_write,
2798
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
2799
		.mode = S_IRUGO | S_IWUSR,
2800
	},
2801 2802 2803 2804 2805 2806 2807
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
		/* .write_u64 = cgroup_procs_write, TODO */
		.release = cgroup_pidlist_release,
		.mode = S_IRUGO,
	},
2808 2809
	{
		.name = "notify_on_release",
2810
		.read_u64 = cgroup_read_notify_on_release,
2811
		.write_u64 = cgroup_write_notify_on_release,
2812 2813 2814 2815 2816
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2817 2818 2819
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2820 2821
};

2822
static int cgroup_populate_dir(struct cgroup *cgrp)
2823 2824 2825 2826 2827
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2828
	cgroup_clear_directory(cgrp->dentry);
2829

2830
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2831 2832 2833
	if (err < 0)
		return err;

2834 2835
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2836 2837 2838
			return err;
	}

2839 2840
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2841 2842
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2854 2855 2856 2857 2858 2859

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2860
			       struct cgroup *cgrp)
2861
{
2862
	css->cgroup = cgrp;
P
Paul Menage 已提交
2863
	atomic_set(&css->refcnt, 1);
2864
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2865
	css->id = NULL;
2866
	if (cgrp == dummytop)
2867
		set_bit(CSS_ROOT, &css->flags);
2868 2869
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2870 2871
}

2872 2873 2874 2875 2876 2877 2878 2879
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
2880
			mutex_lock(&ss->hierarchy_mutex);
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2895
/*
L
Li Zefan 已提交
2896 2897 2898 2899
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2900
 *
L
Li Zefan 已提交
2901
 * Must be called with the mutex on the parent inode held
2902 2903
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
2904
			     mode_t mode)
2905
{
2906
	struct cgroup *cgrp;
2907 2908 2909 2910 2911
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2912 2913
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2925
	init_cgroup_housekeeping(cgrp);
2926

2927 2928 2929
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2930

2931 2932 2933
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2934
	for_each_subsys(root, ss) {
2935
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2936 2937 2938 2939
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2940
		init_cgroup_css(css, ss, cgrp);
K
KAMEZAWA Hiroyuki 已提交
2941 2942 2943 2944
		if (ss->use_id)
			if (alloc_css_id(ss, parent, cgrp))
				goto err_destroy;
		/* At error, ->destroy() callback has to free assigned ID. */
2945 2946
	}

2947
	cgroup_lock_hierarchy(root);
2948
	list_add(&cgrp->sibling, &cgrp->parent->children);
2949
	cgroup_unlock_hierarchy(root);
2950 2951
	root->number_of_cgroups++;

2952
	err = cgroup_create_dir(cgrp, dentry, mode);
2953 2954 2955 2956
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2957
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2958

2959
	err = cgroup_populate_dir(cgrp);
2960 2961 2962
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2963
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2964 2965 2966 2967 2968

	return 0;

 err_remove:

2969
	cgroup_lock_hierarchy(root);
2970
	list_del(&cgrp->sibling);
2971
	cgroup_unlock_hierarchy(root);
2972 2973 2974 2975 2976
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2977 2978
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2979 2980 2981 2982 2983 2984 2985
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2986
	kfree(cgrp);
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2998
static int cgroup_has_css_refs(struct cgroup *cgrp)
2999 3000 3001
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
3002
	 * cgroup, if the css refcount is also 1, then there should
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
3014
		if (ss->root != cgrp->root)
3015
			continue;
3016
		css = cgrp->subsys[ss->subsys_id];
3017 3018 3019 3020 3021 3022
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
3023
		if (css && (atomic_read(&css->refcnt) > 1))
3024 3025 3026 3027 3028
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
3044
		while (1) {
P
Paul Menage 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
3058 3059 3060 3061
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

