printk_safe.c 11.2 KB
Newer Older
1
/*
2
 * printk_safe.c - Safe printk for printk-deadlock-prone contexts
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/preempt.h>
#include <linux/spinlock.h>
20
#include <linux/debug_locks.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/smp.h>
#include <linux/cpumask.h>
#include <linux/irq_work.h>
#include <linux/printk.h>

#include "internal.h"

/*
 * printk() could not take logbuf_lock in NMI context. Instead,
 * it uses an alternative implementation that temporary stores
 * the strings into a per-CPU buffer. The content of the buffer
 * is later flushed into the main ring buffer via IRQ work.
 *
 * The alternative implementation is chosen transparently
35 36
 * by examinig current printk() context mask stored in @printk_context
 * per-CPU variable.
37 38 39 40 41
 *
 * The implementation allows to flush the strings also from another CPU.
 * There are situations when we want to make sure that all buffers
 * were handled or when IRQs are blocked.
 */
42
static int printk_safe_irq_ready __read_mostly;
43

44
#define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) -	\
45 46 47
				sizeof(atomic_t) -			\
				sizeof(atomic_t) -			\
				sizeof(struct irq_work))
48

49
struct printk_safe_seq_buf {
50
	atomic_t		len;	/* length of written data */
51
	atomic_t		message_lost;
52
	struct irq_work		work;	/* IRQ work that flushes the buffer */
53
	unsigned char		buffer[SAFE_LOG_BUF_LEN];
54
};
55 56 57 58 59

static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq);
static DEFINE_PER_CPU(int, printk_context);

#ifdef CONFIG_PRINTK_NMI
60
static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq);
61
#endif
62

63 64 65
/* Get flushed in a more safe context. */
static void queue_flush_work(struct printk_safe_seq_buf *s)
{
66
	if (printk_safe_irq_ready)
67 68 69
		irq_work_queue(&s->work);
}

70
/*
71 72 73 74
 * Add a message to per-CPU context-dependent buffer. NMI and printk-safe
 * have dedicated buffers, because otherwise printk-safe preempted by
 * NMI-printk would have overwritten the NMI messages.
 *
B
Baoquan He 已提交
75
 * The messages are flushed from irq work (or from panic()), possibly,
76 77 78
 * from other CPU, concurrently with printk_safe_log_store(). Should this
 * happen, printk_safe_log_store() will notice the buffer->len mismatch
 * and repeat the write.
79
 */
80 81
static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s,
						const char *fmt, va_list args)
82
{
83
	int add;
84
	size_t len;
85
	va_list ap;
86 87 88 89

again:
	len = atomic_read(&s->len);

90 91
	/* The trailing '\0' is not counted into len. */
	if (len >= sizeof(s->buffer) - 1) {
92 93
		atomic_inc(&s->message_lost);
		queue_flush_work(s);
94
		return 0;
95
	}
96 97

	/*
98 99
	 * Make sure that all old data have been read before the buffer
	 * was reset. This is not needed when we just append data.
100 101 102 103
	 */
	if (!len)
		smp_rmb();

104 105 106
	va_copy(ap, args);
	add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap);
	va_end(ap);
107 108
	if (!add)
		return 0;
109 110 111 112 113 114 115 116 117

	/*
	 * Do it once again if the buffer has been flushed in the meantime.
	 * Note that atomic_cmpxchg() is an implicit memory barrier that
	 * makes sure that the data were written before updating s->len.
	 */
	if (atomic_cmpxchg(&s->len, len, len + add) != len)
		goto again;

118
	queue_flush_work(s);
119 120 121
	return add;
}

122
static inline void printk_safe_flush_line(const char *text, int len)
123
{
124
	/*
125 126 127 128
	 * Avoid any console drivers calls from here, because we may be
	 * in NMI or printk_safe context (when in panic). The messages
	 * must go only into the ring buffer at this stage.  Consoles will
	 * get explicitly called later when a crashdump is not generated.
129
	 */
130
	printk_deferred("%.*s", len, text);
131 132
}

133
/* printk part of the temporary buffer line by line */
134
static int printk_safe_flush_buffer(const char *start, size_t len)
135
{
136 137 138 139 140 141 142 143 144 145
	const char *c, *end;
	bool header;

	c = start;
	end = start + len;
	header = true;

