xfs_sync.c 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_mru_cache.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_utils.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_rw.h"
C
Christoph Hellwig 已提交
46
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
47
#include "xfs_trace.h"
48

49 50 51
#include <linux/kthread.h>
#include <linux/freezer.h>

52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
STATIC xfs_inode_t *
xfs_inode_ag_lookup(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	uint32_t		*first_index,
	int			tag)
{
	int			nr_found;
	struct xfs_inode	*ip;

	/*
	 * use a gang lookup to find the next inode in the tree
	 * as the tree is sparse and a gang lookup walks to find
	 * the number of objects requested.
	 */
	if (tag == XFS_ICI_NO_TAG) {
		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1);
	} else {
		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1, tag);
	}
	if (!nr_found)
76
		return NULL;
77 78 79 80 81 82 83 84 85

	/*
	 * Update the index for the next lookup. Catch overflows
	 * into the next AG range which can occur if we have inodes
	 * in the last block of the AG and we are currently
	 * pointing to the last inode.
	 */
	*first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
	if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
86
		return NULL;
87 88 89 90 91 92 93 94 95 96
	return ip;
}

STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
	xfs_agnumber_t		ag,
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
97 98
	int			tag,
	int			exclusive)
99 100 101 102 103 104 105 106 107 108 109 110 111
{
	struct xfs_perag	*pag = &mp->m_perag[ag];
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;

restart:
	skipped = 0;
	first_index = 0;
	do {
		int		error = 0;
		xfs_inode_t	*ip;

112 113 114 115
		if (exclusive)
			write_lock(&pag->pag_ici_lock);
		else
			read_lock(&pag->pag_ici_lock);
116
		ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
117 118 119 120 121
		if (!ip) {
			if (exclusive)
				write_unlock(&pag->pag_ici_lock);
			else
				read_unlock(&pag->pag_ici_lock);
122
			break;
123
		}
124

125
		/* execute releases pag->pag_ici_lock */
126 127 128 129 130 131 132
		error = execute(ip, pag, flags);
		if (error == EAGAIN) {
			skipped++;
			continue;
		}
		if (error)
			last_error = error;
133 134

		/* bail out if the filesystem is corrupted.  */
135 136 137 138 139 140 141 142 143 144 145 146 147 148
		if (error == EFSCORRUPTED)
			break;

	} while (1);

	if (skipped) {
		delay(1);
		goto restart;
	}

	xfs_put_perag(mp, pag);
	return last_error;
}

149
int
150 151 152 153 154
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
155 156
	int			tag,
	int			exclusive)
157 158 159 160 161 162 163 164
{
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
		if (!mp->m_perag[ag].pag_ici_init)
			continue;
165 166
		error = xfs_inode_ag_walk(mp, ag, execute, flags, tag,
						exclusive);
167 168 169 170 171 172 173 174 175
		if (error) {
			last_error = error;
			if (error == EFSCORRUPTED)
				break;
		}
	}
	return XFS_ERROR(last_error);
}

176
/* must be called with pag_ici_lock held and releases it */
177
int
178 179 180 181 182
xfs_sync_inode_valid(
	struct xfs_inode	*ip,
	struct xfs_perag	*pag)
{
	struct inode		*inode = VFS_I(ip);
183
	int			error = EFSCORRUPTED;
184 185

	/* nothing to sync during shutdown */
186 187
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		goto out_unlock;
188

189 190 191 192
	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
	error = ENOENT;
	if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
		goto out_unlock;
193

194 195 196 197 198
	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
		goto out_unlock;

	if (is_bad_inode(inode)) {
199
		IRELE(ip);
200
		goto out_unlock;
201 202
	}

203 204 205 206 207
	/* inode is valid */
	error = 0;
out_unlock:
	read_unlock(&pag->pag_ici_lock);
	return error;
208 209
}

210 211 212
STATIC int
xfs_sync_inode_data(
	struct xfs_inode	*ip,
213
	struct xfs_perag	*pag,
214 215 216 217 218 219
	int			flags)
{
	struct inode		*inode = VFS_I(ip);
	struct address_space *mapping = inode->i_mapping;
	int			error = 0;