3082 3083
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
3084
	struct cgroup *cgrp = dentry->d_fsdata;
3085 3086
	struct dentry *d;
	struct cgroup *parent;
3087 3088
	DEFINE_WAIT(wait);
	int ret;
3089 3090

	/* the vfs holds both inode->i_mutex already */
3091
again:
3092
	mutex_lock(&cgroup_mutex);
3093
	if (atomic_read(&cgrp->count) != 0) {
3094 3095 3096
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3097
	if (!list_empty(&cgrp->children)) {
3098 3099 3100
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3101
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
3102

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

3114
	/*
L
Li Zefan 已提交
3115 3116
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
3117
	 */
3118
	ret = cgroup_call_pre_destroy(cgrp);
3119 3120
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3121
		return ret;
3122
	}
3123

3124 3125
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
3126
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3127
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3128 3129 3130
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3131 3132 3133
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
3134 3135 3136 3137 3138 3139
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
3140 3141 3142 3143 3144 3145 3146 3147 3148
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3149

3150
	spin_lock(&release_list_lock);
3151 3152 3153
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
3154
	spin_unlock(&release_list_lock);
3155 3156 3157

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
3158
	list_del(&cgrp->sibling);
3159 3160
	cgroup_unlock_hierarchy(cgrp->root);

3161 3162
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
3163 3164 3165 3166 3167
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

3168
	set_bit(CGRP_RELEASABLE, &parent->flags);
3169 3170
	check_for_release(parent);

3171 3172 3173 3174
	mutex_unlock(&cgroup_mutex);
	return 0;
}

3175
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3176 3177
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
3178 3179

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3180 3181

	/* Create the top cgroup state for this subsystem */
3182
	list_add(&ss->sibling, &rootnode.subsys_list);
3183 3184 3185 3186 3187 3188
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
3189
	/* Update the init_css_set to contain a subsys
3190
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
3191 3192 3193
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3194 3195 3196

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
3197 3198 3199 3200 3201
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

3202
	mutex_init(&ss->hierarchy_mutex);
3203
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3204 3205 3206 3207
	ss->active = 1;
}

/**
L
Li Zefan 已提交
3208 3209 3210 3211
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
3212 3213 3214 3215
 */
int __init cgroup_init_early(void)
{
	int i;
3216
	atomic_set(&init_css_set.refcount, 1);
3217 3218
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
3219
	INIT_HLIST_NODE(&init_css_set.hlist);
3220
	css_set_count = 1;
3221
	init_cgroup_root(&rootnode);
3222 3223 3224 3225
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
3226
	init_css_set_link.cgrp = dummytop;
3227
	list_add(&init_css_set_link.cgrp_link_list,
3228 3229 3230
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
3231

3232 3233 3234
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

3235 3236 3237 3238 3239 3240 3241 3242
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
3243
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
3255 3256 3257 3258
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
3259 3260 3261 3262 3263
 */
int __init cgroup_init(void)
{
	int err;
	int i;
3264
	struct hlist_head *hhead;
3265 3266 3267 3268

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
3269 3270 3271 3272 3273

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
3274 3275
		if (ss->use_id)
			cgroup_subsys_init_idr(ss);
3276 3277
	}

3278 3279 3280
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
3281
	BUG_ON(!init_root_id(&rootnode));
3282 3283 3284 3285
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
3286
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3287

3288
out:
3289 3290 3291
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

3292 3293
	return err;
}
3294

3295 3296 3297 3298 3299 3300
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
3301
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

3331
	for_each_active_root(root) {
3332
		struct cgroup_subsys *ss;
3333
		struct cgroup *cgrp;
3334 3335
		int count = 0;

3336
		seq_printf(m, "%d:", root->hierarchy_id);
3337 3338
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3339 3340 3341
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
3342
		seq_putc(m, ':');
3343
		cgrp = task_cgroup_from_root(tsk, root);
3344
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

