imx-dma.c 27.8 KB
Newer Older
1 2 3 4 5 6 7
/*
 * drivers/dma/imx-dma.c
 *
 * This file contains a driver for the Freescale i.MX DMA engine
 * found on i.MX1/21/27
 *
 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8
 * Copyright 2012 Javier Martin, Vista Silicon <javier.martin@vista-silicon.com>
9 10 11 12 13 14 15 16 17
 *
 * The code contained herein is licensed under the GNU General Public
 * License. You may obtain a copy of the GNU General Public License
 * Version 2 or later at the following locations:
 *
 * http://www.opensource.org/licenses/gpl-license.html
 * http://www.gnu.org/copyleft/gpl.html
 */
#include <linux/init.h>
18
#include <linux/module.h>
19 20 21 22 23 24 25 26
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
27
#include <linux/clk.h>
28
#include <linux/dmaengine.h>
29
#include <linux/module.h>
30 31

#include <asm/irq.h>
32
#include <mach/dma.h>
33 34
#include <mach/hardware.h>

35
#include "dmaengine.h"
36
#define IMXDMA_MAX_CHAN_DESCRIPTORS	16
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
#define IMX_DMA_CHANNELS  16

#define IMX_DMA_LENGTH_LOOP	((unsigned int)-1)
#define IMX_DMA_MEMSIZE_32	(0 << 4)
#define IMX_DMA_MEMSIZE_8	(1 << 4)
#define IMX_DMA_MEMSIZE_16	(2 << 4)
#define IMX_DMA_TYPE_LINEAR	(0 << 10)
#define IMX_DMA_TYPE_2D		(1 << 10)
#define IMX_DMA_TYPE_FIFO	(2 << 10)

#define IMX_DMA_ERR_BURST     (1 << 0)
#define IMX_DMA_ERR_REQUEST   (1 << 1)
#define IMX_DMA_ERR_TRANSFER  (1 << 2)
#define IMX_DMA_ERR_BUFFER    (1 << 3)
#define IMX_DMA_ERR_TIMEOUT   (1 << 4)

#define DMA_DCR     0x00		/* Control Register */
#define DMA_DISR    0x04		/* Interrupt status Register */
#define DMA_DIMR    0x08		/* Interrupt mask Register */
#define DMA_DBTOSR  0x0c		/* Burst timeout status Register */
#define DMA_DRTOSR  0x10		/* Request timeout Register */
#define DMA_DSESR   0x14		/* Transfer Error Status Register */
#define DMA_DBOSR   0x18		/* Buffer overflow status Register */
#define DMA_DBTOCR  0x1c		/* Burst timeout control Register */
#define DMA_WSRA    0x40		/* W-Size Register A */
#define DMA_XSRA    0x44		/* X-Size Register A */
#define DMA_YSRA    0x48		/* Y-Size Register A */
#define DMA_WSRB    0x4c		/* W-Size Register B */
#define DMA_XSRB    0x50		/* X-Size Register B */
#define DMA_YSRB    0x54		/* Y-Size Register B */
#define DMA_SAR(x)  (0x80 + ((x) << 6))	/* Source Address Registers */
#define DMA_DAR(x)  (0x84 + ((x) << 6))	/* Destination Address Registers */
#define DMA_CNTR(x) (0x88 + ((x) << 6))	/* Count Registers */
#define DMA_CCR(x)  (0x8c + ((x) << 6))	/* Control Registers */
#define DMA_RSSR(x) (0x90 + ((x) << 6))	/* Request source select Registers */
#define DMA_BLR(x)  (0x94 + ((x) << 6))	/* Burst length Registers */
#define DMA_RTOR(x) (0x98 + ((x) << 6))	/* Request timeout Registers */
#define DMA_BUCR(x) (0x98 + ((x) << 6))	/* Bus Utilization Registers */
#define DMA_CCNR(x) (0x9C + ((x) << 6))	/* Channel counter Registers */

#define DCR_DRST           (1<<1)
#define DCR_DEN            (1<<0)
#define DBTOCR_EN          (1<<15)
#define DBTOCR_CNT(x)      ((x) & 0x7fff)
#define CNTR_CNT(x)        ((x) & 0xffffff)
#define CCR_ACRPT          (1<<14)
#define CCR_DMOD_LINEAR    (0x0 << 12)
#define CCR_DMOD_2D        (0x1 << 12)
#define CCR_DMOD_FIFO      (0x2 << 12)
#define CCR_DMOD_EOBFIFO   (0x3 << 12)
#define CCR_SMOD_LINEAR    (0x0 << 10)
#define CCR_SMOD_2D        (0x1 << 10)
#define CCR_SMOD_FIFO      (0x2 << 10)
#define CCR_SMOD_EOBFIFO   (0x3 << 10)
#define CCR_MDIR_DEC       (1<<9)
#define CCR_MSEL_B         (1<<8)
#define CCR_DSIZ_32        (0x0 << 6)
#define CCR_DSIZ_8         (0x1 << 6)
#define CCR_DSIZ_16        (0x2 << 6)
#define CCR_SSIZ_32        (0x0 << 4)
#define CCR_SSIZ_8         (0x1 << 4)
#define CCR_SSIZ_16        (0x2 << 4)
#define CCR_REN            (1<<3)
#define CCR_RPT            (1<<2)
#define CCR_FRC            (1<<1)
#define CCR_CEN            (1<<0)
#define RTOR_EN            (1<<15)
#define RTOR_CLK           (1<<14)
#define RTOR_PSC           (1<<13)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