220 221 222 223
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

224 225 226 227 228 229 230 231 232 233 234 235 236 237
	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		goto out_wait;

	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
		if (flags & SYNC_TRYLOCK)
			goto out_wait;
		xfs_ilock(ip, XFS_IOLOCK_SHARED);
	}

	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
				0 : XFS_B_ASYNC, FI_NONE);
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

 out_wait:
C
Christoph Hellwig 已提交
238
	if (flags & SYNC_WAIT)
239
		xfs_ioend_wait(ip);
240
	IRELE(ip);
241 242 243
	return error;
}

244 245 246
STATIC int
xfs_sync_inode_attr(
	struct xfs_inode	*ip,
247
	struct xfs_perag	*pag,
248 249 250 251
	int			flags)
{
	int			error = 0;

252 253 254 255
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_inode_clean(ip))
		goto out_unlock;
	if (!xfs_iflock_nowait(ip)) {
		if (!(flags & SYNC_WAIT))
			goto out_unlock;
		xfs_iflock(ip);
	}

	if (xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
		goto out_unlock;
	}

	error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
			   XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);

 out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
275
	IRELE(ip);
276 277 278
	return error;
}

C
Christoph Hellwig 已提交
279 280 281
/*
 * Write out pagecache data for the whole filesystem.
 */
282
int
C
Christoph Hellwig 已提交
283 284 285
xfs_sync_data(
	struct xfs_mount	*mp,
	int			flags)
286
{
C
Christoph Hellwig 已提交
287
	int			error;
288

C
Christoph Hellwig 已提交
289
	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
290

C
Christoph Hellwig 已提交
291
	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
292
				      XFS_ICI_NO_TAG, 0);
C
Christoph Hellwig 已提交
293 294
	if (error)
		return XFS_ERROR(error);
295

C
Christoph Hellwig 已提交
296 297 298 299 300 301
	xfs_log_force(mp, 0,
		      (flags & SYNC_WAIT) ?
		       XFS_LOG_FORCE | XFS_LOG_SYNC :
		       XFS_LOG_FORCE);
	return 0;
}
302

C
Christoph Hellwig 已提交
303 304 305 306 307 308 309 310 311
/*
 * Write out inode metadata (attributes) for the whole filesystem.
 */
int
xfs_sync_attr(
	struct xfs_mount	*mp,
	int			flags)
{
	ASSERT((flags & ~SYNC_WAIT) == 0);
312

C
Christoph Hellwig 已提交
313
	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
314
				     XFS_ICI_NO_TAG, 0);
315 316
}

317 318 319
STATIC int
xfs_commit_dummy_trans(
	struct xfs_mount	*mp,
320
	uint			flags)
321 322 323 324
{
	struct xfs_inode	*ip = mp->m_rootip;
	struct xfs_trans	*tp;
	int			error;
325 326 327 328
	int			log_flags = XFS_LOG_FORCE;

	if (flags & SYNC_WAIT)
		log_flags |= XFS_LOG_SYNC;
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

	/*
	 * Put a dummy transaction in the log to tell recovery
	 * that all others are OK.
	 */
	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
	if (error) {
		xfs_trans_cancel(tp, 0);
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);

	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_ihold(tp, ip);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	error = xfs_trans_commit(tp, 0);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

349
	/* the log force ensures this transaction is pushed to disk */
350
	xfs_log_force(mp, 0, log_flags);
351
	return error;
352 353
}

354
STATIC int
355 356 357 358 359 360 361 362 363 364 365 366
xfs_sync_fsdata(
	struct xfs_mount	*mp,
	int			flags)
{
	struct xfs_buf		*bp;
	struct xfs_buf_log_item	*bip;
	int			error = 0;

	/*
	 * If this is xfssyncd() then only sync the superblock if we can
	 * lock it without sleeping and it is not pinned.
	 */
C
Christoph Hellwig 已提交
367
	if (flags & SYNC_TRYLOCK) {
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
		ASSERT(!(flags & SYNC_WAIT));

		bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
		if (!bp)
			goto out;

		bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
		if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
			goto out_brelse;
	} else {
		bp = xfs_getsb(mp, 0);

