delayed-inode.c 50.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright (C) 2011 Fujitsu.  All rights reserved.
 * Written by Miao Xie <miaox@cn.fujitsu.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/slab.h>
21
#include <linux/iversion.h>
22 23 24
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
25
#include "ctree.h"
26

27 28 29
#define BTRFS_DELAYED_WRITEBACK		512
#define BTRFS_DELAYED_BACKGROUND	128
#define BTRFS_DELAYED_BATCH		16
30 31 32 33 34

static struct kmem_cache *delayed_node_cache;

int __init btrfs_delayed_inode_init(void)
{
D
David Sterba 已提交
35
	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
36 37
					sizeof(struct btrfs_delayed_node),
					0,
38
					SLAB_MEM_SPREAD,
39 40 41 42 43 44 45 46
					NULL);
	if (!delayed_node_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_delayed_inode_exit(void)
{
47
	kmem_cache_destroy(delayed_node_cache);
48 49 50 51 52 53 54 55
}

static inline void btrfs_init_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				struct btrfs_root *root, u64 inode_id)
{
	delayed_node->root = root;
	delayed_node->inode_id = inode_id;
56
	refcount_set(&delayed_node->refs, 0);
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
	delayed_node->ins_root = RB_ROOT;
	delayed_node->del_root = RB_ROOT;
	mutex_init(&delayed_node->mutex);
	INIT_LIST_HEAD(&delayed_node->n_list);
	INIT_LIST_HEAD(&delayed_node->p_list);
}

static inline int btrfs_is_continuous_delayed_item(
					struct btrfs_delayed_item *item1,
					struct btrfs_delayed_item *item2)
{
	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
	    item1->key.objectid == item2->key.objectid &&
	    item1->key.type == item2->key.type &&
	    item1->key.offset + 1 == item2->key.offset)
		return 1;
	return 0;
}

76 77
static struct btrfs_delayed_node *btrfs_get_delayed_node(
		struct btrfs_inode *btrfs_inode)
78 79
{
	struct btrfs_root *root = btrfs_inode->root;
80
	u64 ino = btrfs_ino(btrfs_inode);
81
	struct btrfs_delayed_node *node;
82

S
Seraphime Kirkovski 已提交
83
	node = READ_ONCE(btrfs_inode->delayed_node);
84
	if (node) {
85
		refcount_inc(&node->refs);
86 87 88 89
		return node;
	}

	spin_lock(&root->inode_lock);
90
	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
91 92
	if (node) {
		if (btrfs_inode->delayed_node) {
93
			refcount_inc(&node->refs);	/* can be accessed */
94
			BUG_ON(btrfs_inode->delayed_node != node);
95
			spin_unlock(&root->inode_lock);
96
			return node;
97 98
		}
		btrfs_inode->delayed_node = node;
99
		/* can be accessed and cached in the inode */
100
		refcount_add(2, &node->refs);
101 102 103 104 105
		spin_unlock(&root->inode_lock);
		return node;
	}
	spin_unlock(&root->inode_lock);

106 107 108
	return NULL;
}

109
/* Will return either the node or PTR_ERR(-ENOMEM) */
110
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
111
		struct btrfs_inode *btrfs_inode)
112 113 114
{
	struct btrfs_delayed_node *node;
	struct btrfs_root *root = btrfs_inode->root;
115
	u64 ino = btrfs_ino(btrfs_inode);
116 117 118
	int ret;

again:
119
	node = btrfs_get_delayed_node(btrfs_inode);
120 121 122
	if (node)
		return node;

123
	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
124 125
	if (!node)
		return ERR_PTR(-ENOMEM);
126
	btrfs_init_delayed_node(node, root, ino);
127

128
	/* cached in the btrfs inode and can be accessed */
129
	refcount_set(&node->refs, 2);
130

131
	ret = radix_tree_preload(GFP_NOFS);
132 133 134 135 136 137
	if (ret) {
		kmem_cache_free(delayed_node_cache, node);
		return ERR_PTR(ret);
	}

	spin_lock(&root->inode_lock);
138
	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
139 140
	if (ret == -EEXIST) {
		spin_unlock(&root->inode_lock);
141
		kmem_cache_free(delayed_node_cache, node);
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
		radix_tree_preload_end();
		goto again;
	}
	btrfs_inode->delayed_node = node;
	spin_unlock(&root->inode_lock);
	radix_tree_preload_end();