enum  imxdma_prep_type {
	IMXDMA_DESC_MEMCPY,
	IMXDMA_DESC_INTERLEAVED,
	IMXDMA_DESC_SLAVE_SG,
	IMXDMA_DESC_CYCLIC,
};

struct imxdma_desc {
	struct list_head		node;
	struct dma_async_tx_descriptor	desc;
	enum dma_status			status;
	dma_addr_t			src;
	dma_addr_t			dest;
	size_t				len;
121
	enum dma_transfer_direction	direction;
122 123 124 125 126 127 128 129 130 131 132 133 134
	enum imxdma_prep_type		type;
	/* For memcpy and interleaved */
	unsigned int			config_port;
	unsigned int			config_mem;
	/* For interleaved transfers */
	unsigned int			x;
	unsigned int			y;
	unsigned int			w;
	/* For slave sg and cyclic */
	struct scatterlist		*sg;
	unsigned int			sgcount;
};

135
struct imxdma_channel {
136 137
	int				hw_chaining;
	struct timer_list		watchdog;
138 139 140
	struct imxdma_engine		*imxdma;
	unsigned int			channel;

141 142 143 144 145
	struct tasklet_struct		dma_tasklet;
	struct list_head		ld_free;
	struct list_head		ld_queue;
	struct list_head		ld_active;
	int				descs_allocated;
146 147 148 149 150 151 152 153 154
	enum dma_slave_buswidth		word_size;
	dma_addr_t			per_address;
	u32				watermark_level;
	struct dma_chan			chan;
	spinlock_t			lock;
	struct dma_async_tx_descriptor	desc;
	enum dma_status			status;
	int				dma_request;
	struct scatterlist		*sg_list;
155 156
	u32				ccr_from_device;
	u32				ccr_to_device;
157 158 159 160
};

struct imxdma_engine {
	struct device			*dev;
161
	struct device_dma_parameters	dma_parms;
162
	struct dma_device		dma_device;
163 164
	void __iomem			*base;
	struct clk			*dma_clk;
165
	struct imxdma_channel		channel[IMX_DMA_CHANNELS];
166 167 168 169 170 171 172
};

static struct imxdma_channel *to_imxdma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct imxdma_channel, chan);
}

173
static inline bool imxdma_chan_is_doing_cyclic(struct imxdma_channel *imxdmac)
174
{
175 176 177 178 179 180 181 182 183
	struct imxdma_desc *desc;

	if (!list_empty(&imxdmac->ld_active)) {
		desc = list_first_entry(&imxdmac->ld_active, struct imxdma_desc,
					node);
		if (desc->type == IMXDMA_DESC_CYCLIC)
			return true;
	}
	return false;
184 185
}

186

187 188 189

static void imx_dmav1_writel(struct imxdma_engine *imxdma, unsigned val,
			     unsigned offset)
190
{
191
	__raw_writel(val, imxdma->base + offset);
192 193
}

194
static unsigned imx_dmav1_readl(struct imxdma_engine *imxdma, unsigned offset)
195
{
196
	return __raw_readl(imxdma->base + offset);
197
}
198

199
static int imxdma_hw_chain(struct imxdma_channel *imxdmac)
200 201
{
	if (cpu_is_mx27())
202
		return imxdmac->hw_chaining;
203 204 205 206 207 208 209
	else
		return 0;
}

/*
 * imxdma_sg_next - prepare next chunk for scatter-gather DMA emulation
 */
210
static inline int imxdma_sg_next(struct imxdma_desc *d)
211
{
212
	struct imxdma_channel *imxdmac = to_imxdma_chan(d->desc.chan);
213
	struct imxdma_engine *imxdma = imxdmac->imxdma;
214
	struct scatterlist *sg = d->sg;
215 216
	unsigned long now;

217 218 219
	now = min(d->len, sg->length);
	if (d->len != IMX_DMA_LENGTH_LOOP)
		d->len -= now;
220

221
	if (d->direction == DMA_DEV_TO_MEM)
222 223
		imx_dmav1_writel(imxdma, sg->dma_address,
				 DMA_DAR(imxdmac->channel));
224
	else
225 226
		imx_dmav1_writel(imxdma, sg->dma_address,
				 DMA_SAR(imxdmac->channel));
227

228
	imx_dmav1_writel(imxdma, now, DMA_CNTR(imxdmac->channel));
229 230 231

	pr_debug("imxdma%d: next sg chunk dst 0x%08x, src 0x%08x, "
		"size 0x%08x\n", imxdmac->channel,
232 233 234
		 imx_dmav1_readl(imxdma, DMA_DAR(imxdmac->channel)),
		 imx_dmav1_readl(imxdma, DMA_SAR(imxdmac->channel)),
		 imx_dmav1_readl(imxdma, DMA_CNTR(imxdmac->channel)));
235 236 237 238

	return now;
}

239
static void imxdma_enable_hw(struct imxdma_desc *d)
240
{
241
	struct imxdma_channel *imxdmac = to_imxdma_chan(d->desc.chan);
242
	struct imxdma_engine *imxdma = imxdmac->imxdma;
243 244 245 246 247 248 249
	int channel = imxdmac->channel;
	unsigned long flags;

	pr_debug("imxdma%d: imx_dma_enable\n", channel);

	local_irq_save(flags);