		/*
		 * If the buffer is pinned then push on the log so we won't
		 * get stuck waiting in the write for someone, maybe
		 * ourselves, to flush the log.
		 *
		 * Even though we just pushed the log above, we did not have
		 * the superblock buffer locked at that point so it can
		 * become pinned in between there and here.
		 */
		if (XFS_BUF_ISPINNED(bp))
			xfs_log_force(mp, 0, XFS_LOG_FORCE);
	}


	if (flags & SYNC_WAIT)
		XFS_BUF_UNASYNC(bp);
	else
		XFS_BUF_ASYNC(bp);

399 400 401 402 403 404 405 406 407 408 409 410 411 412
	error = xfs_bwrite(mp, bp);
	if (error)
		return error;

	/*
	 * If this is a data integrity sync make sure all pending buffers
	 * are flushed out for the log coverage check below.
	 */
	if (flags & SYNC_WAIT)
		xfs_flush_buftarg(mp->m_ddev_targp, 1);

	if (xfs_log_need_covered(mp))
		error = xfs_commit_dummy_trans(mp, flags);
	return error;
413 414 415 416 417

 out_brelse:
	xfs_buf_relse(bp);
 out:
	return error;
418 419 420
}

/*
D
David Chinner 已提交
421 422 423 424 425 426 427 428 429 430 431
 * When remounting a filesystem read-only or freezing the filesystem, we have
 * two phases to execute. This first phase is syncing the data before we
 * quiesce the filesystem, and the second is flushing all the inodes out after
 * we've waited for all the transactions created by the first phase to
 * complete. The second phase ensures that the inodes are written to their
 * location on disk rather than just existing in transactions in the log. This
 * means after a quiesce there is no log replay required to write the inodes to
 * disk (this is the main difference between a sync and a quiesce).
 */
/*
 * First stage of freeze - no writers will make progress now we are here,
432 433
 * so we flush delwri and delalloc buffers here, then wait for all I/O to
 * complete.  Data is frozen at that point. Metadata is not frozen,
D
David Chinner 已提交
434 435
 * transactions can still occur here so don't bother flushing the buftarg
 * because it'll just get dirty again.
436 437 438 439 440 441 442 443
 */
int
xfs_quiesce_data(
	struct xfs_mount	*mp)
{
	int error;

	/* push non-blocking */
C
Christoph Hellwig 已提交
444
	xfs_sync_data(mp, 0);
C
Christoph Hellwig 已提交
445
	xfs_qm_sync(mp, SYNC_TRYLOCK);
446

D
Dave Chinner 已提交
447
	/* push and block till complete */
C
Christoph Hellwig 已提交
448
	xfs_sync_data(mp, SYNC_WAIT);
C
Christoph Hellwig 已提交
449
	xfs_qm_sync(mp, SYNC_WAIT);
450

D
Dave Chinner 已提交
451 452 453
	/* drop inode references pinned by filestreams */
	xfs_filestream_flush(mp);

D
David Chinner 已提交
454
	/* write superblock and hoover up shutdown errors */
D
Dave Chinner 已提交
455
	error = xfs_sync_fsdata(mp, SYNC_WAIT);
456

D
David Chinner 已提交
457
	/* flush data-only devices */
458 459 460 461
	if (mp->m_rtdev_targp)
		XFS_bflush(mp->m_rtdev_targp);

	return error;
462 463
}

D
David Chinner 已提交
464 465 466 467 468 469 470
STATIC void
xfs_quiesce_fs(
	struct xfs_mount	*mp)
{
	int	count = 0, pincount;

	xfs_flush_buftarg(mp->m_ddev_targp, 0);
471
	xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
D
David Chinner 已提交
472 473 474 475 476 477 478 479

	/*
	 * This loop must run at least twice.  The first instance of the loop
	 * will flush most meta data but that will generate more meta data
	 * (typically directory updates).  Which then must be flushed and
	 * logged before we can write the unmount record.
	 */
	do {
C
Christoph Hellwig 已提交
480
		xfs_sync_attr(mp, SYNC_WAIT);
D
David Chinner 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
		if (!pincount) {
			delay(50);
			count++;
		}
	} while (count < 2);
}

