rv_hwmgr.c 24.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include "pp_debug.h"
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "atom-types.h"
#include "atombios.h"
#include "processpptables.h"
#include "cgs_common.h"
#include "smumgr.h"
#include "hwmgr.h"
#include "hardwaremanager.h"
#include "rv_ppsmc.h"
#include "rv_hwmgr.h"
#include "power_state.h"
#include "rv_smumgr.h"
38
#include "pp_soc15.h"
39 40

#define RAVEN_MAX_DEEPSLEEP_DIVIDER_ID     5
41
#define RAVEN_MINIMUM_ENGINE_CLOCK         800   /* 8Mhz, the low boundary of engine clock allowed on this chip */
42
#define SCLK_MIN_DIV_INTV_SHIFT         12
43
#define RAVEN_DISPCLK_BYPASS_THRESHOLD     10000 /* 100Mhz */
44 45
#define SMC_RAM_END                     0x40000

46
static const unsigned long PhwRaven_Magic = (unsigned long) PHM_Rv_Magic;
47 48


49 50
int rv_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
		struct pp_display_clock_request *clock_req);
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78


static struct rv_power_state *cast_rv_ps(struct pp_hw_power_state *hw_ps)
{
	if (PhwRaven_Magic != hw_ps->magic)
		return NULL;

	return (struct rv_power_state *)hw_ps;
}

static const struct rv_power_state *cast_const_rv_ps(
				const struct pp_hw_power_state *hw_ps)
{
	if (PhwRaven_Magic != hw_ps->magic)
		return NULL;

	return (struct rv_power_state *)hw_ps;
}

static int rv_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
{
	struct rv_hwmgr *rv_hwmgr = (struct rv_hwmgr *)(hwmgr->backend);

	rv_hwmgr->dce_slow_sclk_threshold = 30000;
	rv_hwmgr->thermal_auto_throttling_treshold = 0;
	rv_hwmgr->is_nb_dpm_enabled = 1;
	rv_hwmgr->dpm_flags = 1;
	rv_hwmgr->gfx_off_controled_by_driver = false;
79 80 81
	rv_hwmgr->need_min_deep_sleep_dcefclk = true;
	rv_hwmgr->num_active_display = 0;
	rv_hwmgr->deep_sleep_dcefclk = 0;
82 83 84 85 86 87 88 89

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_SclkDeepSleep);

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_SclkThrottleLowNotification);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
90
				PHM_PlatformCaps_PowerPlaySupport);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
	return 0;
}

static int rv_construct_max_power_limits_table(struct pp_hwmgr *hwmgr,
			struct phm_clock_and_voltage_limits *table)
{
	return 0;
}

static int rv_init_dynamic_state_adjustment_rule_settings(
							struct pp_hwmgr *hwmgr)
{
	uint32_t table_size =
		sizeof(struct phm_clock_voltage_dependency_table) +
		(7 * sizeof(struct phm_clock_voltage_dependency_record));

	struct phm_clock_voltage_dependency_table *table_clk_vlt =
					kzalloc(table_size, GFP_KERNEL);

	if (NULL == table_clk_vlt) {
		pr_err("Can not allocate memory!\n");
		return -ENOMEM;
	}

	table_clk_vlt->count = 8;
	table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0;
	table_clk_vlt->entries[0].v = 0;
	table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1;
	table_clk_vlt->entries[1].v = 1;
	table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2;
	table_clk_vlt->entries[2].v = 2;
	table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3;
	table_clk_vlt->entries[3].v = 3;
	table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4;
	table_clk_vlt->entries[4].v = 4;
	table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5;
	table_clk_vlt->entries[5].v = 5;
	table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6;
	table_clk_vlt->entries[6].v = 6;
	table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7;
	table_clk_vlt->entries[7].v = 7;
	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;

	return 0;
}

static int rv_get_system_info_data(struct pp_hwmgr *hwmgr)
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)hwmgr->backend;

	rv_data->sys_info.htc_hyst_lmt = 5;
	rv_data->sys_info.htc_tmp_lmt = 203;

	if (rv_data->thermal_auto_throttling_treshold == 0)
		 rv_data->thermal_auto_throttling_treshold = 203;

	rv_construct_max_power_limits_table (hwmgr,
				    &hwmgr->dyn_state.max_clock_voltage_on_ac);

	rv_init_dynamic_state_adjustment_rule_settings(hwmgr);

	return 0;
}

static int rv_construct_boot_state(struct pp_hwmgr *hwmgr)
{
	return 0;
}

160
static int rv_set_clock_limit(struct pp_hwmgr *hwmgr, const void *input)
161
{
162 163 164 165 166 167 168 169 170 171 172
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
	struct PP_Clocks clocks = {0};
	struct pp_display_clock_request clock_req;

	clocks.dcefClock = hwmgr->display_config.min_dcef_set_clk;
	clock_req.clock_type = amd_pp_dcf_clock;
	clock_req.clock_freq_in_khz = clocks.dcefClock * 10;

	PP_ASSERT_WITH_CODE(!rv_display_clock_voltage_request(hwmgr, &clock_req),
				"Attempt to set DCF Clock Failed!", return -EINVAL);

173 174 175 176
	if (((hwmgr->uvd_arbiter.vclk_soft_min / 100) != rv_data->vclk_soft_min) ||
	    ((hwmgr->uvd_arbiter.dclk_soft_min / 100) != rv_data->dclk_soft_min)) {
		rv_data->vclk_soft_min = hwmgr->uvd_arbiter.vclk_soft_min / 100;
		rv_data->dclk_soft_min = hwmgr->uvd_arbiter.dclk_soft_min / 100;
177
		smum_send_msg_to_smc_with_parameter(hwmgr,
178 179 180 181
			PPSMC_MSG_SetSoftMinVcn,
			(rv_data->vclk_soft_min << 16) | rv_data->vclk_soft_min);
	}

182 183
	if((hwmgr->gfx_arbiter.sclk_hard_min != 0) &&
		((hwmgr->gfx_arbiter.sclk_hard_min / 100) != rv_data->soc_actual_hard_min_freq)) {
184
		smum_send_msg_to_smc_with_parameter(hwmgr,
185 186
					PPSMC_MSG_SetHardMinSocclkByFreq,
					hwmgr->gfx_arbiter.sclk_hard_min / 100);
187
		rv_read_arg_from_smc(hwmgr, &rv_data->soc_actual_hard_min_freq);
188 189 190 191
	}

	if ((hwmgr->gfx_arbiter.gfxclk != 0) &&
		(rv_data->gfx_actual_soft_min_freq != (hwmgr->gfx_arbiter.gfxclk))) {
192
		smum_send_msg_to_smc_with_parameter(hwmgr,
193 194
					PPSMC_MSG_SetMinVideoGfxclkFreq,
					hwmgr->gfx_arbiter.gfxclk / 100);
195
		rv_read_arg_from_smc(hwmgr, &rv_data->gfx_actual_soft_min_freq);
196 197 198 199
	}

	if ((hwmgr->gfx_arbiter.fclk != 0) &&
		(rv_data->fabric_actual_soft_min_freq != (hwmgr->gfx_arbiter.fclk / 100))) {
200
		smum_send_msg_to_smc_with_parameter(hwmgr,
201 202
					PPSMC_MSG_SetMinVideoFclkFreq,
					hwmgr->gfx_arbiter.fclk / 100);
203
		rv_read_arg_from_smc(hwmgr, &rv_data->fabric_actual_soft_min_freq);
204 205
	}

206 207 208
	return 0;
}

209
static int rv_set_deep_sleep_dcefclk(struct pp_hwmgr *hwmgr, uint32_t clock)
210
{
211
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
212

213 214
	if (rv_data->need_min_deep_sleep_dcefclk && rv_data->deep_sleep_dcefclk != clock/100) {
		rv_data->deep_sleep_dcefclk = clock/100;
215
		smum_send_msg_to_smc_with_parameter(hwmgr,
216 217 218 219 220 221 222 223 224
					PPSMC_MSG_SetMinDeepSleepDcefclk,
					rv_data->deep_sleep_dcefclk);
	}
	return 0;
}

static int rv_set_active_display_count(struct pp_hwmgr *hwmgr, uint32_t count)
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
225

226 227
	if (rv_data->num_active_display != count) {
		rv_data->num_active_display = count;
228
		smum_send_msg_to_smc_with_parameter(hwmgr,
229
				PPSMC_MSG_SetDisplayCount,
230 231
				rv_data->num_active_display);
	}
232

233 234 235
	return 0;
}

236 237 238 239
static int rv_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
{
	return rv_set_clock_limit(hwmgr, input);
}
240

241
static int rv_init_power_gate_state(struct pp_hwmgr *hwmgr)
242 243 244 245 246 247 248 249 250 251 252
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);

	rv_data->vcn_power_gated = true;
	rv_data->isp_tileA_power_gated = true;
	rv_data->isp_tileB_power_gated = true;

	return 0;
}


253 254 255 256
static int rv_setup_asic_task(struct pp_hwmgr *hwmgr)
{
	return rv_init_power_gate_state(hwmgr);
}
257

258
static int rv_reset_cc6_data(struct pp_hwmgr *hwmgr)
259 260 261 262 263 264 265 266 267 268 269
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);

	rv_data->separation_time = 0;
	rv_data->cc6_disable = false;
	rv_data->pstate_disable = false;
	rv_data->cc6_setting_changed = false;

	return 0;
}

270 271 272 273
static int rv_power_off_asic(struct pp_hwmgr *hwmgr)
{
	return rv_reset_cc6_data(hwmgr);
}
274

275
static int rv_disable_gfx_off(struct pp_hwmgr *hwmgr)
276 277 278 279
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);

	if (rv_data->gfx_off_controled_by_driver)
280
		smum_send_msg_to_smc(hwmgr,
281 282 283 284 285
						PPSMC_MSG_DisableGfxOff);

	return 0;
}

286 287 288 289
static int rv_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
	return rv_disable_gfx_off(hwmgr);
}
290

291
static int rv_enable_gfx_off(struct pp_hwmgr *hwmgr)
292 293 294 295
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);

	if (rv_data->gfx_off_controled_by_driver)
296
		smum_send_msg_to_smc(hwmgr,
297 298 299 300 301
						PPSMC_MSG_EnableGfxOff);

	return 0;
}

302 303 304 305
static int rv_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
	return rv_enable_gfx_off(hwmgr);
}
306 307 308 309 310 311 312 313 314

static int rv_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
				struct pp_power_state  *prequest_ps,
			const struct pp_power_state *pcurrent_ps)
{
	return 0;
}

/* temporary hardcoded clock voltage breakdown tables */
315
static const DpmClock_t VddDcfClk[]= {
316 317 318 319 320
	{ 300, 2600},
	{ 600, 3200},
	{ 600, 3600},
};

321
static const DpmClock_t VddSocClk[]= {
322 323 324 325 326
	{ 478, 2600},
	{ 722, 3200},
	{ 722, 3600},
};

327
static const DpmClock_t VddFClk[]= {
328 329 330 331 332
	{ 400, 2600},
	{1200, 3200},
	{1200, 3600},
};

333
static const DpmClock_t VddDispClk[]= {
334 335 336 337 338
	{ 435, 2600},
	{ 661, 3200},
	{1086, 3600},
};

339
static const DpmClock_t VddDppClk[]= {
340 341 342 343 344
	{ 435, 2600},
	{ 661, 3200},
	{ 661, 3600},
};

345
static const DpmClock_t VddPhyClk[]= {
346 347 348 349 350 351 352
	{ 540, 2600},
	{ 810, 3200},
	{ 810, 3600},
};

static int rv_get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr,
			struct rv_voltage_dependency_table **pptable,
353
			uint32_t num_entry, const DpmClock_t *pclk_dependency_table)
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
{
	uint32_t table_size, i;
	struct rv_voltage_dependency_table *ptable;

	table_size = sizeof(uint32_t) + sizeof(struct rv_voltage_dependency_table) * num_entry;
	ptable = kzalloc(table_size, GFP_KERNEL);

	if (NULL == ptable)
		return -ENOMEM;

	ptable->count = num_entry;

	for (i = 0; i < ptable->count; i++) {
		ptable->entries[i].clk         = pclk_dependency_table->Freq * 100;
		ptable->entries[i].vol         = pclk_dependency_table->Vol;
		pclk_dependency_table++;
	}

	*pptable = ptable;

	return 0;
}


static int rv_populate_clock_table(struct pp_hwmgr *hwmgr)
{
	int result;

	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
	DpmClocks_t  *table = &(rv_data->clock_table);
	struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);

386
	result = rv_copy_table_from_smc(hwmgr, (uint8_t *)table, CLOCKTABLE);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	PP_ASSERT_WITH_CODE((0 == result),
			"Attempt to copy clock table from smc failed",
			return result);

	if (0 == result && table->DcefClocks[0].Freq != 0) {
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
						NUM_DCEFCLK_DPM_LEVELS,
						&rv_data->clock_table.DcefClocks[0]);
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
						NUM_SOCCLK_DPM_LEVELS,
						&rv_data->clock_table.SocClocks[0]);
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
						NUM_FCLK_DPM_LEVELS,
						&rv_data->clock_table.FClocks[0]);
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_mclk,
						NUM_MEMCLK_DPM_LEVELS,
						&rv_data->clock_table.MemClocks[0]);
	} else {
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
407 408
						ARRAY_SIZE(VddDcfClk),
						&VddDcfClk[0]);
409
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
410 411
						ARRAY_SIZE(VddSocClk),
						&VddSocClk[0]);
412
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
413 414
						ARRAY_SIZE(VddFClk),
						&VddFClk[0]);
415 416
	}
	rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dispclk,
417 418
					ARRAY_SIZE(VddDispClk),
					&VddDispClk[0]);
419
	rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dppclk,
420
					ARRAY_SIZE(VddDppClk), &VddDppClk[0]);
421
	rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_phyclk,
422
					ARRAY_SIZE(VddPhyClk), &VddPhyClk[0]);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

	return 0;
}

static int rv_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
	int result = 0;
	struct rv_hwmgr *data;

	data = kzalloc(sizeof(struct rv_hwmgr), GFP_KERNEL);
	if (data == NULL)
		return -ENOMEM;

	hwmgr->backend = data;

	result = rv_initialize_dpm_defaults(hwmgr);
	if (result != 0) {
		pr_err("rv_initialize_dpm_defaults failed\n");
		return result;
	}

	rv_populate_clock_table(hwmgr);

	result = rv_get_system_info_data(hwmgr);
	if (result != 0) {
		pr_err("rv_get_system_info_data failed\n");
		return result;
	}

	rv_construct_boot_state(hwmgr);

	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
						RAVEN_MAX_HARDWARE_POWERLEVELS;

	hwmgr->platform_descriptor.hardwarePerformanceLevels =
						RAVEN_MAX_HARDWARE_POWERLEVELS;

	hwmgr->platform_descriptor.vbiosInterruptId = 0;

	hwmgr->platform_descriptor.clockStep.engineClock = 500;

	hwmgr->platform_descriptor.clockStep.memoryClock = 500;

	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;

	return result;
}

static int rv_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
	struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	kfree(pinfo->vdd_dep_on_dcefclk);
	pinfo->vdd_dep_on_dcefclk = NULL;
	kfree(pinfo->vdd_dep_on_socclk);
	pinfo->vdd_dep_on_socclk = NULL;
	kfree(pinfo->vdd_dep_on_fclk);
	pinfo->vdd_dep_on_fclk = NULL;
	kfree(pinfo->vdd_dep_on_dispclk);
	pinfo->vdd_dep_on_dispclk = NULL;
	kfree(pinfo->vdd_dep_on_dppclk);
	pinfo->vdd_dep_on_dppclk = NULL;
	kfree(pinfo->vdd_dep_on_phyclk);
	pinfo->vdd_dep_on_phyclk = NULL;

	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
491

492 493 494 495 496 497 498 499 500 501 502 503
	kfree(hwmgr->backend);
	hwmgr->backend = NULL;

	return 0;
}

static int rv_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
				enum amd_dpm_forced_level level)
{
	return 0;
}

504
static uint32_t rv_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
505 506 507 508
{
	return 0;
}

509
static uint32_t rv_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
{
	return 0;
}

static int rv_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
					struct pp_hw_power_state *hw_ps)
{
	return 0;
}

static int rv_dpm_get_pp_table_entry_callback(
						     struct pp_hwmgr *hwmgr,
					   struct pp_hw_power_state *hw_ps,
							  unsigned int index,
						     const void *clock_info)
{
	struct rv_power_state *rv_ps = cast_rv_ps(hw_ps);