250 251 252 253 254
	imx_dmav1_writel(imxdma, 1 << channel, DMA_DISR);
	imx_dmav1_writel(imxdma, imx_dmav1_readl(imxdma, DMA_DIMR) &
			 ~(1 << channel), DMA_DIMR);
	imx_dmav1_writel(imxdma, imx_dmav1_readl(imxdma, DMA_CCR(channel)) |
			 CCR_CEN | CCR_ACRPT, DMA_CCR(channel));
255 256

	if ((cpu_is_mx21() || cpu_is_mx27()) &&
257
			d->sg && imxdma_hw_chain(imxdmac)) {
258 259
		d->sg = sg_next(d->sg);
		if (d->sg) {
260
			u32 tmp;
261
			imxdma_sg_next(d);
262 263 264
			tmp = imx_dmav1_readl(imxdma, DMA_CCR(channel));
			imx_dmav1_writel(imxdma, tmp | CCR_RPT | CCR_ACRPT,
					 DMA_CCR(channel));
265 266 267 268 269 270 271 272
		}
	}

	local_irq_restore(flags);
}

static void imxdma_disable_hw(struct imxdma_channel *imxdmac)
{
273
	struct imxdma_engine *imxdma = imxdmac->imxdma;
274 275 276 277 278
	int channel = imxdmac->channel;
	unsigned long flags;

	pr_debug("imxdma%d: imx_dma_disable\n", channel);

279 280
	if (imxdma_hw_chain(imxdmac))
		del_timer(&imxdmac->watchdog);
281 282

	local_irq_save(flags);
283 284 285 286 287
	imx_dmav1_writel(imxdma, imx_dmav1_readl(imxdma, DMA_DIMR) |
			 (1 << channel), DMA_DIMR);
	imx_dmav1_writel(imxdma, imx_dmav1_readl(imxdma, DMA_CCR(channel)) &
			 ~CCR_CEN, DMA_CCR(channel));
	imx_dmav1_writel(imxdma, 1 << channel, DMA_DISR);
288 289 290 291
	local_irq_restore(flags);
}

static void imxdma_watchdog(unsigned long data)
292
{
293
	struct imxdma_channel *imxdmac = (struct imxdma_channel *)data;
294
	struct imxdma_engine *imxdma = imxdmac->imxdma;
295
	int channel = imxdmac->channel;
296

297
	imx_dmav1_writel(imxdma, 0, DMA_CCR(channel));
298 299

	/* Tasklet watchdog error handler */
300
	tasklet_schedule(&imxdmac->dma_tasklet);
301 302 303 304 305 306 307 308 309 310
	pr_debug("imxdma%d: watchdog timeout!\n", imxdmac->channel);
}

static irqreturn_t imxdma_err_handler(int irq, void *dev_id)
{
	struct imxdma_engine *imxdma = dev_id;
	unsigned int err_mask;
	int i, disr;
	int errcode;

311
	disr = imx_dmav1_readl(imxdma, DMA_DISR);
312

313 314 315 316
	err_mask = imx_dmav1_readl(imxdma, DMA_DBTOSR) |
		   imx_dmav1_readl(imxdma, DMA_DRTOSR) |
		   imx_dmav1_readl(imxdma, DMA_DSESR)  |
		   imx_dmav1_readl(imxdma, DMA_DBOSR);
317 318 319 320

	if (!err_mask)
		return IRQ_HANDLED;

321
	imx_dmav1_writel(imxdma, disr & err_mask, DMA_DISR);
322 323 324 325 326 327

	for (i = 0; i < IMX_DMA_CHANNELS; i++) {
		if (!(err_mask & (1 << i)))
			continue;
		errcode = 0;

328 329
		if (imx_dmav1_readl(imxdma, DMA_DBTOSR) & (1 << i)) {
			imx_dmav1_writel(imxdma, 1 << i, DMA_DBTOSR);
330 331
			errcode |= IMX_DMA_ERR_BURST;
		}
332 333
		if (imx_dmav1_readl(imxdma, DMA_DRTOSR) & (1 << i)) {
			imx_dmav1_writel(imxdma, 1 << i, DMA_DRTOSR);
334 335
			errcode |= IMX_DMA_ERR_REQUEST;
		}
336 337
		if (imx_dmav1_readl(imxdma, DMA_DSESR) & (1 << i)) {
			imx_dmav1_writel(imxdma, 1 << i, DMA_DSESR);
338 339
			errcode |= IMX_DMA_ERR_TRANSFER;
		}
340 341
		if (imx_dmav1_readl(imxdma, DMA_DBOSR) & (1 << i)) {
			imx_dmav1_writel(imxdma, 1 << i, DMA_DBOSR);
342 343 344 345 346 347 348 349 350 351 352 353 354
			errcode |= IMX_DMA_ERR_BUFFER;
		}
		/* Tasklet error handler */
		tasklet_schedule(&imxdma->channel[i].dma_tasklet);

		printk(KERN_WARNING
		       "DMA timeout on channel %d -%s%s%s%s\n", i,
		       errcode & IMX_DMA_ERR_BURST ?    " burst" : "",
		       errcode & IMX_DMA_ERR_REQUEST ?  " request" : "",
		       errcode & IMX_DMA_ERR_TRANSFER ? " transfer" : "",
		       errcode & IMX_DMA_ERR_BUFFER ?   " buffer" : "");
	}
	return IRQ_HANDLED;
355 356
}