/*
 * Second stage of a quiesce. The data is already synced, now we have to take
 * care of the metadata. New transactions are already blocked, so we need to
 * wait for any remaining transactions to drain out before proceding.
 */
void
xfs_quiesce_attr(
	struct xfs_mount	*mp)
{
	int	error = 0;

	/* wait for all modifications to complete */
	while (atomic_read(&mp->m_active_trans) > 0)
		delay(100);

	/* flush inodes and push all remaining buffers out to disk */
	xfs_quiesce_fs(mp);

507 508 509 510 511
	/*
	 * Just warn here till VFS can correctly support
	 * read-only remount without racing.
	 */
	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
D
David Chinner 已提交
512 513 514 515 516 517 518 519 520 521 522

	/* Push the superblock and write an unmount record */
	error = xfs_log_sbcount(mp, 1);
	if (error)
		xfs_fs_cmn_err(CE_WARN, mp,
				"xfs_attr_quiesce: failed to log sb changes. "
				"Frozen image may not be consistent.");
	xfs_log_unmount_write(mp);
	xfs_unmountfs_writesb(mp);
}

523 524 525 526 527 528 529 530 531 532 533
/*
 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 * Doing this has two advantages:
 * - It saves on stack space, which is tight in certain situations
 * - It can be used (with care) as a mechanism to avoid deadlocks.
 * Flushing while allocating in a full filesystem requires both.
 */
STATIC void
xfs_syncd_queue_work(
	struct xfs_mount *mp,
	void		*data,
534 535
	void		(*syncer)(struct xfs_mount *, void *),
	struct completion *completion)
536
{
537
	struct xfs_sync_work *work;
538

539
	work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
540 541 542 543
	INIT_LIST_HEAD(&work->w_list);
	work->w_syncer = syncer;
	work->w_data = data;
	work->w_mount = mp;
544
	work->w_completion = completion;
545 546 547 548 549 550 551 552 553 554 555 556 557
	spin_lock(&mp->m_sync_lock);
	list_add_tail(&work->w_list, &mp->m_sync_list);
	spin_unlock(&mp->m_sync_lock);
	wake_up_process(mp->m_sync_task);
}

/*
 * Flush delayed allocate data, attempting to free up reserved space
 * from existing allocations.  At this point a new allocation attempt
 * has failed with ENOSPC and we are in the process of scratching our
 * heads, looking about for more room...
 */
STATIC void
558
xfs_flush_inodes_work(
559 560 561 562
	struct xfs_mount *mp,
	void		*arg)
{
	struct inode	*inode = arg;
C
Christoph Hellwig 已提交
563
	xfs_sync_data(mp, SYNC_TRYLOCK);
C
Christoph Hellwig 已提交
564
	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
565 566 567 568
	iput(inode);
}

void
569
xfs_flush_inodes(
570 571 572
	xfs_inode_t	*ip)
{
	struct inode	*inode = VFS_I(ip);
573
	DECLARE_COMPLETION_ONSTACK(completion);
574 575

	igrab(inode);
576 577
	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
	wait_for_completion(&completion);
578 579 580
	xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}

581 582 583 584 585
/*
 * Every sync period we need to unpin all items, reclaim inodes, sync
 * quota and write out the superblock. We might need to cover the log
 * to indicate it is idle.
 */
586 587 588 589 590 591 592
STATIC void
xfs_sync_worker(
	struct xfs_mount *mp,
	void		*unused)
{
	int		error;

593 594
	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
595
		xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
596
		/* dgc: errors ignored here */
C
Christoph Hellwig 已提交
597 598
		error = xfs_qm_sync(mp, SYNC_TRYLOCK);
		error = xfs_sync_fsdata(mp, SYNC_TRYLOCK);
599
	}
600 601 602 603 604 605 606 607 608 609
	mp->m_sync_seq++;
	wake_up(&mp->m_wait_single_sync_task);
}