	return node;
}

/*
 * Call it when holding delayed_node->mutex
 *
 * If mod = 1, add this node into the prepared list.
 */
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
				     struct btrfs_delayed_node *node,
				     int mod)
{
	spin_lock(&root->lock);
162
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
163 164 165 166 167 168 169
		if (!list_empty(&node->p_list))
			list_move_tail(&node->p_list, &root->prepare_list);
		else if (mod)
			list_add_tail(&node->p_list, &root->prepare_list);
	} else {
		list_add_tail(&node->n_list, &root->node_list);
		list_add_tail(&node->p_list, &root->prepare_list);
170
		refcount_inc(&node->refs);	/* inserted into list */
171
		root->nodes++;
172
		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
173 174 175 176 177 178 179 180 181
	}
	spin_unlock(&root->lock);
}

/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
				       struct btrfs_delayed_node *node)
{
	spin_lock(&root->lock);
182
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
183
		root->nodes--;
184
		refcount_dec(&node->refs);	/* not in the list */
185 186 187
		list_del_init(&node->n_list);
		if (!list_empty(&node->p_list))
			list_del_init(&node->p_list);
188
		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
189 190 191 192
	}
	spin_unlock(&root->lock);
}

193
static struct btrfs_delayed_node *btrfs_first_delayed_node(
194 195 196 197 198 199 200 201 202 203 204
			struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->node_list))
		goto out;

	p = delayed_root->node_list.next;
	node = list_entry(p, struct btrfs_delayed_node, n_list);
205
	refcount_inc(&node->refs);
206 207 208 209 210 211
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

212
static struct btrfs_delayed_node *btrfs_next_delayed_node(
213 214 215 216 217 218 219 220
						struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_root *delayed_root;
	struct list_head *p;
	struct btrfs_delayed_node *next = NULL;

	delayed_root = node->root->fs_info->delayed_root;
	spin_lock(&delayed_root->lock);
221 222
	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
		/* not in the list */
223 224 225 226 227 228 229 230 231
		if (list_empty(&delayed_root->node_list))
			goto out;
		p = delayed_root->node_list.next;
	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
		goto out;
	else
		p = node->n_list.next;

	next = list_entry(p, struct btrfs_delayed_node, n_list);
232
	refcount_inc(&next->refs);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
out:
	spin_unlock(&delayed_root->lock);

	return next;
}

static void __btrfs_release_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				int mod)
{
	struct btrfs_delayed_root *delayed_root;

	if (!delayed_node)
		return;

	delayed_root = delayed_node->root->fs_info->delayed_root;

	mutex_lock(&delayed_node->mutex);
	if (delayed_node->count)
		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
	else
		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
	mutex_unlock(&delayed_node->mutex);

257
	if (refcount_dec_and_test(&delayed_node->refs)) {
258
		bool free = false;
259 260
		struct btrfs_root *root = delayed_node->root;
		spin_lock(&root->inode_lock);
261
		if (refcount_read(&delayed_node->refs) == 0) {
262 263
			radix_tree_delete(&root->delayed_nodes_tree,
					  delayed_node->inode_id);
264
			free = true;
265 266
		}
		spin_unlock(&root->inode_lock);
267 268
		if (free)
			kmem_cache_free(delayed_node_cache, delayed_node);
269 270 271 272 273 274 275 276
	}
}

static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 0);
}

277
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
278 279 280 281 282 283 284 285 286 287 288 289
					struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->prepare_list))
		goto out;

	p = delayed_root->prepare_list.next;
	list_del_init(p);
	node = list_entry(p, struct btrfs_delayed_node, p_list);
290
	refcount_inc(&node->refs);
291 292 293 294 295 296 297 298 299 300 301 302
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

static inline void btrfs_release_prepared_delayed_node(
					struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 1);
}

303
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
304 305 306 307 308 309 310 311
{
	struct btrfs_delayed_item *item;
	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
	if (item) {
		item->data_len = data_len;
		item->ins_or_del = 0;
		item->bytes_reserved = 0;
		item->delayed_node = NULL;
312
		refcount_set(&item->refs, 1);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	}
	return item;
}