357
static void dma_irq_handle_channel(struct imxdma_channel *imxdmac)
358
{
359
	struct imxdma_engine *imxdma = imxdmac->imxdma;
360
	int chno = imxdmac->channel;
361
	struct imxdma_desc *desc;
362

363 364 365 366 367
	spin_lock(&imxdmac->lock);
	if (list_empty(&imxdmac->ld_active)) {
		spin_unlock(&imxdmac->lock);
		goto out;
	}
368

369 370 371 372
	desc = list_first_entry(&imxdmac->ld_active,
				struct imxdma_desc,
				node);
	spin_unlock(&imxdmac->lock);
373

374 375 376
	if (desc->sg) {
		u32 tmp;
		desc->sg = sg_next(desc->sg);
377

378
		if (desc->sg) {
379
			imxdma_sg_next(desc);
380

381
			tmp = imx_dmav1_readl(imxdma, DMA_CCR(chno));
382

383
			if (imxdma_hw_chain(imxdmac)) {
384 385 386
				/* FIXME: The timeout should probably be
				 * configurable
				 */
387
				mod_timer(&imxdmac->watchdog,
388 389 390
					jiffies + msecs_to_jiffies(500));

				tmp |= CCR_CEN | CCR_RPT | CCR_ACRPT;
391
				imx_dmav1_writel(imxdma, tmp, DMA_CCR(chno));
392
			} else {
393 394
				imx_dmav1_writel(imxdma, tmp & ~CCR_CEN,
						 DMA_CCR(chno));
395 396 397
				tmp |= CCR_CEN;
			}

398
			imx_dmav1_writel(imxdma, tmp, DMA_CCR(chno));
399 400 401 402

			if (imxdma_chan_is_doing_cyclic(imxdmac))
				/* Tasklet progression */
				tasklet_schedule(&imxdmac->dma_tasklet);
403

404 405 406
			return;
		}

407 408
		if (imxdma_hw_chain(imxdmac)) {
			del_timer(&imxdmac->watchdog);
409 410 411 412
			return;
		}
	}

413
out:
414
	imx_dmav1_writel(imxdma, 0, DMA_CCR(chno));
415
	/* Tasklet irq */
416 417 418
	tasklet_schedule(&imxdmac->dma_tasklet);
}

419 420 421 422 423 424 425 426
static irqreturn_t dma_irq_handler(int irq, void *dev_id)
{
	struct imxdma_engine *imxdma = dev_id;
	int i, disr;

	if (cpu_is_mx21() || cpu_is_mx27())
		imxdma_err_handler(irq, dev_id);

427
	disr = imx_dmav1_readl(imxdma, DMA_DISR);
428 429 430 431

	pr_debug("imxdma: dma_irq_handler called, disr=0x%08x\n",
		     disr);

432
	imx_dmav1_writel(imxdma, disr, DMA_DISR);
433
	for (i = 0; i < IMX_DMA_CHANNELS; i++) {
434
		if (disr & (1 << i))
435 436 437 438 439 440
			dma_irq_handle_channel(&imxdma->channel[i]);
	}

	return IRQ_HANDLED;
}

441 442 443
static int imxdma_xfer_desc(struct imxdma_desc *d)
{
	struct imxdma_channel *imxdmac = to_imxdma_chan(d->desc.chan);
444
	struct imxdma_engine *imxdma = imxdmac->imxdma;
445 446 447 448

	/* Configure and enable */
	switch (d->type) {
	case IMXDMA_DESC_MEMCPY:
449 450 451
		imx_dmav1_writel(imxdma, d->src, DMA_SAR(imxdmac->channel));
		imx_dmav1_writel(imxdma, d->dest, DMA_DAR(imxdmac->channel));
		imx_dmav1_writel(imxdma, d->config_mem | (d->config_port << 2),
452
			 DMA_CCR(imxdmac->channel));
453

454
		imx_dmav1_writel(imxdma, d->len, DMA_CNTR(imxdmac->channel));
455 456 457 458 459 460

		dev_dbg(imxdma->dev, "%s channel: %d dest=0x%08x src=0x%08x "
			"dma_length=%d\n", __func__, imxdmac->channel,
			d->dest, d->src, d->len);

		break;
461
	/* Cyclic transfer is the same as slave_sg with special sg configuration. */
462 463
	case IMXDMA_DESC_CYCLIC:
	case IMXDMA_DESC_SLAVE_SG:
464
		if (d->direction == DMA_DEV_TO_MEM) {
465
			imx_dmav1_writel(imxdma, imxdmac->per_address,
466
					 DMA_SAR(imxdmac->channel));
467
			imx_dmav1_writel(imxdma, imxdmac->ccr_from_device,
468 469 470 471 472 473 474
					 DMA_CCR(imxdmac->channel));

			dev_dbg(imxdma->dev, "%s channel: %d sg=%p sgcount=%d "
				"total length=%d dev_addr=0x%08x (dev2mem)\n",
				__func__, imxdmac->channel, d->sg, d->sgcount,
				d->len, imxdmac->per_address);
		} else if (d->direction == DMA_MEM_TO_DEV) {
475
			imx_dmav1_writel(imxdma, imxdmac->per_address,
476
					 DMA_DAR(imxdmac->channel));
477
			imx_dmav1_writel(imxdma, imxdmac->ccr_to_device,
478 479 480 481 482 483 484 485 486 487 488 489
					 DMA_CCR(imxdmac->channel));

			dev_dbg(imxdma->dev, "%s channel: %d sg=%p sgcount=%d "
				"total length=%d dev_addr=0x%08x (mem2dev)\n",
				__func__, imxdmac->channel, d->sg, d->sgcount,
				d->len, imxdmac->per_address);
		} else {
			dev_err(imxdma->dev, "%s channel: %d bad dma mode\n",
				__func__, imxdmac->channel);
			return -EINVAL;
		}