STATIC int
xfssyncd(
	void			*arg)
{
	struct xfs_mount	*mp = arg;
	long			timeleft;
610
	xfs_sync_work_t		*work, *n;
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	LIST_HEAD		(tmp);

	set_freezable();
	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
	for (;;) {
		timeleft = schedule_timeout_interruptible(timeleft);
		/* swsusp */
		try_to_freeze();
		if (kthread_should_stop() && list_empty(&mp->m_sync_list))
			break;

		spin_lock(&mp->m_sync_lock);
		/*
		 * We can get woken by laptop mode, to do a sync -
		 * that's the (only!) case where the list would be
		 * empty with time remaining.
		 */
		if (!timeleft || list_empty(&mp->m_sync_list)) {
			if (!timeleft)
				timeleft = xfs_syncd_centisecs *
							msecs_to_jiffies(10);
			INIT_LIST_HEAD(&mp->m_sync_work.w_list);
			list_add_tail(&mp->m_sync_work.w_list,
					&mp->m_sync_list);
		}
		list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
			list_move(&work->w_list, &tmp);
		spin_unlock(&mp->m_sync_lock);

		list_for_each_entry_safe(work, n, &tmp, w_list) {
			(*work->w_syncer)(mp, work->w_data);
			list_del(&work->w_list);
			if (work == &mp->m_sync_work)
				continue;
645 646
			if (work->w_completion)
				complete(work->w_completion);
647 648 649 650 651 652 653 654 655 656 657 658 659
			kmem_free(work);
		}
	}

	return 0;
}

int
xfs_syncd_init(
	struct xfs_mount	*mp)
{
	mp->m_sync_work.w_syncer = xfs_sync_worker;
	mp->m_sync_work.w_mount = mp;
660
	mp->m_sync_work.w_completion = NULL;
661 662 663 664 665 666 667 668 669 670 671 672 673
	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
	if (IS_ERR(mp->m_sync_task))
		return -PTR_ERR(mp->m_sync_task);
	return 0;
}

void
xfs_syncd_stop(
	struct xfs_mount	*mp)
{
	kthread_stop(mp->m_sync_task);
}

674 675 676 677 678 679 680 681 682 683
void
__xfs_inode_set_reclaim_tag(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip)
{
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
}

D
David Chinner 已提交
684 685 686 687 688
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
689 690 691 692 693 694 695 696 697
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino);

	read_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
698
	__xfs_inode_set_reclaim_tag(pag, ip);
D
David Chinner 已提交
699
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	spin_unlock(&ip->i_flags_lock);
	read_unlock(&pag->pag_ici_lock);
	xfs_put_perag(mp, pag);
}

void
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
}

715
STATIC int
716
xfs_reclaim_inode(
717 718
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
719
	int			sync_mode)
720
{
721 722 723 724 725 726 727 728 729 730 731
	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
	 */
	spin_lock(&ip->i_flags_lock);
	ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
	if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* ignore as it is already under reclaim */
		spin_unlock(&ip->i_flags_lock);
		write_unlock(&pag->pag_ici_lock);
732
		return 0;
733
	}
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	write_unlock(&pag->pag_ici_lock);

	/*
	 * If the inode is still dirty, then flush it out.  If the inode
	 * is not in the AIL, then it will be OK to flush it delwri as
	 * long as xfs_iflush() does not keep any references to the inode.
	 * We leave that decision up to xfs_iflush() since it has the
	 * knowledge of whether it's OK to simply do a delwri flush of
	 * the inode or whether we need to wait until the inode is
	 * pulled from the AIL.
	 * We get the flush lock regardless, though, just to make sure
	 * we don't free it while it is being flushed.
	 */
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_iflock(ip);
751

752 753 754 755 756 757 758 759 760 761 762 763 764
	/*
	 * In the case of a forced shutdown we rely on xfs_iflush() to
	 * wait for the inode to be unpinned before returning an error.
	 */
	if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
		/* synchronize with xfs_iflush_done */
		xfs_iflock(ip);
		xfs_ifunlock(ip);
	}

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	xfs_ireclaim(ip);
	return 0;
765 766 767 768 769 770 771
}

int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
772 773
	return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode,
					XFS_ICI_RECLAIM_TAG, 1);
774
}