intel_lrc.c 69.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138

139
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 141 142
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

186 187 188 189 190
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
191 192

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
194 195 196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211
enum {
	ADVANCED_CONTEXT = 0,
	LEGACY_CONTEXT,
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
#define GEN8_CTX_MODE_SHIFT 3
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
212
#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
213

214
static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
215

216 217 218 219 220 221
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
222
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
223 224 225
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
226 227
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
228 229
	WARN_ON(i915.enable_ppgtt == -1);

230 231 232
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

233 234 235
	if (enable_execlists == 0)
		return 0;

236 237
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
238 239 240 241
		return 1;

	return 0;
}
242

243 244 245 246 247 248 249 250 251 252 253 254
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx_obj: Logical Ring Context backing object.
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * Return: 20-bits globally unique context ID.
 */
255 256 257 258 259 260 261 262 263
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);

	/* LRCA is required to be 4K aligned so the more significant 20 bits
	 * are globally unique */
	return lrca >> 12;
}

264 265
static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
					 struct drm_i915_gem_object *ctx_obj)
266
{
267
	struct drm_device *dev = ring->dev;
268 269
	uint64_t desc;
	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
270 271

	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
272 273 274

	desc = GEN8_CTX_VALID;
	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
275 276
	if (IS_GEN8(ctx_obj->base.dev))
		desc |= GEN8_CTX_L3LLC_COHERENT;
277 278 279 280 281 282 283 284
	desc |= GEN8_CTX_PRIVILEGE;
	desc |= lrca;
	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* desc |= GEN8_CTX_FORCE_RESTORE; */

285 286 287 288 289 290 291
	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	if (IS_GEN9(dev) &&
	    INTEL_REVID(dev) <= SKL_REVID_B0 &&
	    (ring->id == BCS || ring->id == VCS ||
	    ring->id == VECS || ring->id == VCS2))
		desc |= GEN8_CTX_FORCE_RESTORE;

292 293 294
	return desc;
}

295 296
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
297
{
298 299

	struct intel_engine_cs *ring = rq0->ring;
300 301
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
302 303 304
	struct drm_i915_gem_object *ctx_obj0 = rq0->ctx->engine[ring->id].state;
	struct drm_i915_gem_object *ctx_obj1 = rq1 ?
		rq1->ctx->engine[ring->id].state : NULL;
305 306 307 308 309
	uint64_t temp = 0;
	uint32_t desc[4];

	/* XXX: You must always write both descriptors in the order below. */
	if (ctx_obj1)
310
		temp = execlists_ctx_descriptor(ring, ctx_obj1);
311 312 313 314 315
	else
		temp = 0;
	desc[1] = (u32)(temp >> 32);
	desc[0] = (u32)temp;

316
	temp = execlists_ctx_descriptor(ring, ctx_obj0);
317 318 319
	desc[3] = (u32)(temp >> 32);
	desc[2] = (u32)temp;

320 321 322 323 324
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
	I915_WRITE_FW(RING_ELSP(ring), desc[1]);
	I915_WRITE_FW(RING_ELSP(ring), desc[0]);
	I915_WRITE_FW(RING_ELSP(ring), desc[3]);
325

326
	/* The context is automatically loaded after the following */
327
	I915_WRITE_FW(RING_ELSP(ring), desc[2]);
328 329

	/* ELSP is a wo register, so use another nearby reg for posting instead */
330 331 332
	POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
333 334
}

335
static int execlists_update_context(struct drm_i915_gem_request *rq)
336
{
337 338 339 340
	struct intel_engine_cs *ring = rq->ring;
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
341 342 343
	struct page *page;
	uint32_t *reg_state;

344 345 346 347
	BUG_ON(!ctx_obj);
	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
	WARN_ON(!i915_gem_obj_is_pinned(rb_obj));

348 349 350
	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

351 352
	reg_state[CTX_RING_TAIL+1] = rq->tail;
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
353

354 355 356 357 358 359 360 361 362 363
	/* True PPGTT with dynamic page allocation: update PDP registers and
	 * point the unallocated PDPs to the scratch page
	 */
	if (ppgtt) {
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

364 365 366 367 368
	kunmap_atomic(reg_state);

	return 0;
}

369 370
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
371
{
372
	execlists_update_context(rq0);
373