	/* Print line by line. */
	while (c < end) {
		if (*c == '\n') {
146
			printk_safe_flush_line(start, c - start + 1);
147 148 149 150 151 152 153 154 155 156 157 158
			start = ++c;
			header = true;
			continue;
		}

		/* Handle continuous lines or missing new line. */
		if ((c + 1 < end) && printk_get_level(c)) {
			if (header) {
				c = printk_skip_level(c);
				continue;
			}

159
			printk_safe_flush_line(start, c - start);
160 161 162 163 164 165 166 167
			start = c++;
			header = true;
			continue;
		}

		header = false;
		c++;
	}
168

169 170 171 172
	/* Check if there was a partial line. Ignore pure header. */
	if (start < end && !header) {
		static const char newline[] = KERN_CONT "\n";

173 174
		printk_safe_flush_line(start, end - start);
		printk_safe_flush_line(newline, strlen(newline));
175 176 177
	}

	return len;
178 179
}

180 181 182 183 184 185 186 187
static void report_message_lost(struct printk_safe_seq_buf *s)
{
	int lost = atomic_xchg(&s->message_lost, 0);

	if (lost)
		printk_deferred("Lost %d message(s)!\n", lost);
}

188
/*
189
 * Flush data from the associated per-CPU buffer. The function
190 191
 * can be called either via IRQ work or independently.
 */
192
static void __printk_safe_flush(struct irq_work *work)
193 194 195
{
	static raw_spinlock_t read_lock =
		__RAW_SPIN_LOCK_INITIALIZER(read_lock);
196 197
	struct printk_safe_seq_buf *s =
		container_of(work, struct printk_safe_seq_buf, work);
198
	unsigned long flags;
199 200
	size_t len;
	int i;
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

	/*
	 * The lock has two functions. First, one reader has to flush all
	 * available message to make the lockless synchronization with
	 * writers easier. Second, we do not want to mix messages from
	 * different CPUs. This is especially important when printing
	 * a backtrace.
	 */
	raw_spin_lock_irqsave(&read_lock, flags);

	i = 0;
more:
	len = atomic_read(&s->len);

	/*
	 * This is just a paranoid check that nobody has manipulated
	 * the buffer an unexpected way. If we printed something then
218 219
	 * @len must only increase. Also it should never overflow the
	 * buffer size.
220
	 */
221
	if ((i && i >= len) || len > sizeof(s->buffer)) {
222
		const char *msg = "printk_safe_flush: internal error\n";
223

224
		printk_safe_flush_line(msg, strlen(msg));
225
		len = 0;
226
	}
227 228 229 230 231 232

	if (!len)
		goto out; /* Someone else has already flushed the buffer. */

	/* Make sure that data has been written up to the @len */
	smp_rmb();
233
	i += printk_safe_flush_buffer(s->buffer + i, len - i);
234 235 236 237 238 239 240 241 242 243 244

	/*
	 * Check that nothing has got added in the meantime and truncate
	 * the buffer. Note that atomic_cmpxchg() is an implicit memory
	 * barrier that makes sure that the data were copied before
	 * updating s->len.
	 */
	if (atomic_cmpxchg(&s->len, len, 0) != len)
		goto more;

out:
245
	report_message_lost(s);
246 247 248 249
	raw_spin_unlock_irqrestore(&read_lock, flags);
}

/**
250
 * printk_safe_flush - flush all per-cpu nmi buffers.
251 252 253 254 255
 *
 * The buffers are flushed automatically via IRQ work. This function
 * is useful only when someone wants to be sure that all buffers have
 * been flushed at some point.
 */
256
void printk_safe_flush(void)
257 258 259
{
	int cpu;

260 261
	for_each_possible_cpu(cpu) {
#ifdef CONFIG_PRINTK_NMI
262
		__printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work);
263 264 265
#endif
		__printk_safe_flush(&per_cpu(safe_print_seq, cpu).work);
	}
266 267
}