490
		imxdma_sg_next(d);
491

492 493 494 495
		break;
	default:
		return -EINVAL;
	}
496
	imxdma_enable_hw(d);
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	return 0;
}

static void imxdma_tasklet(unsigned long data)
{
	struct imxdma_channel *imxdmac = (void *)data;
	struct imxdma_engine *imxdma = imxdmac->imxdma;
	struct imxdma_desc *desc;

	spin_lock(&imxdmac->lock);

	if (list_empty(&imxdmac->ld_active)) {
		/* Someone might have called terminate all */
		goto out;
	}
	desc = list_first_entry(&imxdmac->ld_active, struct imxdma_desc, node);

	if (desc->desc.callback)
		desc->desc.callback(desc->desc.callback_param);

517
	dma_cookie_complete(&desc->desc);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

	/* If we are dealing with a cyclic descriptor keep it on ld_active */
	if (imxdma_chan_is_doing_cyclic(imxdmac))
		goto out;

	list_move_tail(imxdmac->ld_active.next, &imxdmac->ld_free);

	if (!list_empty(&imxdmac->ld_queue)) {
		desc = list_first_entry(&imxdmac->ld_queue, struct imxdma_desc,
					node);
		list_move_tail(imxdmac->ld_queue.next, &imxdmac->ld_active);
		if (imxdma_xfer_desc(desc) < 0)
			dev_warn(imxdma->dev, "%s: channel: %d couldn't xfer desc\n",
				 __func__, imxdmac->channel);
	}
out:
	spin_unlock(&imxdmac->lock);
535 536 537 538 539 540 541
}

static int imxdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		unsigned long arg)
{
	struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
	struct dma_slave_config *dmaengine_cfg = (void *)arg;
542
	struct imxdma_engine *imxdma = imxdmac->imxdma;
543
	unsigned long flags;
544 545 546 547
	unsigned int mode = 0;

	switch (cmd) {
	case DMA_TERMINATE_ALL:
548
		imxdma_disable_hw(imxdmac);
549 550 551 552 553

		spin_lock_irqsave(&imxdmac->lock, flags);
		list_splice_tail_init(&imxdmac->ld_active, &imxdmac->ld_free);
		list_splice_tail_init(&imxdmac->ld_queue, &imxdmac->ld_free);
		spin_unlock_irqrestore(&imxdmac->lock, flags);
554 555
		return 0;
	case DMA_SLAVE_CONFIG:
556
		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
			imxdmac->per_address = dmaengine_cfg->src_addr;
			imxdmac->watermark_level = dmaengine_cfg->src_maxburst;
			imxdmac->word_size = dmaengine_cfg->src_addr_width;
		} else {
			imxdmac->per_address = dmaengine_cfg->dst_addr;
			imxdmac->watermark_level = dmaengine_cfg->dst_maxburst;
			imxdmac->word_size = dmaengine_cfg->dst_addr_width;
		}

		switch (imxdmac->word_size) {
		case DMA_SLAVE_BUSWIDTH_1_BYTE:
			mode = IMX_DMA_MEMSIZE_8;
			break;
		case DMA_SLAVE_BUSWIDTH_2_BYTES:
			mode = IMX_DMA_MEMSIZE_16;
			break;
		default:
		case DMA_SLAVE_BUSWIDTH_4_BYTES:
			mode = IMX_DMA_MEMSIZE_32;
			break;
		}

579 580
		imxdmac->hw_chaining = 1;
		if (!imxdma_hw_chain(imxdmac))
581
			return -EINVAL;
582
		imxdmac->ccr_from_device = (mode | IMX_DMA_TYPE_FIFO) |
583 584
			((IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR) << 2) |
			CCR_REN;
585
		imxdmac->ccr_to_device =
586 587
			(IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR) |
			((mode | IMX_DMA_TYPE_FIFO) << 2) | CCR_REN;
588
		imx_dmav1_writel(imxdma, imxdmac->dma_request,
589 590
				 DMA_RSSR(imxdmac->channel));

591
		/* Set burst length */
592 593
		imx_dmav1_writel(imxdma, imxdmac->watermark_level *
				imxdmac->word_size, DMA_BLR(imxdmac->channel));
594 595 596 597 598 599 600 601 602 603 604 605 606

		return 0;
	default:
		return -ENOSYS;
	}

	return -EINVAL;
}

static enum dma_status imxdma_tx_status(struct dma_chan *chan,
					    dma_cookie_t cookie,
					    struct dma_tx_state *txstate)
{
607
	return dma_cookie_status(chan, cookie, txstate);
608 609 610 611 612 613
}

static dma_cookie_t imxdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct imxdma_channel *imxdmac = to_imxdma_chan(tx->chan);
	dma_cookie_t cookie;
614
	unsigned long flags;
615