3378
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3379 3380 3381
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
3382 3383
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
3384
			   ss->root->number_of_cgroups, !ss->disabled);
3385 3386 3387 3388 3389 3390 3391
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
3392
	return single_open(file, proc_cgroupstats_show, NULL);
3393 3394 3395 3396 3397 3398 3399 3400 3401
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

3402 3403
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
3404
 * @child: pointer to task_struct of forking parent process.
3405 3406 3407 3408 3409 3410
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
3411
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
3412 3413
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
3414 3415 3416 3417 3418 3419
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
3420 3421 3422 3423 3424
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
3425 3426 3427
}

/**
L
Li Zefan 已提交
3428 3429 3430 3431 3432 3433
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

3447
/**
L
Li Zefan 已提交
3448 3449 3450 3451 3452 3453 3454 3455
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
3456 3457 3458 3459
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3460
		task_lock(child);
3461 3462
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3463
		task_unlock(child);
3464 3465 3466
		write_unlock(&css_set_lock);
	}
}
3467 3468 3469
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3470
 * @run_callback: run exit callbacks?
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3499 3500
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3501 3502 3503 3504
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3505
	struct css_set *cg;
3506 3507 3508 3509 3510 3511 3512 3513

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3527 3528
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3529 3530
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3531
	task_unlock(tsk);
3532
	if (cg)
3533
		put_css_set_taskexit(cg);
3534
}
3535 3536

/**
L
Li Zefan 已提交
3537 3538 3539
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3540
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3541 3542 3543 3544
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3545
 */
3546 3547
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3571
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3572 3573 3574 3575
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3576

3577
	/* Keep the cgroup alive */
3578 3579 3580
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3581
	get_css_set(cg);
3582
	task_unlock(tsk);
3583

3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3595
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3596 3597 3598 3599 3600 3601
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3602
	ret = vfs_mkdir(inode, dentry, 0755);
3603
	child = __d_cgrp(dentry);
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3620
		put_css_set(cg);
3621

3622
		deactivate_super(root->sb);
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3639
	ret = cgroup_attach_task(child, tsk);
3640 3641 3642 3643
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3644 3645

	mutex_lock(&cgroup_mutex);
3646
	put_css_set(cg);
3647
	mutex_unlock(&cgroup_mutex);
3648
	deactivate_super(root->sb);
3649 3650 3651
	return ret;
}

L
Li Zefan 已提交
3652
/**
3653
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3654
 * @cgrp: the cgroup in question
3655
 * @task: the task in question
L
Li Zefan 已提交
3656
 *
3657 3658
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3659 3660 3661 3662 3663 3664
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3665
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3666 3667 3668 3669
{
	int ret;
	struct cgroup *target;

3670
	if (cgrp == dummytop)
3671 3672
		return 1;

3673
	target = task_cgroup_from_root(task, cgrp->root);
3674 3675 3676
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3677 3678
	return ret;
}
3679

3680
static void check_for_release(struct cgroup *cgrp)
3681 3682 3683
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3684 3685
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3686 3687 3688 3689 3690
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3691 3692 3693
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3704
	struct cgroup *cgrp = css->cgroup;
3705
	rcu_read_lock();
3706 3707 3708 3709 3710
	if (atomic_dec_return(&css->refcnt) == 1) {
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
3711
		cgroup_wakeup_rmdir_waiter(cgrp);
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3747
		char *pathbuf = NULL, *agentbuf = NULL;
3748
		struct cgroup *cgrp = list_entry(release_list.next,
3749 3750
						    struct cgroup,
						    release_list);
3751
		list_del_init(&cgrp->release_list);
3752 3753
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3754 3755 3756 3757 3758 3759 3760
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3761 3762

		i = 0;
3763 3764
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3779 3780 3781
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3782 3783 3784 3785 3786
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
3838
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
{
	struct css_id *newid;
	struct cgroup_subsys_state *rootcss;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	rootcss = init_css_set.subsys[ss->subsys_id];
	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
						   struct cgroup *cont)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
4101 4102
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */