xfs_sync.c 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_mru_cache.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_utils.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_rw.h"
C
Christoph Hellwig 已提交
46
#include "xfs_quota.h"
47

48 49 50
#include <linux/kthread.h>
#include <linux/freezer.h>

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

STATIC int
xfs_sync_inode_data(
	struct xfs_inode	*ip,
	int			flags)
{
	struct inode		*inode = VFS_I(ip);
	struct address_space *mapping = inode->i_mapping;
	int			error = 0;

	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		goto out_wait;

	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
		if (flags & SYNC_TRYLOCK)
			goto out_wait;
		xfs_ilock(ip, XFS_IOLOCK_SHARED);
	}

	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
				0 : XFS_B_ASYNC, FI_NONE);
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

 out_wait:
	if (flags & SYNC_IOWAIT)
		xfs_ioend_wait(ip);
	return error;
}

80
/*
81 82
 * Sync all the inodes in the given AG according to the
 * direction given by the flags.
83
 */
84 85
STATIC int
xfs_sync_inodes_ag(
86
	xfs_mount_t	*mp,
87
	int		ag,
88
	int		flags)
89
{
90 91
	xfs_perag_t	*pag = &mp->m_perag[ag];
	int		nr_found;
92
	uint32_t	first_index = 0;
93 94
	int		error = 0;
	int		last_error = 0;
95 96

	do {
97 98
		struct inode	*inode;
		xfs_inode_t	*ip = NULL;
99
		int		lock_flags = XFS_ILOCK_SHARED;
100

101
		/*
102 103 104
		 * use a gang lookup to find the next inode in the tree
		 * as the tree is sparse and a gang lookup walks to find
		 * the number of objects requested.
105
		 */
106 107 108
		read_lock(&pag->pag_ici_lock);
		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
				(void**)&ip, first_index, 1);
109

110 111 112
		if (!nr_found) {
			read_unlock(&pag->pag_ici_lock);
			break;
113 114
		}

115 116 117 118 119 120
		/*
		 * Update the index for the next lookup. Catch overflows
		 * into the next AG range which can occur if we have inodes
		 * in the last block of the AG and we are currently
		 * pointing to the last inode.
		 */
121
		first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
122 123 124 125
		if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
			read_unlock(&pag->pag_ici_lock);
			break;
		}
126

127
		/* nothing to sync during shutdown */
D
David Chinner 已提交
128
		if (XFS_FORCED_SHUTDOWN(mp)) {
129
			read_unlock(&pag->pag_ici_lock);
130 131 132 133
			return 0;
		}

		/*
134 135
		 * If we can't get a reference on the inode, it must be
		 * in reclaim. Leave it for the reclaim code to flush.
136
		 */
137 138
		inode = VFS_I(ip);
		if (!igrab(inode)) {
139
			read_unlock(&pag->pag_ici_lock);
140 141 142 143
			continue;
		}
		read_unlock(&pag->pag_ici_lock);

144 145 146
		/* avoid new or bad inodes */
		if (is_bad_inode(inode) ||
		    xfs_iflags_test(ip, XFS_INEW)) {
147 148
			IRELE(ip);
			continue;
149
		}
150

151 152
		/*
		 * If we have to flush data or wait for I/O completion
153
		 * we need to hold the iolock.
154
		 */
155 156
		if (flags & SYNC_DELWRI)
			error = xfs_sync_inode_data(ip, flags);
157

158
		xfs_ilock(ip, XFS_ILOCK_SHARED);
159
		if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) {
160 161
			if (flags & SYNC_WAIT) {
				xfs_iflock(ip);
162 163 164 165
				if (!xfs_inode_clean(ip))
					error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
				else
					xfs_ifunlock(ip);
166
			} else if (xfs_iflock_nowait(ip)) {
167 168 169 170
				if (!xfs_inode_clean(ip))
					error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
				else
					xfs_ifunlock(ip);
171 172
			}
		}
173
		xfs_iput(ip, lock_flags);
174

175
		if (error)
176 177 178 179
			last_error = error;
		/*
		 * bail out if the filesystem is corrupted.
		 */
180
		if (error == EFSCORRUPTED)
181 182
			return XFS_ERROR(error);

183
	} while (nr_found);
184

185 186
	return last_error;
}
187

188 189 190
int
xfs_sync_inodes(
	xfs_mount_t	*mp,
191
	int		flags)
192 193 194 195
{
	int		error;
	int		last_error;
	int		i;
196
	int		lflags = XFS_LOG_FORCE;
197

198 199 200 201
	if (mp->m_flags & XFS_MOUNT_RDONLY)
		return 0;
	error = 0;
	last_error = 0;
202

203 204 205
	if (flags & SYNC_WAIT)
		lflags |= XFS_LOG_SYNC;

206 207 208
	for (i = 0; i < mp->m_sb.sb_agcount; i++) {
		if (!mp->m_perag[i].pag_ici_init)
			continue;
209
		error = xfs_sync_inodes_ag(mp, i, flags);
210 211 212 213 214
		if (error)
			last_error = error;
		if (error == EFSCORRUPTED)
			break;
	}
215 216 217
	if (flags & SYNC_DELWRI)
		xfs_log_force(mp, 0, lflags);

218 219 220
	return XFS_ERROR(last_error);
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
STATIC int
xfs_commit_dummy_trans(
	struct xfs_mount	*mp,
	uint			log_flags)
{
	struct xfs_inode	*ip = mp->m_rootip;
	struct xfs_trans	*tp;
	int			error;

	/*
	 * Put a dummy transaction in the log to tell recovery
	 * that all others are OK.
	 */
	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
	if (error) {
		xfs_trans_cancel(tp, 0);
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);

	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_ihold(tp, ip);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	/* XXX(hch): ignoring the error here.. */
	error = xfs_trans_commit(tp, 0);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	xfs_log_force(mp, 0, log_flags);
	return 0;
}

255
int
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
xfs_sync_fsdata(
	struct xfs_mount	*mp,
	int			flags)
{
	struct xfs_buf		*bp;
	struct xfs_buf_log_item	*bip;
	int			error = 0;

	/*
	 * If this is xfssyncd() then only sync the superblock if we can
	 * lock it without sleeping and it is not pinned.
	 */
	if (flags & SYNC_BDFLUSH) {
		ASSERT(!(flags & SYNC_WAIT));

		bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
		if (!bp)
			goto out;

		bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
		if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
			goto out_brelse;
	} else {
		bp = xfs_getsb(mp, 0);

		/*
		 * If the buffer is pinned then push on the log so we won't
		 * get stuck waiting in the write for someone, maybe
		 * ourselves, to flush the log.
		 *
		 * Even though we just pushed the log above, we did not have
		 * the superblock buffer locked at that point so it can
		 * become pinned in between there and here.
		 */
		if (XFS_BUF_ISPINNED(bp))
			xfs_log_force(mp, 0, XFS_LOG_FORCE);
	}


	if (flags & SYNC_WAIT)
		XFS_BUF_UNASYNC(bp);
	else
		XFS_BUF_ASYNC(bp);

	return xfs_bwrite(mp, bp);

 out_brelse:
	xfs_buf_relse(bp);
 out:
	return error;
306 307 308
}

/*
D
David Chinner 已提交
309 310 311 312 313 314 315 316 317 318 319
 * When remounting a filesystem read-only or freezing the filesystem, we have
 * two phases to execute. This first phase is syncing the data before we
 * quiesce the filesystem, and the second is flushing all the inodes out after
 * we've waited for all the transactions created by the first phase to
 * complete. The second phase ensures that the inodes are written to their
 * location on disk rather than just existing in transactions in the log. This
 * means after a quiesce there is no log replay required to write the inodes to
 * disk (this is the main difference between a sync and a quiesce).
 */
/*
 * First stage of freeze - no writers will make progress now we are here,
320 321
 * so we flush delwri and delalloc buffers here, then wait for all I/O to
 * complete.  Data is frozen at that point. Metadata is not frozen,
D
David Chinner 已提交
322 323
 * transactions can still occur here so don't bother flushing the buftarg
 * because it'll just get dirty again.
324 325 326 327 328 329 330 331 332
 */
int
xfs_quiesce_data(
	struct xfs_mount	*mp)
{
	int error;

	/* push non-blocking */
	xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH);
C
Christoph Hellwig 已提交
333
	xfs_qm_sync(mp, SYNC_BDFLUSH);
334 335 336 337
	xfs_filestream_flush(mp);

	/* push and block */
	xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT);
C
Christoph Hellwig 已提交
338
	xfs_qm_sync(mp, SYNC_WAIT);
339

D
David Chinner 已提交
340
	/* write superblock and hoover up shutdown errors */
341 342
	error = xfs_sync_fsdata(mp, 0);

D
David Chinner 已提交
343
	/* flush data-only devices */
344 345 346 347
	if (mp->m_rtdev_targp)
		XFS_bflush(mp->m_rtdev_targp);

	return error;
348 349
}

D
David Chinner 已提交
350 351 352 353 354 355 356
STATIC void
xfs_quiesce_fs(
	struct xfs_mount	*mp)
{
	int	count = 0, pincount;

	xfs_flush_buftarg(mp->m_ddev_targp, 0);
357
	xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
D
David Chinner 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	/*
	 * This loop must run at least twice.  The first instance of the loop
	 * will flush most meta data but that will generate more meta data
	 * (typically directory updates).  Which then must be flushed and
	 * logged before we can write the unmount record.
	 */
	do {
		xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT);
		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
		if (!pincount) {
			delay(50);
			count++;
		}
	} while (count < 2);
}

/*
 * Second stage of a quiesce. The data is already synced, now we have to take
 * care of the metadata. New transactions are already blocked, so we need to
 * wait for any remaining transactions to drain out before proceding.
 */
void
xfs_quiesce_attr(
	struct xfs_mount	*mp)
{
	int	error = 0;

	/* wait for all modifications to complete */
	while (atomic_read(&mp->m_active_trans) > 0)
		delay(100);

	/* flush inodes and push all remaining buffers out to disk */
	xfs_quiesce_fs(mp);

393 394 395 396 397
	/*
	 * Just warn here till VFS can correctly support
	 * read-only remount without racing.
	 */
	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
D
David Chinner 已提交
398 399 400 401 402 403 404 405 406 407 408

	/* Push the superblock and write an unmount record */
	error = xfs_log_sbcount(mp, 1);
	if (error)
		xfs_fs_cmn_err(CE_WARN, mp,
				"xfs_attr_quiesce: failed to log sb changes. "
				"Frozen image may not be consistent.");
	xfs_log_unmount_write(mp);
	xfs_unmountfs_writesb(mp);
}

409 410 411 412 413 414 415 416 417 418 419
/*
 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 * Doing this has two advantages:
 * - It saves on stack space, which is tight in certain situations
 * - It can be used (with care) as a mechanism to avoid deadlocks.
 * Flushing while allocating in a full filesystem requires both.
 */
STATIC void
xfs_syncd_queue_work(
	struct xfs_mount *mp,
	void		*data,
420 421
	void		(*syncer)(struct xfs_mount *, void *),
	struct completion *completion)
422
{
423
	struct xfs_sync_work *work;
424

425
	work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
426 427 428 429
	INIT_LIST_HEAD(&work->w_list);
	work->w_syncer = syncer;
	work->w_data = data;
	work->w_mount = mp;
430
	work->w_completion = completion;
431 432 433 434 435 436 437 438 439 440 441 442 443
	spin_lock(&mp->m_sync_lock);
	list_add_tail(&work->w_list, &mp->m_sync_list);
	spin_unlock(&mp->m_sync_lock);
	wake_up_process(mp->m_sync_task);
}

/*
 * Flush delayed allocate data, attempting to free up reserved space
 * from existing allocations.  At this point a new allocation attempt
 * has failed with ENOSPC and we are in the process of scratching our
 * heads, looking about for more room...
 */
STATIC void
444
xfs_flush_inodes_work(
445 446 447 448
	struct xfs_mount *mp,
	void		*arg)
{
	struct inode	*inode = arg;
449 450
	xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK);
	xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK | SYNC_IOWAIT);
451 452 453 454
	iput(inode);
}

void
455
xfs_flush_inodes(
456 457 458
	xfs_inode_t	*ip)
{
	struct inode	*inode = VFS_I(ip);
459
	DECLARE_COMPLETION_ONSTACK(completion);
460 461

	igrab(inode);
462 463
	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
	wait_for_completion(&completion);
464 465 466
	xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}