616
	spin_lock_irqsave(&imxdmac->lock, flags);
617
	cookie = dma_cookie_assign(tx);
618
	spin_unlock_irqrestore(&imxdmac->lock, flags);
619 620 621 622 623 624 625 626 627

	return cookie;
}

static int imxdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
	struct imx_dma_data *data = chan->private;

628 629
	if (data != NULL)
		imxdmac->dma_request = data->dma_request;
630

631 632
	while (imxdmac->descs_allocated < IMXDMA_MAX_CHAN_DESCRIPTORS) {
		struct imxdma_desc *desc;
633

634 635 636 637 638 639 640 641 642 643 644 645 646
		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
		if (!desc)
			break;
		__memzero(&desc->desc, sizeof(struct dma_async_tx_descriptor));
		dma_async_tx_descriptor_init(&desc->desc, chan);
		desc->desc.tx_submit = imxdma_tx_submit;
		/* txd.flags will be overwritten in prep funcs */
		desc->desc.flags = DMA_CTRL_ACK;
		desc->status = DMA_SUCCESS;

		list_add_tail(&desc->node, &imxdmac->ld_free);
		imxdmac->descs_allocated++;
	}
647

648 649 650 651
	if (!imxdmac->descs_allocated)
		return -ENOMEM;

	return imxdmac->descs_allocated;
652 653 654 655 656
}

static void imxdma_free_chan_resources(struct dma_chan *chan)
{
	struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
657 658 659 660
	struct imxdma_desc *desc, *_desc;
	unsigned long flags;

	spin_lock_irqsave(&imxdmac->lock, flags);
661

662
	imxdma_disable_hw(imxdmac);
663 664 665 666 667 668 669 670 671 672
	list_splice_tail_init(&imxdmac->ld_active, &imxdmac->ld_free);
	list_splice_tail_init(&imxdmac->ld_queue, &imxdmac->ld_free);

	spin_unlock_irqrestore(&imxdmac->lock, flags);

	list_for_each_entry_safe(desc, _desc, &imxdmac->ld_free, node) {
		kfree(desc);
		imxdmac->descs_allocated--;
	}
	INIT_LIST_HEAD(&imxdmac->ld_free);
673 674 675 676 677 678 679 680 681

	if (imxdmac->sg_list) {
		kfree(imxdmac->sg_list);
		imxdmac->sg_list = NULL;
	}
}

static struct dma_async_tx_descriptor *imxdma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
682
		unsigned int sg_len, enum dma_transfer_direction direction,
683
		unsigned long flags, void *context)
684 685 686
{
	struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
	struct scatterlist *sg;
687 688
	int i, dma_length = 0;
	struct imxdma_desc *desc;
689

690 691
	if (list_empty(&imxdmac->ld_free) ||
	    imxdma_chan_is_doing_cyclic(imxdmac))
692 693
		return NULL;

694
	desc = list_first_entry(&imxdmac->ld_free, struct imxdma_desc, node);
695 696 697 698 699

	for_each_sg(sgl, sg, sg_len, i) {
		dma_length += sg->length;
	}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	switch (imxdmac->word_size) {
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		if (sgl->length & 3 || sgl->dma_address & 3)
			return NULL;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		if (sgl->length & 1 || sgl->dma_address & 1)
			return NULL;
		break;
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		break;
	default:
		return NULL;
	}

715 716 717 718
	desc->type = IMXDMA_DESC_SLAVE_SG;
	desc->sg = sgl;
	desc->sgcount = sg_len;
	desc->len = dma_length;
719
	desc->direction = direction;
720 721 722 723 724 725 726
	if (direction == DMA_DEV_TO_MEM) {
		desc->src = imxdmac->per_address;
	} else {
		desc->dest = imxdmac->per_address;
	}
	desc->desc.callback = NULL;
	desc->desc.callback_param = NULL;
727

728
	return &desc->desc;
729 730 731 732
}

static struct dma_async_tx_descriptor *imxdma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
733 734
		size_t period_len, enum dma_transfer_direction direction,
		void *context)
735 736 737
{
	struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
	struct imxdma_engine *imxdma = imxdmac->imxdma;
738 739
	struct imxdma_desc *desc;
	int i;
740 741 742 743 744
	unsigned int periods = buf_len / period_len;

	dev_dbg(imxdma->dev, "%s channel: %d buf_len=%d period_len=%d\n",
			__func__, imxdmac->channel, buf_len, period_len);

745 746
	if (list_empty(&imxdmac->ld_free) ||
	    imxdma_chan_is_doing_cyclic(imxdmac))
747 748
		return NULL;

749
	desc = list_first_entry(&imxdmac->ld_free, struct imxdma_desc, node);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	if (imxdmac->sg_list)
		kfree(imxdmac->sg_list);

	imxdmac->sg_list = kcalloc(periods + 1,
			sizeof(struct scatterlist), GFP_KERNEL);
	if (!imxdmac->sg_list)
		return NULL;

	sg_init_table(imxdmac->sg_list, periods);

	for (i = 0; i < periods; i++) {
		imxdmac->sg_list[i].page_link = 0;
		imxdmac->sg_list[i].offset = 0;
		imxdmac->sg_list[i].dma_address = dma_addr;
		imxdmac->sg_list[i].length = period_len;
		dma_addr += period_len;
	}