374
	if (rq1)
375
		execlists_update_context(rq1);
376

377
	execlists_elsp_write(rq0, rq1);
378 379
}

380 381
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
382 383
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
384 385

	assert_spin_locked(&ring->execlist_lock);
386

387 388 389 390 391 392
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));

393 394 395 396 397 398 399 400
	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
401
		} else if (req0->ctx == cursor->ctx) {
402 403
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
404
			cursor->elsp_submitted = req0->elsp_submitted;
405
			list_del(&req0->execlist_link);
406 407
			list_add_tail(&req0->execlist_link,
				&ring->execlist_retired_req_list);
408 409 410 411 412 413 414
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

415 416 417 418 419
	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
		/*
		 * WaIdleLiteRestore: make sure we never cause a lite
		 * restore with HEAD==TAIL
		 */
420
		if (req0->elsp_submitted) {
421 422 423 424 425 426 427 428 429 430 431 432 433 434
			/*
			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
			 * as we resubmit the request. See gen8_emit_request()
			 * for where we prepare the padding after the end of the
			 * request.
			 */
			struct intel_ringbuffer *ringbuf;

			ringbuf = req0->ctx->engine[ring->id].ringbuf;
			req0->tail += 8;
			req0->tail &= ringbuf->size - 1;
		}
	}

435 436
	WARN_ON(req1 && req1->elsp_submitted);

437
	execlists_submit_requests(req0, req1);
438 439 440 441

	req0->elsp_submitted++;
	if (req1)
		req1->elsp_submitted++;
442 443
}

444 445 446
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
447
	struct drm_i915_gem_request *head_req;
448 449 450 451

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
452
					    struct drm_i915_gem_request,
453 454 455 456
					    execlist_link);

	if (head_req != NULL) {
		struct drm_i915_gem_object *ctx_obj =
457
				head_req->ctx->engine[ring->id].state;
458
		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
459 460 461 462 463
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
				list_del(&head_req->execlist_link);
464 465
				list_add_tail(&head_req->execlist_link,
					&ring->execlist_retired_req_list);
466 467
				return true;
			}
468 469 470 471 472 473
		}
	}

	return false;
}

474
/**
475
 * intel_lrc_irq_handler() - handle Context Switch interrupts
476 477 478 479 480
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
481
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
	u32 status;
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
	write_pointer = status_pointer & 0x07;
	if (read_pointer > write_pointer)
		write_pointer += 6;

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
		read_pointer++;
		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8);
		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8 + 4);

507 508 509 510 511 512 513 514 515 516
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

	if (submit_contexts != 0)
		execlists_context_unqueue(ring);

	spin_unlock(&ring->execlist_lock);

	WARN(submit_contexts > 2, "More than two context complete events?\n");
	ring->next_context_status_buffer = write_pointer % 6;

	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
}

534
static int execlists_context_queue(struct drm_i915_gem_request *request)
535
{
536
	struct intel_engine_cs *ring = request->ring;
537
	struct drm_i915_gem_request *cursor;
538
	int num_elements = 0;
539

540
	if (request->ctx != ring->default_context)
541
		intel_lr_context_pin(request);
542 543 544

	i915_gem_request_reference(request);

545
	request->tail = request->ringbuf->tail;
546

547
	spin_lock_irq(&ring->execlist_lock);
548

549 550 551 552 553
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
554
		struct drm_i915_gem_request *tail_req;
555 556

		tail_req = list_last_entry(&ring->execlist_queue,
557
					   struct drm_i915_gem_request,
558 559
					   execlist_link);

560
		if (request->ctx == tail_req->ctx) {
561
			WARN(tail_req->elsp_submitted != 0,
562
				"More than 2 already-submitted reqs queued\n");
563
			list_del(&tail_req->execlist_link);
564 565
			list_add_tail(&tail_req->execlist_link,
				&ring->execlist_retired_req_list);
566 567 568
		}
	}

569
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
570
	if (num_elements == 0)
571 572
		execlists_context_unqueue(ring);

573
	spin_unlock_irq(&ring->execlist_lock);
574 575 576 577

	return 0;
}

578
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
579
{
580
	struct intel_engine_cs *ring = req->ring;
581 582 583 584 585 586 587
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

588
	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
589 590 591 592 593 594 595
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

596
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
597 598
				 struct list_head *vmas)
{
599
	const unsigned other_rings = ~intel_ring_flag(req->ring);
600 601 602 603 604 605 606 607
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

608
		if (obj->active & other_rings) {
609
			ret = i915_gem_object_sync(obj, req->ring, &req);
610 611 612
			if (ret)
				return ret;
		}
613 614 615 616 617 618 619 620 621 622 623 624 625

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
626
	return logical_ring_invalidate_all_caches(req);
627 628
}

629
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
630 631 632
{
	int ret;

633 634
	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;

635
	if (request->ctx != request->ring->default_context) {
636
		ret = intel_lr_context_pin(request);
637
		if (ret)
638 639 640 641 642 643
			return ret;
	}

	return 0;
}

644
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
645
				       int bytes)
646
{
647 648 649
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *ring = req->ring;
	struct drm_i915_gem_request *target;
650 651
	unsigned space;
	int ret;
652 653 654 655

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

656 657 658
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

659
	list_for_each_entry(target, &ring->request_list, list) {
660 661 662 663 664
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
665
		if (target->ringbuf != ringbuf)
666 667 668
			continue;

		/* Would completion of this request free enough space? */
669
		space = __intel_ring_space(target->postfix, ringbuf->tail,
670 671
					   ringbuf->size);
		if (space >= bytes)
672 673 674
			break;
	}

675
	if (WARN_ON(&target->list == &ring->request_list))
676 677
		return -ENOSPC;

678
	ret = i915_wait_request(target);
679 680 681
	if (ret)
		return ret;

682 683
	ringbuf->space = space;
	return 0;
684 685 686 687
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
688
 * @request: Request to advance the logical ringbuffer of.
689 690 691 692 693 694 695
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
static void
696
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
697
{
698
	struct intel_engine_cs *ring = request->ring;
699

700
	intel_logical_ring_advance(request->ringbuf);
701 702 703 704

	if (intel_ring_stopped(ring))
		return;

705
	execlists_context_queue(request);
706 707
}

708
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
709 710 711 712 713 714 715 716 717 718 719 720 721
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

722
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
723
{
724
	struct intel_ringbuffer *ringbuf = req->ringbuf;
725 726 727 728
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
729

730 731 732 733
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So only need to to wait for the
			 * reserved size after flushing out the remainder.
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
			need_wrap = true;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
754
		}
755 756
	}

757 758
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
759 760
		if (unlikely(ret))
			return ret;
761 762 763

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
764 765 766 767 768 769 770 771
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
772
 * @request: The request to start some new work for
773
 * @ctx: Logical ring context whose ringbuffer is being prepared.
774 775 776 777 778 779 780 781 782
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
783 784
static int intel_logical_ring_begin(struct drm_i915_gem_request *req,
				    int num_dwords)
785
{
786
	struct drm_i915_private *dev_priv;
787 788
	int ret;

789 790 791
	WARN_ON(req == NULL);
	dev_priv = req->ring->dev->dev_private;

792 793 794 795 796
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

797
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
798 799 800
	if (ret)
		return ret;

801
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
802 803 804
	return 0;
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

820 821 822 823 824 825 826 827 828 829
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
830
 * @dispatch_flags: translated execbuffer call flags.
831 832 833 834 835 836
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
837
int intel_execlists_submission(struct i915_execbuffer_params *params,
838
			       struct drm_i915_gem_execbuffer2 *args,
839
			       struct list_head *vmas)
840
{
841 842
	struct drm_device       *dev = params->dev;
	struct intel_engine_cs  *ring = params->ring;
843
	struct drm_i915_private *dev_priv = dev->dev_private;
844 845
	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
	u64 exec_start;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
		return -EINVAL;
	} else {
		if (args->DR4 == 0xffffffff) {
			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
			args->DR4 = 0;
		}

		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
			return -EINVAL;
		}
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

896
	ret = execlists_move_to_gpu(params->request, vmas);
897 898 899 900 901
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
902
		ret = intel_logical_ring_begin(params->request, 4);
903 904 905 906 907 908 909 910 911 912 913 914
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
		intel_logical_ring_emit(ringbuf, INSTPM);
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

915 916 917
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

918
	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
919 920 921
	if (ret)
		return ret;

922
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
923

924
	i915_gem_execbuffer_move_to_active(vmas, params->request);
925
	i915_gem_execbuffer_retire_commands(params);
926

927 928 929
	return 0;
}

930 931
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
932
	struct drm_i915_gem_request *req, *tmp;
933 934 935 936 937 938 939
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
940
	spin_lock_irq(&ring->execlist_lock);
941
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
942
	spin_unlock_irq(&ring->execlist_lock);
943 944

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
945
		struct intel_context *ctx = req->ctx;
946 947 948 949
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
950
			intel_lr_context_unpin(req);
951
		list_del(&req->execlist_link);
952
		i915_gem_request_unreference(req);
953 954 955
	}
}

956 957
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
976 977
}

978
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
979
{
980
	struct intel_engine_cs *ring = req->ring;
981 982 983 984 985
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

986
	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
987 988 989 990 991 992 993
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

994
static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
995
{
996 997 998
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;
999 1000 1001
	int ret = 0;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1002
	if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1003 1004 1005
		ret = i915_gem_obj_ggtt_pin(ctx_obj,
				GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret)
1006
			goto reset_pin_count;
1007 1008 1009 1010

		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
		if (ret)
			goto unpin_ctx_obj;
1011 1012
	}

1013 1014 1015 1016
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1017
reset_pin_count:
1018
	rq->ctx->engine[ring->id].pin_count = 0;
1019

1020 1021 1022
	return ret;
}

1023
void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1024
{
1025 1026 1027
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1028 1029 1030

	if (ctx_obj) {
		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1031
		if (--rq->ctx->engine[ring->id].pin_count == 0) {
1032
			intel_unpin_ringbuffer_obj(ringbuf);
1033
			i915_gem_object_ggtt_unpin(ctx_obj);
1034
		}
1035 1036 1037
	}
}

1038
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1039 1040
{
	int ret, i;
1041 1042
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1043 1044 1045 1046
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1047
	if (WARN_ON_ONCE(w->count == 0))
1048 1049 1050
		return 0;

	ring->gpu_caches_dirty = true;
1051
	ret = logical_ring_flush_all_caches(req);
1052 1053 1054
	if (ret)
		return ret;

1055
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1069
	ret = logical_ring_flush_all_caches(req);
1070 1071 1072 1073 1074 1075
	if (ret)
		return ret;

	return 0;
}

1076 1077 1078 1079 1080 1081 1082 1083
#define wa_ctx_emit(batch, cmd)						\
	do {								\
		if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) {	\
			return -ENOSPC;					\
		}							\
		batch[index++] = (cmd);					\
	} while (0)

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

	wa_ctx_emit(batch, (MI_STORE_REGISTER_MEM_GEN8(1) |
			    MI_SRM_LRM_GLOBAL_GTT));
	wa_ctx_emit(batch, GEN8_L3SQCREG4);
	wa_ctx_emit(batch, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, 0);

	wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit(batch, GEN8_L3SQCREG4);
	wa_ctx_emit(batch, l3sqc4_flush);

	wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
			    PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, 0);
	wa_ctx_emit(batch, 0);
	wa_ctx_emit(batch, 0);
	wa_ctx_emit(batch, 0);

	wa_ctx_emit(batch, (MI_LOAD_REGISTER_MEM_GEN8(1) |
			    MI_SRM_LRM_GLOBAL_GTT));
	wa_ctx_emit(batch, GEN8_L3SQCREG4);
	wa_ctx_emit(batch, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, 0);

	return index;
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1172
 *
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1186
	uint32_t scratch_addr;
1187 1188
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1189 1190
	/* WaDisableCtxRestoreArbitration:bdw,chv */
	wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1191

1192 1193
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
	if (IS_BROADWELL(ring->dev)) {
1194 1195 1196
		index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
		if (index < 0)
			return index;
1197 1198
	}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;

	wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, (PIPE_CONTROL_FLUSH_L3 |
			    PIPE_CONTROL_GLOBAL_GTT_IVB |
			    PIPE_CONTROL_CS_STALL |
			    PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, scratch_addr);
	wa_ctx_emit(batch, 0);
	wa_ctx_emit(batch, 0);
	wa_ctx_emit(batch, 0);

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, MI_NOOP);

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1233
 * @batch: page in which WA are loaded
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1250 1251 1252
	/* WaDisableCtxRestoreArbitration:bdw,chv */
	wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	wa_ctx_emit(batch, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
{
	int ret;

	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
	if (!ring->wa_ctx.obj) {
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		return ret;
	}

	return 0;
}

static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
{
	if (ring->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		ring->wa_ctx.obj = NULL;
	}
}

static int intel_init_workaround_bb(struct intel_engine_cs *ring)
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;