268
/**
269
 * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system
270 271
 *	goes down.
 *
272
 * Similar to printk_safe_flush() but it can be called even in NMI context when
273 274 275 276 277
 * the system goes down. It does the best effort to get NMI messages into
 * the main ring buffer.
 *
 * Note that it could try harder when there is only one CPU online.
 */
278
void printk_safe_flush_on_panic(void)
279 280 281 282 283
{
	/*
	 * Make sure that we could access the main ring buffer.
	 * Do not risk a double release when more CPUs are up.
	 */
284
	if (raw_spin_is_locked(&logbuf_lock)) {
285 286 287 288 289 290 291
		if (num_online_cpus() > 1)
			return;

		debug_locks_off();
		raw_spin_lock_init(&logbuf_lock);
	}

292
	printk_safe_flush();
293 294
}

295 296 297 298 299 300 301
#ifdef CONFIG_PRINTK_NMI
/*
 * Safe printk() for NMI context. It uses a per-CPU buffer to
 * store the message. NMIs are not nested, so there is always only
 * one writer running. But the buffer might get flushed from another
 * CPU, so we need to be careful.
 */
302
static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
303 304 305 306 307 308
{
	struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq);

	return printk_safe_log_store(s, fmt, args);
}

309
void notrace printk_nmi_enter(void)
310
{
311
	this_cpu_or(printk_context, PRINTK_NMI_CONTEXT_MASK);
312 313
}

314
void notrace printk_nmi_exit(void)
315
{
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	this_cpu_and(printk_context, ~PRINTK_NMI_CONTEXT_MASK);
}

/*
 * Marks a code that might produce many messages in NMI context
 * and the risk of losing them is more critical than eventual
 * reordering.
 *
 * It has effect only when called in NMI context. Then printk()
 * will try to store the messages into the main logbuf directly
 * and use the per-CPU buffers only as a fallback when the lock
 * is not available.
 */
void printk_nmi_direct_enter(void)
{
	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
		this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK);
}

void printk_nmi_direct_exit(void)
{
	this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK);
338 339 340 341
}

#else

342
static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
343 344 345 346 347 348 349 350 351 352 353
{
	return 0;
}

#endif /* CONFIG_PRINTK_NMI */

/*
 * Lock-less printk(), to avoid deadlocks should the printk() recurse
 * into itself. It uses a per-CPU buffer to store the message, just like
 * NMI.
 */
354
static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args)
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
{
	struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq);

	return printk_safe_log_store(s, fmt, args);
}

/* Can be preempted by NMI. */
void __printk_safe_enter(void)
{
	this_cpu_inc(printk_context);
}

/* Can be preempted by NMI. */
void __printk_safe_exit(void)
{
	this_cpu_dec(printk_context);
}

__printf(1, 0) int vprintk_func(const char *fmt, va_list args)
{
375 376 377 378 379 380 381 382 383 384 385 386 387 388
	/*
	 * Try to use the main logbuf even in NMI. But avoid calling console
	 * drivers that might have their own locks.
	 */
	if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK) &&
	    raw_spin_trylock(&logbuf_lock)) {
		int len;

		len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
		raw_spin_unlock(&logbuf_lock);
		defer_console_output();
		return len;
	}

389
	/* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */
390 391 392
	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
		return vprintk_nmi(fmt, args);

393
	/* Use extra buffer to prevent a recursion deadlock in safe mode. */
394 395 396
	if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK)
		return vprintk_safe(fmt, args);

397
	/* No obstacles. */
398 399 400
	return vprintk_default(fmt, args);
}

401
void __init printk_safe_init(void)
402 403 404 405
{
	int cpu;

	for_each_possible_cpu(cpu) {
406 407 408 409
		struct printk_safe_seq_buf *s;

		s = &per_cpu(safe_print_seq, cpu);
		init_irq_work(&s->work, __printk_safe_flush);
410

411 412
#ifdef CONFIG_PRINTK_NMI
		s = &per_cpu(nmi_print_seq, cpu);
413
		init_irq_work(&s->work, __printk_safe_flush);
414
#endif
415 416
	}

417 418 419 420 421 422
	/*
	 * In the highly unlikely event that a NMI were to trigger at
	 * this moment. Make sure IRQ work is set up before this
	 * variable is set.
	 */
	barrier();
423
	printk_safe_irq_ready = 1;
424 425

	/* Flush pending messages that did not have scheduled IRQ works. */
426
	printk_safe_flush();
427
}