	/* close the loop */
	imxdmac->sg_list[periods].offset = 0;
	imxdmac->sg_list[periods].length = 0;
	imxdmac->sg_list[periods].page_link =
		((unsigned long)imxdmac->sg_list | 0x01) & ~0x02;

775 776 777 778
	desc->type = IMXDMA_DESC_CYCLIC;
	desc->sg = imxdmac->sg_list;
	desc->sgcount = periods;
	desc->len = IMX_DMA_LENGTH_LOOP;
779
	desc->direction = direction;
780 781 782 783 784 785 786
	if (direction == DMA_DEV_TO_MEM) {
		desc->src = imxdmac->per_address;
	} else {
		desc->dest = imxdmac->per_address;
	}
	desc->desc.callback = NULL;
	desc->desc.callback_param = NULL;
787

788
	return &desc->desc;
789 790
}

791 792 793 794 795 796
static struct dma_async_tx_descriptor *imxdma_prep_dma_memcpy(
	struct dma_chan *chan, dma_addr_t dest,
	dma_addr_t src, size_t len, unsigned long flags)
{
	struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
	struct imxdma_engine *imxdma = imxdmac->imxdma;
797
	struct imxdma_desc *desc;
798 799 800 801

	dev_dbg(imxdma->dev, "%s channel: %d src=0x%x dst=0x%x len=%d\n",
			__func__, imxdmac->channel, src, dest, len);

802 803
	if (list_empty(&imxdmac->ld_free) ||
	    imxdma_chan_is_doing_cyclic(imxdmac))
804 805
		return NULL;

806
	desc = list_first_entry(&imxdmac->ld_free, struct imxdma_desc, node);
807

808 809 810 811
	desc->type = IMXDMA_DESC_MEMCPY;
	desc->src = src;
	desc->dest = dest;
	desc->len = len;
812
	desc->direction = DMA_MEM_TO_MEM;
813 814 815 816
	desc->config_port = IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR;
	desc->config_mem = IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR;
	desc->desc.callback = NULL;
	desc->desc.callback_param = NULL;
817

818
	return &desc->desc;
819 820
}

821 822
static void imxdma_issue_pending(struct dma_chan *chan)
{
823
	struct imxdma_channel *imxdmac = to_imxdma_chan(chan);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	struct imxdma_engine *imxdma = imxdmac->imxdma;
	struct imxdma_desc *desc;
	unsigned long flags;

	spin_lock_irqsave(&imxdmac->lock, flags);
	if (list_empty(&imxdmac->ld_active) &&
	    !list_empty(&imxdmac->ld_queue)) {
		desc = list_first_entry(&imxdmac->ld_queue,
					struct imxdma_desc, node);

		if (imxdma_xfer_desc(desc) < 0) {
			dev_warn(imxdma->dev,
				 "%s: channel: %d couldn't issue DMA xfer\n",
				 __func__, imxdmac->channel);
		} else {
			list_move_tail(imxdmac->ld_queue.next,
				       &imxdmac->ld_active);
		}
	}
	spin_unlock_irqrestore(&imxdmac->lock, flags);
844 845 846
}

static int __init imxdma_probe(struct platform_device *pdev)
847
	{
848 849 850
	struct imxdma_engine *imxdma;
	int ret, i;

851 852 853 854 855 856 857 858 859 860 861 862 863

	imxdma = kzalloc(sizeof(*imxdma), GFP_KERNEL);
	if (!imxdma)
		return -ENOMEM;

	if (cpu_is_mx1()) {
		imxdma->base = MX1_IO_ADDRESS(MX1_DMA_BASE_ADDR);
	} else if (cpu_is_mx21()) {
		imxdma->base = MX21_IO_ADDRESS(MX21_DMA_BASE_ADDR);
	} else if (cpu_is_mx27()) {
		imxdma->base = MX27_IO_ADDRESS(MX27_DMA_BASE_ADDR);
	} else {
		kfree(imxdma);
864
		return 0;
865
	}
866

867 868 869 870
	imxdma->dma_clk = clk_get(NULL, "dma");
	if (IS_ERR(imxdma->dma_clk))
		return PTR_ERR(imxdma->dma_clk);
	clk_enable(imxdma->dma_clk);
871 872

	/* reset DMA module */
873
	imx_dmav1_writel(imxdma, DCR_DRST, DMA_DCR);
874 875 876 877 878

	if (cpu_is_mx1()) {
		ret = request_irq(MX1_DMA_INT, dma_irq_handler, 0, "DMA", imxdma);
		if (ret) {
			pr_crit("Can't register IRQ for DMA\n");
879
			kfree(imxdma);
880 881 882 883 884 885 886
			return ret;
		}

		ret = request_irq(MX1_DMA_ERR, imxdma_err_handler, 0, "DMA", imxdma);
		if (ret) {
			pr_crit("Can't register ERRIRQ for DMA\n");
			free_irq(MX1_DMA_INT, NULL);
887
			kfree(imxdma);
888 889 890 891 892
			return ret;
		}
	}