528
	rv_ps->levels[index].engine_clock = 0;
529

530
	rv_ps->levels[index].vddc_index = 0;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	rv_ps->level = index + 1;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
		rv_ps->levels[index].ds_divider_index = 5;
		rv_ps->levels[index].ss_divider_index = 5;
	}

	return 0;
}

static int rv_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr)
{
	int result;
	unsigned long ret = 0;

	result = pp_tables_get_num_of_entries(hwmgr, &ret);

	return result ? 0 : ret;
}

static int rv_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr,
		    unsigned long entry, struct pp_power_state *ps)
{
	int result;
	struct rv_power_state *rv_ps;

	ps->hardware.magic = PhwRaven_Magic;

	rv_ps = cast_rv_ps(&(ps->hardware));

	result = pp_tables_get_entry(hwmgr, entry, ps,
			rv_dpm_get_pp_table_entry_callback);

	rv_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK;
	rv_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK;

	return result;
}

static int rv_get_power_state_size(struct pp_hwmgr *hwmgr)
{
	return sizeof(struct rv_power_state);
}

static int rv_set_cpu_power_state(struct pp_hwmgr *hwmgr)
{
	return 0;
}


static int rv_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time,
			bool cc6_disable, bool pstate_disable, bool pstate_switch_disable)
{
	return 0;
}

static int rv_get_dal_power_level(struct pp_hwmgr *hwmgr,
		struct amd_pp_simple_clock_info *info)
{
	return -EINVAL;
}

static int rv_force_clock_level(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, uint32_t mask)
{
	return 0;
}

static int rv_print_clock_levels(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, char *buf)
{
	return 0;
}

static int rv_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
				PHM_PerformanceLevelDesignation designation, uint32_t index,
				PHM_PerformanceLevel *level)
{
	const struct rv_power_state *ps;
	struct rv_hwmgr *data;
	uint32_t level_index;
	uint32_t i;
613
	uint32_t vol_dep_record_index = 0;
614 615 616 617 618 619 620 621

	if (level == NULL || hwmgr == NULL || state == NULL)
		return -EINVAL;

	data = (struct rv_hwmgr *)(hwmgr->backend);
	ps = cast_const_rv_ps(state);

	level_index = index > ps->level - 1 ? ps->level - 1 : index;
622
	level->coreClock = 30000;
623 624 625 626

	if (designation == PHM_PerformanceLevelDesignation_PowerContainment) {
		for (i = 1; i < ps->level; i++) {
			if (ps->levels[i].engine_clock > data->dce_slow_sclk_threshold) {
627
				level->coreClock = 30000;
628 629 630 631 632
				break;
			}
		}
	}

633 634 635 636
	if (level_index == 0) {
		vol_dep_record_index = data->clock_vol_info.vdd_dep_on_fclk->count - 1;
		level->memory_clock =
			data->clock_vol_info.vdd_dep_on_fclk->entries[vol_dep_record_index].clk;
637
	} else {
638
		level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk;
639
	}
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	level->nonLocalMemoryFreq = 0;
	level->nonLocalMemoryWidth = 0;

	return 0;
}

static int rv_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr,
	const struct pp_hw_power_state *state, struct pp_clock_info *clock_info)
{
	const struct rv_power_state *ps = cast_const_rv_ps(state);

	clock_info->min_eng_clk = ps->levels[0].engine_clock / (1 << (ps->levels[0].ss_divider_index));
	clock_info->max_eng_clk = ps->levels[ps->level - 1].engine_clock / (1 << (ps->levels[ps->level - 1].ss_divider_index));

	return 0;
}

#define MEM_FREQ_LOW_LATENCY        25000
#define MEM_FREQ_HIGH_LATENCY       80000
#define MEM_LATENCY_HIGH            245
#define MEM_LATENCY_LOW             35
#define MEM_LATENCY_ERR             0xFFFF


static uint32_t rv_get_mem_latency(struct pp_hwmgr *hwmgr,
		uint32_t clock)
{
	if (clock >= MEM_FREQ_LOW_LATENCY &&
			clock < MEM_FREQ_HIGH_LATENCY)
		return MEM_LATENCY_HIGH;
	else if (clock >= MEM_FREQ_HIGH_LATENCY)
		return MEM_LATENCY_LOW;
	else
		return MEM_LATENCY_ERR;
}

677 678
static int rv_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
		enum amd_pp_clock_type type,
679 680 681 682 683
		struct pp_clock_levels_with_latency *clocks)
{
	uint32_t i;
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
	struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
684 685
	struct rv_voltage_dependency_table *pclk_vol_table;
	bool latency_required = false;
686

687 688
	if (pinfo == NULL)
		return -EINVAL;
689 690 691

	switch (type) {
	case amd_pp_mem_clock:
692 693
		pclk_vol_table = pinfo->vdd_dep_on_mclk;
		latency_required = true;
694
		break;
695 696 697
	case amd_pp_f_clock:
		pclk_vol_table = pinfo->vdd_dep_on_fclk;
		latency_required = true;
698
		break;
699 700
	case amd_pp_dcf_clock:
		pclk_vol_table = pinfo->vdd_dep_on_dcefclk;
701
		break;
702 703 704 705 706 707 708 709
	case amd_pp_disp_clock:
		pclk_vol_table = pinfo->vdd_dep_on_dispclk;
		break;
	case amd_pp_phy_clock:
		pclk_vol_table = pinfo->vdd_dep_on_phyclk;
		break;
	case amd_pp_dpp_clock:
		pclk_vol_table = pinfo->vdd_dep_on_dppclk;
710
	default:
711 712 713 714 715 716 717 718 719 720 721 722 723 724
		return -EINVAL;
	}

	if (pclk_vol_table == NULL || pclk_vol_table->count == 0)
		return -EINVAL;

	clocks->num_levels = 0;
	for (i = 0; i < pclk_vol_table->count; i++) {
		clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk;
		clocks->data[i].latency_in_us = latency_required ?
						rv_get_mem_latency(hwmgr,
						pclk_vol_table->entries[i].clk) :
						0;
		clocks->num_levels++;
725 726 727 728 729 730 731 732 733 734 735 736
	}

	return 0;
}

static int rv_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
		enum amd_pp_clock_type type,
		struct pp_clock_levels_with_voltage *clocks)
{
	uint32_t i;
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
	struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
737 738 739 740
	struct rv_voltage_dependency_table *pclk_vol_table = NULL;

	if (pinfo == NULL)
		return -EINVAL;
741 742 743 744 745

	switch (type) {
	case amd_pp_mem_clock:
		pclk_vol_table = pinfo->vdd_dep_on_mclk;
		break;
746 747
	case amd_pp_f_clock:
		pclk_vol_table = pinfo->vdd_dep_on_fclk;
748
		break;
749 750
	case amd_pp_dcf_clock:
		pclk_vol_table = pinfo->vdd_dep_on_dcefclk;
751
		break;
752 753
	case amd_pp_soc_clock:
		pclk_vol_table = pinfo->vdd_dep_on_socclk;
754 755 756 757 758
		break;
	default:
		return -EINVAL;
	}

759
	if (pclk_vol_table == NULL || pclk_vol_table->count == 0)
760 761
		return -EINVAL;

762
	clocks->num_levels = 0;
763 764 765 766 767 768 769 770 771 772 773 774 775
	for (i = 0; i < pclk_vol_table->count; i++) {
		clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk;
		clocks->data[i].voltage_in_mv = pclk_vol_table->entries[i].vol;
		clocks->num_levels++;
	}

	return 0;
}

int rv_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
		struct pp_display_clock_request *clock_req)
{
	int result = 0;
776
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
777
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
778
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
779 780 781
	PPSMC_Msg        msg;

	switch (clk_type) {
782 783 784
	case amd_pp_dcf_clock:
		if (clk_freq == rv_data->dcf_actual_hard_min_freq)
			return 0;
785
		msg =  PPSMC_MSG_SetHardMinDcefclkByFreq;
786
		rv_data->dcf_actual_hard_min_freq = clk_freq;
787 788 789 790
		break;
	case amd_pp_soc_clock:
		 msg = PPSMC_MSG_SetHardMinSocclkByFreq;
		break;
791 792 793 794
	case amd_pp_f_clock:
		if (clk_freq == rv_data->f_actual_hard_min_freq)
			return 0;
		rv_data->f_actual_hard_min_freq = clk_freq;
795 796 797 798 799 800 801
		msg = PPSMC_MSG_SetHardMinFclkByFreq;
		break;
	default:
		pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
		return -EINVAL;
	}

802
	result = smum_send_msg_to_smc_with_parameter(hwmgr, msg,
803 804 805 806 807 808 809
							clk_freq);

	return result;
}

static int rv_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks)
{
810 811
	clocks->engine_max_clock = 80000; /* driver can't get engine clock, temp hard code to 800MHz */
	return 0;
812 813
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
static int rv_thermal_get_temperature(struct pp_hwmgr *hwmgr)
{
	uint32_t reg_offset = soc15_get_register_offset(THM_HWID, 0,
			mmTHM_TCON_CUR_TMP_BASE_IDX, mmTHM_TCON_CUR_TMP);
	uint32_t reg_value = cgs_read_register(hwmgr->device, reg_offset);
	int cur_temp =
		(reg_value & THM_TCON_CUR_TMP__CUR_TEMP_MASK) >> THM_TCON_CUR_TMP__CUR_TEMP__SHIFT;

	if (cur_temp & THM_TCON_CUR_TMP__CUR_TEMP_RANGE_SEL_MASK)
		cur_temp = ((cur_temp / 8) - 49) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	else
		cur_temp = (cur_temp / 8) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;

	return cur_temp;
}

830 831 832
static int rv_read_sensor(struct pp_hwmgr *hwmgr, int idx,
			  void *value, int *size)
{
833 834 835 836 837 838 839
	switch (idx) {
	case AMDGPU_PP_SENSOR_GPU_TEMP:
		*((uint32_t *)value) = rv_thermal_get_temperature(hwmgr);
		return 0;
	default:
		return -EINVAL;
	}
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
}

static const struct pp_hwmgr_func rv_hwmgr_funcs = {
	.backend_init = rv_hwmgr_backend_init,
	.backend_fini = rv_hwmgr_backend_fini,
	.asic_setup = NULL,
	.apply_state_adjust_rules = rv_apply_state_adjust_rules,
	.force_dpm_level = rv_dpm_force_dpm_level,
	.get_power_state_size = rv_get_power_state_size,
	.powerdown_uvd = NULL,
	.powergate_uvd = NULL,
	.powergate_vce = NULL,
	.get_mclk = rv_dpm_get_mclk,
	.get_sclk = rv_dpm_get_sclk,
	.patch_boot_state = rv_dpm_patch_boot_state,
	.get_pp_table_entry = rv_dpm_get_pp_table_entry,
	.get_num_of_pp_table_entries = rv_dpm_get_num_of_pp_table_entries,
	.set_cpu_power_state = rv_set_cpu_power_state,
	.store_cc6_data = rv_store_cc6_data,
	.force_clock_level = rv_force_clock_level,
	.print_clock_levels = rv_print_clock_levels,
	.get_dal_power_level = rv_get_dal_power_level,
	.get_performance_level = rv_get_performance_level,
	.get_current_shallow_sleep_clocks = rv_get_current_shallow_sleep_clocks,
	.get_clock_by_type_with_latency = rv_get_clock_by_type_with_latency,
	.get_clock_by_type_with_voltage = rv_get_clock_by_type_with_voltage,
	.get_max_high_clocks = rv_get_max_high_clocks,
	.read_sensor = rv_read_sensor,
868 869
	.set_active_display_count = rv_set_active_display_count,
	.set_deep_sleep_dcefclk = rv_set_deep_sleep_dcefclk,
870 871 872 873 874
	.dynamic_state_management_enable = rv_enable_dpm_tasks,
	.power_off_asic = rv_power_off_asic,
	.asic_setup = rv_setup_asic_task,
	.power_state_set = rv_set_power_state_tasks,
	.dynamic_state_management_disable = rv_disable_dpm_tasks,
875 876 877 878 879 880 881 882
};

int rv_init_function_pointers(struct pp_hwmgr *hwmgr)
{
	hwmgr->hwmgr_func = &rv_hwmgr_funcs;
	hwmgr->pptable_func = &pptable_funcs;
	return 0;
}