/*
 * __btrfs_lookup_delayed_item - look up the delayed item by key
 * @delayed_node: pointer to the delayed node
 * @key:	  the key to look up
 * @prev:	  used to store the prev item if the right item isn't found
 * @next:	  used to store the next item if the right item isn't found
 *
 * Note: if we don't find the right item, we will return the prev item and
 * the next item.
 */
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
				struct rb_root *root,
				struct btrfs_key *key,
				struct btrfs_delayed_item **prev,
				struct btrfs_delayed_item **next)
{
	struct rb_node *node, *prev_node = NULL;
	struct btrfs_delayed_item *delayed_item = NULL;
	int ret = 0;

	node = root->rb_node;

	while (node) {
		delayed_item = rb_entry(node, struct btrfs_delayed_item,
					rb_node);
		prev_node = node;
		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
		if (ret < 0)
			node = node->rb_right;
		else if (ret > 0)
			node = node->rb_left;
		else
			return delayed_item;
	}

	if (prev) {
		if (!prev_node)
			*prev = NULL;
		else if (ret < 0)
			*prev = delayed_item;
		else if ((node = rb_prev(prev_node)) != NULL) {
			*prev = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*prev = NULL;
	}

	if (next) {
		if (!prev_node)
			*next = NULL;
		else if (ret > 0)
			*next = delayed_item;
		else if ((node = rb_next(prev_node)) != NULL) {
			*next = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*next = NULL;
	}
	return NULL;
}

378
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
379 380 381
					struct btrfs_delayed_node *delayed_node,
					struct btrfs_key *key)
{
382
	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
					   NULL, NULL);
}

static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
				    struct btrfs_delayed_item *ins,
				    int action)
{
	struct rb_node **p, *node;
	struct rb_node *parent_node = NULL;
	struct rb_root *root;
	struct btrfs_delayed_item *item;
	int cmp;

	if (action == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_node->ins_root;
	else if (action == BTRFS_DELAYED_DELETION_ITEM)
		root = &delayed_node->del_root;
	else
		BUG();
	p = &root->rb_node;
	node = &ins->rb_node;

	while (*p) {
		parent_node = *p;
		item = rb_entry(parent_node, struct btrfs_delayed_item,
				 rb_node);

		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
		if (cmp < 0)
			p = &(*p)->rb_right;
		else if (cmp > 0)
			p = &(*p)->rb_left;
		else
			return -EEXIST;
	}

	rb_link_node(node, parent_node, p);
	rb_insert_color(node, root);
	ins->delayed_node = delayed_node;
	ins->ins_or_del = action;

	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
	    action == BTRFS_DELAYED_INSERTION_ITEM &&
	    ins->key.offset >= delayed_node->index_cnt)
			delayed_node->index_cnt = ins->key.offset + 1;

	delayed_node->count++;
	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
	return 0;
}

static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
					      struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_INSERTION_ITEM);
}

static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
					     struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_DELETION_ITEM);
}

448 449 450
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
	int seq = atomic_inc_return(&delayed_root->items_seq);
451 452 453 454

	/*
	 * atomic_dec_return implies a barrier for waitqueue_active
	 */
455 456 457 458 459 460
	if ((atomic_dec_return(&delayed_root->items) <
	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
	    waitqueue_active(&delayed_root->wait))
		wake_up(&delayed_root->wait);
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
	struct rb_root *root;
	struct btrfs_delayed_root *delayed_root;

	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;

	BUG_ON(!delayed_root);
	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);

	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_item->delayed_node->ins_root;
	else
		root = &delayed_item->delayed_node->del_root;

	rb_erase(&delayed_item->rb_node, root);
	delayed_item->delayed_node->count--;
479 480

	finish_one_item(delayed_root);
481 482 483 484 485 486
}

static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
	if (item) {
		__btrfs_remove_delayed_item(item);
487
		if (refcount_dec_and_test(&item->refs))
488 489 490 491
			kfree(item);
	}
}

492
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
493 494 495 496 497 498 499 500 501 502 503 504
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->ins_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

505
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
506 507 508 509 510 511 512 513 514 515 516 517
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->del_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

518
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
519 520 521 522 523 524 525 526 527 528 529 530 531
						struct btrfs_delayed_item *item)
{
	struct rb_node *p;
	struct btrfs_delayed_item *next = NULL;

	p = rb_next(&item->rb_node);
	if (p)
		next = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return next;
}

static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
532
					       struct btrfs_fs_info *fs_info,
533 534 535 536 537 538 539 540 541 542 543
					       struct btrfs_delayed_item *item)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	if (!trans->bytes_reserved)
		return 0;

	src_rsv = trans->block_rsv;
544
	dst_rsv = &fs_info->delayed_block_rsv;
545

546
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
547
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
J
Josef Bacik 已提交
548
	if (!ret) {
549
		trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
550 551
					      item->key.objectid,
					      num_bytes, 1);
552
		item->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
553
	}
554 555 556 557

	return ret;
}

558
static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
559 560
						struct btrfs_delayed_item *item)
{
561 562
	struct btrfs_block_rsv *rsv;

563 564 565
	if (!item->bytes_reserved)
		return;

566 567
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
568 569
				      item->key.objectid, item->bytes_reserved,
				      0);
570
	btrfs_block_rsv_release(fs_info, rsv,
571 572 573 574 575 576
				item->bytes_reserved);
}

static int btrfs_delayed_inode_reserve_metadata(
					struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
577
					struct btrfs_inode *inode,
578 579
					struct btrfs_delayed_node *node)
{
580
	struct btrfs_fs_info *fs_info = root->fs_info;
581 582 583 584 585 586
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	src_rsv = trans->block_rsv;
587
	dst_rsv = &fs_info->delayed_block_rsv;
588

589
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
590 591 592 593 594 595 596 597

	/*
	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
	 * which doesn't reserve space for speed.  This is a problem since we
	 * still need to reserve space for this update, so try to reserve the
	 * space.
	 *
	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
598
	 * we always reserve enough to update the inode item.
599
	 */
600
	if (!src_rsv || (!trans->bytes_reserved &&
601
			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
M
Miao Xie 已提交
602 603
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
604 605 606 607 608 609 610 611
		/*
		 * Since we're under a transaction reserve_metadata_bytes could
		 * try to commit the transaction which will make it return
		 * EAGAIN to make us stop the transaction we have, so return
		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
		 */
		if (ret == -EAGAIN)
			ret = -ENOSPC;
J
Josef Bacik 已提交
612
		if (!ret) {
613
			node->bytes_reserved = num_bytes;
614
			trace_btrfs_space_reservation(fs_info,
J
Josef Bacik 已提交
615
						      "delayed_inode",
616
						      btrfs_ino(inode),
J
Josef Bacik 已提交
617 618
						      num_bytes, 1);
		}
619 620 621
		return ret;
	}

622
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
J
Josef Bacik 已提交
623
	if (!ret) {
624
		trace_btrfs_space_reservation(fs_info, "delayed_inode",
625
					      btrfs_ino(inode), num_bytes, 1);
626
		node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
627
	}
628 629 630 631

	return ret;
}

632
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
633 634 635 636 637 638 639
						struct btrfs_delayed_node *node)
{
	struct btrfs_block_rsv *rsv;

	if (!node->bytes_reserved)
		return;

640 641
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_inode",
J
Josef Bacik 已提交
642
				      node->inode_id, node->bytes_reserved, 0);
643
	btrfs_block_rsv_release(fs_info, rsv,
644 645 646 647 648 649 650 651
				node->bytes_reserved);
	node->bytes_reserved = 0;
}

/*
 * This helper will insert some continuous items into the same leaf according
 * to the free space of the leaf.
 */
652 653 654
static int btrfs_batch_insert_items(struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
655
{
656
	struct btrfs_fs_info *fs_info = root->fs_info;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	struct btrfs_delayed_item *curr, *next;
	int free_space;
	int total_data_size = 0, total_size = 0;
	struct extent_buffer *leaf;
	char *data_ptr;
	struct btrfs_key *keys;
	u32 *data_size;
	struct list_head head;
	int slot;
	int nitems;
	int i;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];
673
	free_space = btrfs_leaf_free_space(fs_info, leaf);
674 675 676
	INIT_LIST_HEAD(&head);

	next = item;
677
	nitems = 0;
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

	/*
	 * count the number of the continuous items that we can insert in batch
	 */
	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
	       free_space) {
		total_data_size += next->data_len;
		total_size += next->data_len + sizeof(struct btrfs_item);
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;
	}

	if (!nitems) {
		ret = 0;
		goto out;
	}

	/*
	 * we need allocate some memory space, but it might cause the task
	 * to sleep, so we set all locked nodes in the path to blocking locks
	 * first.
	 */
	btrfs_set_path_blocking(path);

710
	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
711 712 713 714 715
	if (!keys) {
		ret = -ENOMEM;
		goto out;
	}

716
	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
717 718 719 720 721 722 723 724 725 726 727 728 729 730
	if (!data_size) {
		ret = -ENOMEM;
		goto error;
	}

	/* get keys of all the delayed items */
	i = 0;
	list_for_each_entry(next, &head, tree_list) {
		keys[i] = next->key;
		data_size[i] = next->data_len;
		i++;
	}