467 468 469 470 471
/*
 * Every sync period we need to unpin all items, reclaim inodes, sync
 * quota and write out the superblock. We might need to cover the log
 * to indicate it is idle.
 */
472 473 474 475 476 477 478
STATIC void
xfs_sync_worker(
	struct xfs_mount *mp,
	void		*unused)
{
	int		error;

479 480
	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
481
		xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
482
		/* dgc: errors ignored here */
C
Christoph Hellwig 已提交
483
		error = xfs_qm_sync(mp, SYNC_BDFLUSH);
484 485 486 487
		error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
		if (xfs_log_need_covered(mp))
			error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
	}
488 489 490 491 492 493 494 495 496 497
	mp->m_sync_seq++;
	wake_up(&mp->m_wait_single_sync_task);
}

STATIC int
xfssyncd(
	void			*arg)
{
	struct xfs_mount	*mp = arg;
	long			timeleft;
498
	xfs_sync_work_t		*work, *n;
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	LIST_HEAD		(tmp);

	set_freezable();
	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
	for (;;) {
		timeleft = schedule_timeout_interruptible(timeleft);
		/* swsusp */
		try_to_freeze();
		if (kthread_should_stop() && list_empty(&mp->m_sync_list))
			break;

		spin_lock(&mp->m_sync_lock);
		/*
		 * We can get woken by laptop mode, to do a sync -
		 * that's the (only!) case where the list would be
		 * empty with time remaining.
		 */
		if (!timeleft || list_empty(&mp->m_sync_list)) {
			if (!timeleft)
				timeleft = xfs_syncd_centisecs *
							msecs_to_jiffies(10);
			INIT_LIST_HEAD(&mp->m_sync_work.w_list);
			list_add_tail(&mp->m_sync_work.w_list,
					&mp->m_sync_list);
		}
		list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
			list_move(&work->w_list, &tmp);
		spin_unlock(&mp->m_sync_lock);

		list_for_each_entry_safe(work, n, &tmp, w_list) {
			(*work->w_syncer)(mp, work->w_data);
			list_del(&work->w_list);
			if (work == &mp->m_sync_work)
				continue;
533 534
			if (work->w_completion)
				complete(work->w_completion);
535 536 537 538 539 540 541 542 543 544 545 546 547
			kmem_free(work);
		}
	}

	return 0;
}

int
xfs_syncd_init(
	struct xfs_mount	*mp)
{
	mp->m_sync_work.w_syncer = xfs_sync_worker;
	mp->m_sync_work.w_mount = mp;
548
	mp->m_sync_work.w_completion = NULL;
549 550 551 552 553 554 555 556 557 558 559 560 561
	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
	if (IS_ERR(mp->m_sync_task))
		return -PTR_ERR(mp->m_sync_task);
	return 0;
}

void
xfs_syncd_stop(
	struct xfs_mount	*mp)
{
	kthread_stop(mp->m_sync_task);
}

562
int
563
xfs_reclaim_inode(
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	xfs_inode_t	*ip,
	int		locked,
	int		sync_mode)
{
	xfs_perag_t	*pag = xfs_get_perag(ip->i_mount, ip->i_ino);

	/* The hash lock here protects a thread in xfs_iget_core from
	 * racing with us on linking the inode back with a vnode.
	 * Once we have the XFS_IRECLAIM flag set it will not touch
	 * us.
	 */
	write_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
	if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
	    !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
		spin_unlock(&ip->i_flags_lock);
		write_unlock(&pag->pag_ici_lock);
		if (locked) {
			xfs_ifunlock(ip);
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
		}
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	write_unlock(&pag->pag_ici_lock);
	xfs_put_perag(ip->i_mount, pag);