	WARN_ON(ring->id != RCS);

1298 1299 1300 1301 1302 1303
	/* update this when WA for higher Gen are added */
	if (WARN(INTEL_INFO(ring->dev)->gen > 8,
		 "WA batch buffer is not initialized for Gen%d\n",
		 INTEL_INFO(ring->dev)->gen))
		return 0;

1304 1305 1306 1307 1308 1309
	/* some WA perform writes to scratch page, ensure it is valid */
	if (ring->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
		return -EINVAL;
	}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

	page = i915_gem_object_get_page(wa_ctx->obj, 0);
	batch = kmap_atomic(page);
	offset = 0;

	if (INTEL_INFO(ring->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen8_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
	}

out:
	kunmap_atomic(batch);
	if (ret)
		lrc_destroy_wa_ctx_obj(ring);

	return ret;
}

1344 1345 1346 1347 1348
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1349 1350 1351
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1352 1353 1354 1355
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1356
	ring->next_context_status_buffer = 0;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1384
	return init_workarounds_ring(ring);
1385 1386
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1426
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1427
			      u64 offset, unsigned dispatch_flags)
1428
{
1429
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1430
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1431 1432
	int ret;

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
	 * not idle). */
	if (req->ctx->ppgtt &&
	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;

		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
	}

1447
	ret = intel_logical_ring_begin(req, 4);
1448 1449 1450 1451
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1452 1453 1454 1455
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1456 1457 1458 1459 1460 1461 1462 1463
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1464 1465 1466 1467 1468 1469
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1470
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1497
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1498 1499 1500
			   u32 invalidate_domains,
			   u32 unused)
{
1501
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1502 1503 1504 1505 1506 1507
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1508
	ret = intel_logical_ring_begin(request, 4);
1509 1510 1511 1512 1513
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1538
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1539 1540 1541
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1542
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1543 1544
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1545
	bool vf_flush_wa;
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
	}

1567 1568 1569 1570 1571 1572 1573
	/*
	 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
	 * control.
	 */
	vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
		      flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;

1574
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1575 1576 1577
	if (ret)
		return ret;

1578 1579 1580 1581 1582 1583 1584 1585 1586
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1608
static int gen8_emit_request(struct drm_i915_gem_request *request)
1609
{
1610
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1611 1612 1613 1614
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1615 1616 1617 1618 1619
	/*
	 * Reserve space for 2 NOOPs at the end of each request to be
	 * used as a workaround for not being allowed to do lite
	 * restore with HEAD==TAIL (WaIdleLiteRestore).
	 */
1620
	ret = intel_logical_ring_begin(request, 8);
1621 1622 1623
	if (ret)
		return ret;

1624
	cmd = MI_STORE_DWORD_IMM_GEN4;
1625 1626 1627 1628 1629 1630 1631
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1632
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1633 1634
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1635
	intel_logical_ring_advance_and_submit(request);
1636

1637 1638 1639 1640 1641 1642 1643 1644
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

1645 1646 1647
	return 0;
}

1648
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1649 1650 1651 1652
{
	struct render_state so;
	int ret;

1653
	ret = i915_gem_render_state_prepare(req->ring, &so);
1654 1655 1656 1657 1658 1659
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1660
	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1661
				       I915_DISPATCH_SECURE);
1662 1663 1664
	if (ret)
		goto out;

1665
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1666 1667 1668 1669 1670 1671

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1672
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1673 1674 1675
{
	int ret;

1676
	ret = intel_logical_ring_workarounds_emit(req);
1677 1678 1679
	if (ret)
		return ret;

1680
	return intel_lr_context_render_state_init(req);
1681 1682
}

1683 1684 1685 1686 1687 1688
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1689 1690
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1691
	struct drm_i915_private *dev_priv;
1692

1693 1694 1695
	if (!intel_ring_initialized(ring))
		return;

1696 1697
	dev_priv = ring->dev->dev_private;

1698 1699
	intel_logical_ring_stop(ring);
	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1700 1701 1702 1703 1704

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);
1705
	i915_gem_batch_pool_fini(&ring->batch_pool);
1706 1707 1708 1709 1710

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1711 1712

	lrc_destroy_wa_ctx_obj(ring);
1713 1714 1715 1716
}

static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
1717 1718 1719 1720 1721 1722 1723 1724
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
1725
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1726 1727
	init_waitqueue_head(&ring->irq_queue);