	/* enable DMA module */
893
	imx_dmav1_writel(imxdma, DCR_DEN, DMA_DCR);
894 895

	/* clear all interrupts */
896
	imx_dmav1_writel(imxdma, (1 << IMX_DMA_CHANNELS) - 1, DMA_DISR);
897 898

	/* disable interrupts */
899
	imx_dmav1_writel(imxdma, (1 << IMX_DMA_CHANNELS) - 1, DMA_DIMR);
900 901 902

	INIT_LIST_HEAD(&imxdma->dma_device.channels);

903 904
	dma_cap_set(DMA_SLAVE, imxdma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, imxdma->dma_device.cap_mask);
905
	dma_cap_set(DMA_MEMCPY, imxdma->dma_device.cap_mask);
906

907
	/* Initialize channel parameters */
908
	for (i = 0; i < IMX_DMA_CHANNELS; i++) {
909
		struct imxdma_channel *imxdmac = &imxdma->channel[i];
910

911 912 913 914 915 916 917 918
		if (cpu_is_mx21() || cpu_is_mx27()) {
			ret = request_irq(MX2x_INT_DMACH0 + i,
					dma_irq_handler, 0, "DMA", imxdma);
			if (ret) {
				pr_crit("Can't register IRQ %d for DMA channel %d\n",
						MX2x_INT_DMACH0 + i, i);
				goto err_init;
			}
919 920 921
			init_timer(&imxdmac->watchdog);
			imxdmac->watchdog.function = &imxdma_watchdog;
			imxdmac->watchdog.data = (unsigned long)imxdmac;
S
Sascha Hauer 已提交
922
		}
923 924 925 926

		imxdmac->imxdma = imxdma;
		spin_lock_init(&imxdmac->lock);

927 928 929 930 931 932
		INIT_LIST_HEAD(&imxdmac->ld_queue);
		INIT_LIST_HEAD(&imxdmac->ld_free);
		INIT_LIST_HEAD(&imxdmac->ld_active);

		tasklet_init(&imxdmac->dma_tasklet, imxdma_tasklet,
			     (unsigned long)imxdmac);
933
		imxdmac->chan.device = &imxdma->dma_device;
934
		dma_cookie_init(&imxdmac->chan);
935 936 937
		imxdmac->channel = i;

		/* Add the channel to the DMAC list */
938 939
		list_add_tail(&imxdmac->chan.device_node,
			      &imxdma->dma_device.channels);
940 941 942 943 944 945 946 947 948 949
	}

	imxdma->dev = &pdev->dev;
	imxdma->dma_device.dev = &pdev->dev;

	imxdma->dma_device.device_alloc_chan_resources = imxdma_alloc_chan_resources;
	imxdma->dma_device.device_free_chan_resources = imxdma_free_chan_resources;
	imxdma->dma_device.device_tx_status = imxdma_tx_status;
	imxdma->dma_device.device_prep_slave_sg = imxdma_prep_slave_sg;
	imxdma->dma_device.device_prep_dma_cyclic = imxdma_prep_dma_cyclic;
950
	imxdma->dma_device.device_prep_dma_memcpy = imxdma_prep_dma_memcpy;
951 952 953 954 955
	imxdma->dma_device.device_control = imxdma_control;
	imxdma->dma_device.device_issue_pending = imxdma_issue_pending;

	platform_set_drvdata(pdev, imxdma);

956
	imxdma->dma_device.copy_align = 2; /* 2^2 = 4 bytes alignment */
957 958 959
	imxdma->dma_device.dev->dma_parms = &imxdma->dma_parms;
	dma_set_max_seg_size(imxdma->dma_device.dev, 0xffffff);

960 961 962 963 964 965 966 967 968
	ret = dma_async_device_register(&imxdma->dma_device);
	if (ret) {
		dev_err(&pdev->dev, "unable to register\n");
		goto err_init;
	}

	return 0;

err_init:
969 970 971 972 973 974 975

	if (cpu_is_mx21() || cpu_is_mx27()) {
		while (--i >= 0)
			free_irq(MX2x_INT_DMACH0 + i, NULL);
	} else if cpu_is_mx1() {
		free_irq(MX1_DMA_INT, NULL);
		free_irq(MX1_DMA_ERR, NULL);
976 977 978 979 980 981 982 983 984 985 986 987 988
	}

	kfree(imxdma);
	return ret;
}

static int __exit imxdma_remove(struct platform_device *pdev)
{
	struct imxdma_engine *imxdma = platform_get_drvdata(pdev);
	int i;

        dma_async_device_unregister(&imxdma->dma_device);

989 990 991 992 993 994
	if (cpu_is_mx21() || cpu_is_mx27()) {
		for (i = 0; i < IMX_DMA_CHANNELS; i++)
			free_irq(MX2x_INT_DMACH0 + i, NULL);
	} else if cpu_is_mx1() {
		free_irq(MX1_DMA_INT, NULL);
		free_irq(MX1_DMA_ERR, NULL);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	}

        kfree(imxdma);

        return 0;
}

static struct platform_driver imxdma_driver = {
	.driver		= {
		.name	= "imx-dma",
	},
	.remove		= __exit_p(imxdma_remove),
};

static int __init imxdma_module_init(void)
{
	return platform_driver_probe(&imxdma_driver, imxdma_probe);
}
subsys_initcall(imxdma_module_init);

MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX dma driver");
MODULE_LICENSE("GPL");