printk_safe.c 9.5 KB
Newer Older
1
/*
2
 * printk_safe.c - Safe printk for printk-deadlock-prone contexts
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/preempt.h>
#include <linux/spinlock.h>
20
#include <linux/debug_locks.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/smp.h>
#include <linux/cpumask.h>
#include <linux/irq_work.h>
#include <linux/printk.h>

#include "internal.h"

/*
 * printk() could not take logbuf_lock in NMI context. Instead,
 * it uses an alternative implementation that temporary stores
 * the strings into a per-CPU buffer. The content of the buffer
 * is later flushed into the main ring buffer via IRQ work.
 *
 * The alternative implementation is chosen transparently
35 36
 * by examinig current printk() context mask stored in @printk_context
 * per-CPU variable.
37 38 39 40 41
 *
 * The implementation allows to flush the strings also from another CPU.
 * There are situations when we want to make sure that all buffers
 * were handled or when IRQs are blocked.
 */
42
static int printk_safe_irq_ready;
43
atomic_t nmi_message_lost;
44

45
#define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) -	\
46
			 sizeof(atomic_t) - sizeof(struct irq_work))
47

48
struct printk_safe_seq_buf {
49 50
	atomic_t		len;	/* length of written data */
	struct irq_work		work;	/* IRQ work that flushes the buffer */
51
	unsigned char		buffer[SAFE_LOG_BUF_LEN];
52
};
53 54 55 56 57

static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq);
static DEFINE_PER_CPU(int, printk_context);

#ifdef CONFIG_PRINTK_NMI
58
static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq);
59
#endif
60 61

/*
62 63 64 65 66 67 68 69
 * Add a message to per-CPU context-dependent buffer. NMI and printk-safe
 * have dedicated buffers, because otherwise printk-safe preempted by
 * NMI-printk would have overwritten the NMI messages.
 *
 * The messages are fushed from irq work (or from panic()), possibly,
 * from other CPU, concurrently with printk_safe_log_store(). Should this
 * happen, printk_safe_log_store() will notice the buffer->len mismatch
 * and repeat the write.
70
 */
71 72
static int printk_safe_log_store(struct printk_safe_seq_buf *s,
				 const char *fmt, va_list args)
73
{
74
	int add;
75 76 77 78 79
	size_t len;

again:
	len = atomic_read(&s->len);

80 81
	/* The trailing '\0' is not counted into len. */
	if (len >= sizeof(s->buffer) - 1) {
82
		atomic_inc(&nmi_message_lost);
83
		return 0;
84
	}
85 86

	/*
87 88
	 * Make sure that all old data have been read before the buffer
	 * was reset. This is not needed when we just append data.
89 90 91 92
	 */
	if (!len)
		smp_rmb();

93
	add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, args);
94 95 96 97 98 99 100 101 102 103

	/*
	 * Do it once again if the buffer has been flushed in the meantime.
	 * Note that atomic_cmpxchg() is an implicit memory barrier that
	 * makes sure that the data were written before updating s->len.
	 */
	if (atomic_cmpxchg(&s->len, len, len + add) != len)
		goto again;

	/* Get flushed in a more safe context. */
104
	if (add && printk_safe_irq_ready) {
105 106 107 108 109 110 111 112
		/* Make sure that IRQ work is really initialized. */
		smp_rmb();
		irq_work_queue(&s->work);
	}

	return add;
}

113
static void printk_safe_flush_line(const char *text, int len)
114
{
115 116 117 118 119 120
	/*
	 * The buffers are flushed in NMI only on panic.  The messages must
	 * go only into the ring buffer at this stage.  Consoles will get
	 * explicitly called later when a crashdump is not generated.
	 */
	if (in_nmi())
121
		printk_deferred("%.*s", len, text);
122
	else
123
		printk("%.*s", len, text);
124 125
}

126
/* printk part of the temporary buffer line by line */
127
static int printk_safe_flush_buffer(const char *start, size_t len)
128
{
129 130 131 132 133 134 135 136 137 138
	const char *c, *end;
	bool header;

	c = start;
	end = start + len;
	header = true;

	/* Print line by line. */
	while (c < end) {
		if (*c == '\n') {
139
			printk_safe_flush_line(start, c - start + 1);
140 141 142 143 144 145 146 147 148 149 150 151
			start = ++c;
			header = true;
			continue;
		}

		/* Handle continuous lines or missing new line. */
		if ((c + 1 < end) && printk_get_level(c)) {
			if (header) {
				c = printk_skip_level(c);
				continue;
			}

152
			printk_safe_flush_line(start, c - start);
153 154 155 156 157 158 159 160
			start = c++;
			header = true;
			continue;
		}

		header = false;
		c++;
	}
161

162 163 164 165
	/* Check if there was a partial line. Ignore pure header. */
	if (start < end && !header) {
		static const char newline[] = KERN_CONT "\n";

166 167
		printk_safe_flush_line(start, end - start);
		printk_safe_flush_line(newline, strlen(newline));
168 169 170
	}

	return len;
171 172
}

173
/*
174
 * Flush data from the associated per-CPU buffer. The function
175 176
 * can be called either via IRQ work or independently.
 */
177
static void __printk_safe_flush(struct irq_work *work)
178 179 180
{
	static raw_spinlock_t read_lock =
		__RAW_SPIN_LOCK_INITIALIZER(read_lock);
181 182
	struct printk_safe_seq_buf *s =
		container_of(work, struct printk_safe_seq_buf, work);
183
	unsigned long flags;
184 185
	size_t len;
	int i;
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