1728
	INIT_LIST_HEAD(&ring->execlist_queue);
1729
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1730 1731
	spin_lock_init(&ring->execlist_lock);

1732 1733 1734 1735
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
		return ret;

1736 1737 1738
	ret = intel_lr_context_deferred_create(ring->default_context, ring);

	return ret;
1739 1740 1741 1742 1743 1744
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1745
	int ret;
1746 1747 1748 1749 1750 1751

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1752 1753 1754 1755
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1756

1757 1758 1759 1760
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
1761
	ring->init_context = gen8_init_rcs_context;
1762
	ring->cleanup = intel_fini_pipe_control;
1763 1764
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1765
	ring->emit_request = gen8_emit_request;
1766
	ring->emit_flush = gen8_emit_flush_render;
1767 1768
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1769
	ring->emit_bb_start = gen8_emit_bb_start;
1770

1771
	ring->dev = dev;
1772 1773

	ret = intel_init_pipe_control(ring);
1774 1775 1776
	if (ret)
		return ret;

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	ret = intel_init_workaround_bb(ring);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1788 1789
	ret = logical_ring_init(dev, ring);
	if (ret) {
1790
		lrc_destroy_wa_ctx_obj(ring);
1791
	}
1792 1793

	return ret;
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1806 1807
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1808

1809
	ring->init_hw = gen8_init_common_ring;
1810 1811
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1812
	ring->emit_request = gen8_emit_request;
1813
	ring->emit_flush = gen8_emit_flush;
1814 1815
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1816
	ring->emit_bb_start = gen8_emit_bb_start;
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1831 1832
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1833

1834
	ring->init_hw = gen8_init_common_ring;
1835 1836
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1837
	ring->emit_request = gen8_emit_request;
1838
	ring->emit_flush = gen8_emit_flush;
1839 1840
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1841
	ring->emit_bb_start = gen8_emit_bb_start;
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1856 1857
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1858

1859
	ring->init_hw = gen8_init_common_ring;
1860 1861
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1862
	ring->emit_request = gen8_emit_request;
1863
	ring->emit_flush = gen8_emit_flush;
1864 1865
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1866
	ring->emit_bb_start = gen8_emit_bb_start;
1867

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1881 1882
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1883

1884
	ring->init_hw = gen8_init_common_ring;
1885 1886
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1887
	ring->emit_request = gen8_emit_request;
1888
	ring->emit_flush = gen8_emit_flush;
1889 1890
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1891
	ring->emit_bb_start = gen8_emit_bb_start;
1892

1893 1894 1895
	return logical_ring_init(dev, ring);
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
	if (ret)
		goto cleanup_bsd2_ring;

	return 0;

cleanup_bsd2_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2002 2003 2004 2005
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
2006 2007
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2008
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2009 2010 2011 2012
	struct page *page;
	uint32_t *reg_state;
	int ret;

2013 2014 2015
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
	if (ring->id == RCS)
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
	else
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
	reg_state[CTX_CONTEXT_CONTROL+1] =
2047
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2048 2049
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   CTX_CTRL_RS_CTX_ENABLE);
2050 2051 2052 2053 2054
	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
	reg_state[CTX_RING_HEAD+1] = 0;
	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
	reg_state[CTX_RING_TAIL+1] = 0;
	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2055 2056 2057
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
	reg_state[CTX_RING_BUFFER_CONTROL+1] =
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
	reg_state[CTX_BB_HEAD_U+1] = 0;
	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
	reg_state[CTX_BB_HEAD_L+1] = 0;
	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
	reg_state[CTX_BB_STATE+1] = (1<<5);
	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
	reg_state[CTX_SECOND_BB_STATE+1] = 0;
	if (ring->id == RCS) {
		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		if (ring->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	}
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2108 2109 2110

	/* With dynamic page allocation, PDPs may not be allocated at this point,
	 * Point the unallocated PDPs to the scratch page
2111 2112 2113 2114 2115
	 */
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2116 2117
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2118 2119
		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	}

	kunmap_atomic(reg_state);

	ctx_obj->dirty = 1;
	set_page_dirty(page);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2131 2132 2133 2134 2135 2136 2137 2138
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2139 2140
void intel_lr_context_free(struct intel_context *ctx)
{
2141 2142 2143 2144
	int i;