	/*
	 * If the inode is still dirty, then flush it out.  If the inode
	 * is not in the AIL, then it will be OK to flush it delwri as
	 * long as xfs_iflush() does not keep any references to the inode.
	 * We leave that decision up to xfs_iflush() since it has the
	 * knowledge of whether it's OK to simply do a delwri flush of
	 * the inode or whether we need to wait until the inode is
	 * pulled from the AIL.
	 * We get the flush lock regardless, though, just to make sure
	 * we don't free it while it is being flushed.
	 */
	if (!locked) {
		xfs_ilock(ip, XFS_ILOCK_EXCL);
		xfs_iflock(ip);
	}

	/*
	 * In the case of a forced shutdown we rely on xfs_iflush() to
	 * wait for the inode to be unpinned before returning an error.
	 */
	if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
		/* synchronize with xfs_iflush_done */
		xfs_iflock(ip);
		xfs_ifunlock(ip);
	}

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	xfs_ireclaim(ip);
	return 0;
}

D
David Chinner 已提交
623 624 625 626 627
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
628 629 630 631 632 633 634 635 636 637 638
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino);

	read_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
	radix_tree_tag_set(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
D
David Chinner 已提交
639
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	spin_unlock(&ip->i_flags_lock);
	read_unlock(&pag->pag_ici_lock);
	xfs_put_perag(mp, pag);
}

void
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
}

void
xfs_inode_clear_reclaim_tag(
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino);

	read_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
	__xfs_inode_clear_reclaim_tag(mp, pag, ip);
	spin_unlock(&ip->i_flags_lock);
	read_unlock(&pag->pag_ici_lock);
	xfs_put_perag(mp, pag);
}

670 671 672

STATIC void
xfs_reclaim_inodes_ag(
673
	xfs_mount_t	*mp,
674 675
	int		ag,
	int		noblock,
676 677
	int		mode)
{
678 679 680
	xfs_inode_t	*ip = NULL;
	xfs_perag_t	*pag = &mp->m_perag[ag];
	int		nr_found;
681
	uint32_t	first_index;
682
	int		skipped;
683 684

restart:
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	first_index = 0;
	skipped = 0;
	do {
		/*
		 * use a gang lookup to find the next inode in the tree
		 * as the tree is sparse and a gang lookup walks to find
		 * the number of objects requested.
		 */
		read_lock(&pag->pag_ici_lock);
		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
					(void**)&ip, first_index, 1,
					XFS_ICI_RECLAIM_TAG);

		if (!nr_found) {
			read_unlock(&pag->pag_ici_lock);
			break;
		}

703 704 705 706 707 708
		/*
		 * Update the index for the next lookup. Catch overflows
		 * into the next AG range which can occur if we have inodes
		 * in the last block of the AG and we are currently
		 * pointing to the last inode.
		 */
709
		first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
710 711 712 713
		if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
			read_unlock(&pag->pag_ici_lock);
			break;
		}
714 715 716 717 718 719 720

		/* ignore if already under reclaim */
		if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
			read_unlock(&pag->pag_ici_lock);
			continue;
		}

721
		if (noblock) {
722 723
			if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
				read_unlock(&pag->pag_ici_lock);
724
				continue;
725
			}
726 727 728
			if (xfs_ipincount(ip) ||
			    !xfs_iflock_nowait(ip)) {
				xfs_iunlock(ip, XFS_ILOCK_EXCL);
729
				read_unlock(&pag->pag_ici_lock);
730 731 732
				continue;
			}
		}
733 734 735 736 737 738
		read_unlock(&pag->pag_ici_lock);

		/*
		 * hmmm - this is an inode already in reclaim. Do
		 * we even bother catching it here?
		 */
739
		if (xfs_reclaim_inode(ip, noblock, mode))
740 741 742 743 744
			skipped++;
	} while (nr_found);

	if (skipped) {
		delay(1);
745 746
		goto restart;
	}
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	return;

}

int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		 noblock,
	int		mode)
{
	int		i;

	for (i = 0; i < mp->m_sb.sb_agcount; i++) {
		if (!mp->m_perag[i].pag_ici_init)
			continue;
		xfs_reclaim_inodes_ag(mp, i, noblock, mode);
	}
764 765 766 767
	return 0;
}