	/*
	 * The lock has two functions. First, one reader has to flush all
	 * available message to make the lockless synchronization with
	 * writers easier. Second, we do not want to mix messages from
	 * different CPUs. This is especially important when printing
	 * a backtrace.
	 */
	raw_spin_lock_irqsave(&read_lock, flags);

	i = 0;
more:
	len = atomic_read(&s->len);

	/*
	 * This is just a paranoid check that nobody has manipulated
	 * the buffer an unexpected way. If we printed something then
203 204
	 * @len must only increase. Also it should never overflow the
	 * buffer size.
205
	 */
206
	if ((i && i >= len) || len > sizeof(s->buffer)) {
207
		const char *msg = "printk_safe_flush: internal error\n";
208

209
		printk_safe_flush_line(msg, strlen(msg));
210
		len = 0;
211
	}
212 213 214 215 216 217

	if (!len)
		goto out; /* Someone else has already flushed the buffer. */

	/* Make sure that data has been written up to the @len */
	smp_rmb();
218
	i += printk_safe_flush_buffer(s->buffer + i, len - i);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

	/*
	 * Check that nothing has got added in the meantime and truncate
	 * the buffer. Note that atomic_cmpxchg() is an implicit memory
	 * barrier that makes sure that the data were copied before
	 * updating s->len.
	 */
	if (atomic_cmpxchg(&s->len, len, 0) != len)
		goto more;

out:
	raw_spin_unlock_irqrestore(&read_lock, flags);
}

/**
234
 * printk_safe_flush - flush all per-cpu nmi buffers.
235 236 237 238 239
 *
 * The buffers are flushed automatically via IRQ work. This function
 * is useful only when someone wants to be sure that all buffers have
 * been flushed at some point.
 */
240
void printk_safe_flush(void)
241 242 243
{
	int cpu;

244 245
	for_each_possible_cpu(cpu) {
#ifdef CONFIG_PRINTK_NMI
246
		__printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work);
247 248 249
#endif
		__printk_safe_flush(&per_cpu(safe_print_seq, cpu).work);
	}
250 251
}

252
/**
253
 * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system
254 255
 *	goes down.
 *
256
 * Similar to printk_safe_flush() but it can be called even in NMI context when
257 258 259 260 261
 * the system goes down. It does the best effort to get NMI messages into
 * the main ring buffer.
 *
 * Note that it could try harder when there is only one CPU online.
 */
262
void printk_safe_flush_on_panic(void)
263 264 265 266 267 268 269 270 271 272 273 274 275
{
	/*
	 * Make sure that we could access the main ring buffer.
	 * Do not risk a double release when more CPUs are up.
	 */
	if (in_nmi() && raw_spin_is_locked(&logbuf_lock)) {
		if (num_online_cpus() > 1)
			return;

		debug_locks_off();
		raw_spin_lock_init(&logbuf_lock);
	}

276
	printk_safe_flush();
277 278
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
#ifdef CONFIG_PRINTK_NMI
/*
 * Safe printk() for NMI context. It uses a per-CPU buffer to
 * store the message. NMIs are not nested, so there is always only
 * one writer running. But the buffer might get flushed from another
 * CPU, so we need to be careful.
 */
static int vprintk_nmi(const char *fmt, va_list args)
{
	struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq);

	return printk_safe_log_store(s, fmt, args);
}

void printk_nmi_enter(void)
{
	this_cpu_or(printk_context, PRINTK_NMI_CONTEXT_MASK);
}

void printk_nmi_exit(void)
{
	this_cpu_and(printk_context, ~PRINTK_NMI_CONTEXT_MASK);
}

#else

static int vprintk_nmi(const char *fmt, va_list args)
{
	return 0;
}

#endif /* CONFIG_PRINTK_NMI */

/*
 * Lock-less printk(), to avoid deadlocks should the printk() recurse
 * into itself. It uses a per-CPU buffer to store the message, just like
 * NMI.
 */
static int vprintk_safe(const char *fmt, va_list args)
{
	struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq);

	return printk_safe_log_store(s, fmt, args);
}

/* Can be preempted by NMI. */
void __printk_safe_enter(void)
{
	this_cpu_inc(printk_context);
}

/* Can be preempted by NMI. */
void __printk_safe_exit(void)
{
	this_cpu_dec(printk_context);
}

__printf(1, 0) int vprintk_func(const char *fmt, va_list args)
{
	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
		return vprintk_nmi(fmt, args);

	if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK)
		return vprintk_safe(fmt, args);

	return vprintk_default(fmt, args);
}

347
void __init printk_safe_init(void)
348 349 350 351
{
	int cpu;

	for_each_possible_cpu(cpu) {
352 353 354 355
		struct printk_safe_seq_buf *s;

		s = &per_cpu(safe_print_seq, cpu);
		init_irq_work(&s->work, __printk_safe_flush);
356

357 358
#ifdef CONFIG_PRINTK_NMI
		s = &per_cpu(nmi_print_seq, cpu);
359
		init_irq_work(&s->work, __printk_safe_flush);
360
#endif
361 362 363 364
	}

	/* Make sure that IRQ works are initialized before enabling. */
	smp_wmb();
365
	printk_safe_irq_ready = 1;
366 367

	/* Flush pending messages that did not have scheduled IRQ works. */
368
	printk_safe_flush();
369
}