	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2145

2146
		if (ctx_obj) {
2147 2148 2149 2150
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

2151 2152 2153 2154
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
2155
			WARN_ON(ctx->engine[ring->id].pin_count);
2156 2157
			intel_destroy_ringbuffer_obj(ringbuf);
			kfree(ringbuf);
2158 2159 2160 2161 2162 2163 2164 2165 2166
			drm_gem_object_unreference(&ctx_obj->base);
		}
	}
}

static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
	int ret = 0;

2167
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2168 2169 2170

	switch (ring->id) {
	case RCS:
2171 2172 2173 2174
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2185 2186
}

2187
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;

	/* The status page is offset 0 from the default context object
	 * in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
	ring->status_page.page_addr =
			kmap(sg_page(default_ctx_obj->pages->sgl));
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
/**
 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2215
 * Return: non-zero on error.
2216
 */
2217 2218 2219
int intel_lr_context_deferred_create(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
{
2220
	const bool is_global_default_ctx = (ctx == ring->default_context);
2221 2222 2223
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2224
	struct intel_ringbuffer *ringbuf;
2225 2226
	int ret;

2227
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2228
	WARN_ON(ctx->engine[ring->id].state);
2229

2230 2231
	context_size = round_up(get_lr_context_size(ring), 4096);

2232
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2233 2234 2235
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2236 2237
	}

2238 2239 2240 2241 2242 2243 2244 2245
	if (is_global_default_ctx) {
		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret) {
			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
					ret);
			drm_gem_object_unreference(&ctx_obj->base);
			return ret;
		}
2246 2247
	}

2248 2249 2250 2251 2252
	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
	if (!ringbuf) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				ring->name);
		ret = -ENOMEM;
2253
		goto error_unpin_ctx;
2254 2255
	}

2256
	ringbuf->ring = ring;
2257

2258 2259 2260 2261 2262
	ringbuf->size = 32 * PAGE_SIZE;
	ringbuf->effective_size = ringbuf->size;
	ringbuf->head = 0;
	ringbuf->tail = 0;
	ringbuf->last_retired_head = -1;
2263
	intel_ring_update_space(ringbuf);
2264

2265 2266 2267 2268 2269
	if (ringbuf->obj == NULL) {
		ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
		if (ret) {
			DRM_DEBUG_DRIVER(
				"Failed to allocate ringbuffer obj %s: %d\n",
2270
				ring->name, ret);
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
			goto error_free_rbuf;
		}

		if (is_global_default_ctx) {
			ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
			if (ret) {
				DRM_ERROR(
					"Failed to pin and map ringbuffer %s: %d\n",
					ring->name, ret);
				goto error_destroy_rbuf;
			}
		}

2284 2285 2286 2287 2288 2289
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
		goto error;
2290 2291 2292
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
2293
	ctx->engine[ring->id].state = ctx_obj;
2294

2295 2296
	if (ctx == ring->default_context)
		lrc_setup_hardware_status_page(ring, ctx_obj);
2297
	else if (ring->id == RCS && !ctx->rcs_initialized) {
2298
		if (ring->init_context) {
2299 2300 2301 2302 2303 2304
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ctx, &req);
			if (ret)
				return ret;

2305
			ret = ring->init_context(req);
2306
			if (ret) {
2307
				DRM_ERROR("ring init context: %d\n", ret);
2308
				i915_gem_request_cancel(req);
2309 2310 2311 2312
				ctx->engine[ring->id].ringbuf = NULL;
				ctx->engine[ring->id].state = NULL;
				goto error;
			}
2313

2314
			i915_add_request_no_flush(req);
2315 2316
		}

2317 2318 2319
		ctx->rcs_initialized = true;
	}

2320
	return 0;
2321 2322

error:
2323 2324 2325 2326 2327
	if (is_global_default_ctx)
		intel_unpin_ringbuffer_obj(ringbuf);
error_destroy_rbuf:
	intel_destroy_ringbuffer_obj(ringbuf);
error_free_rbuf:
2328
	kfree(ringbuf);
2329
error_unpin_ctx:
2330 2331
	if (is_global_default_ctx)
		i915_gem_object_ggtt_unpin(ctx_obj);
2332 2333
	drm_gem_object_unreference(&ctx_obj->base);
	return ret;
2334
}
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
		page = i915_gem_object_get_page(ctx_obj, 1);
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}