	/* reset all the locked nodes in the patch to spinning locks. */
731
	btrfs_clear_path_blocking(path, NULL, 0);
732 733

	/* insert the keys of the items */
734
	setup_items_for_insert(root, path, keys, data_size,
735
			       total_data_size, total_size, nitems);
736 737 738 739 740 741 742 743 744 745

	/* insert the dir index items */
	slot = path->slots[0];
	list_for_each_entry_safe(curr, next, &head, tree_list) {
		data_ptr = btrfs_item_ptr(leaf, slot, char);
		write_extent_buffer(leaf, &curr->data,
				    (unsigned long)data_ptr,
				    curr->data_len);
		slot++;

746
		btrfs_delayed_item_release_metadata(fs_info, curr);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

error:
	kfree(data_size);
	kfree(keys);
out:
	return ret;
}

/*
 * This helper can just do simple insertion that needn't extend item for new
 * data, such as directory name index insertion, inode insertion.
 */
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path,
				     struct btrfs_delayed_item *delayed_item)
{
768
	struct btrfs_fs_info *fs_info = root->fs_info;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	struct extent_buffer *leaf;
	char *ptr;
	int ret;

	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
				      delayed_item->data_len);
	if (ret < 0 && ret != -EEXIST)
		return ret;

	leaf = path->nodes[0];

	ptr = btrfs_item_ptr(leaf, path->slots[0], char);

	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
			    delayed_item->data_len);
	btrfs_mark_buffer_dirty(leaf);

786
	btrfs_delayed_item_release_metadata(fs_info, delayed_item);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	return 0;
}

/*
 * we insert an item first, then if there are some continuous items, we try
 * to insert those items into the same leaf.
 */
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_insertion_item(node);
	if (!curr)
		goto insert_end;

	ret = btrfs_insert_delayed_item(trans, root, path, curr);
	if (ret < 0) {
810
		btrfs_release_path(path);
811 812 813 814 815 816 817 818
		goto insert_end;
	}

	prev = curr;
	curr = __btrfs_next_delayed_item(prev);
	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
		/* insert the continuous items into the same leaf */
		path->slots[0]++;
819
		btrfs_batch_insert_items(root, path, curr);
820 821 822 823
	}
	btrfs_release_delayed_item(prev);
	btrfs_mark_buffer_dirty(path->nodes[0]);

824
	btrfs_release_path(path);
825 826 827 828 829 830 831 832 833 834 835 836 837
	mutex_unlock(&node->mutex);
	goto do_again;

insert_end:
	mutex_unlock(&node->mutex);
	return ret;
}

static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
{
838
	struct btrfs_fs_info *fs_info = root->fs_info;
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	struct btrfs_delayed_item *curr, *next;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct list_head head;
	int nitems, i, last_item;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];

	i = path->slots[0];
	last_item = btrfs_header_nritems(leaf) - 1;
	if (i > last_item)
		return -ENOENT;	/* FIXME: Is errno suitable? */

	next = item;
	INIT_LIST_HEAD(&head);
	btrfs_item_key_to_cpu(leaf, &key, i);
	nitems = 0;
	/*
	 * count the number of the dir index items that we can delete in batch
	 */
	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;

		i++;
		if (i > last_item)
			break;
		btrfs_item_key_to_cpu(leaf, &key, i);
	}

	if (!nitems)
		return 0;

	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
	if (ret)
		goto out;

	list_for_each_entry_safe(curr, next, &head, tree_list) {
888
		btrfs_delayed_item_release_metadata(fs_info, curr);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

out:
	return ret;
}

static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_deletion_item(node);
	if (!curr)
		goto delete_fail;

	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
	if (ret < 0)
		goto delete_fail;
	else if (ret > 0) {
		/*
		 * can't find the item which the node points to, so this node
		 * is invalid, just drop it.
		 */
		prev = curr;
		curr = __btrfs_next_delayed_item(prev);
		btrfs_release_delayed_item(prev);
		ret = 0;
923
		btrfs_release_path(path);
924 925
		if (curr) {
			mutex_unlock(&node->mutex);
926
			goto do_again;
927
		} else
928 929 930 931
			goto delete_fail;
	}

	btrfs_batch_delete_items(trans, root, path, curr);
932
	btrfs_release_path(path);
933 934 935 936
	mutex_unlock(&node->mutex);
	goto do_again;

delete_fail:
937
	btrfs_release_path(path);
938 939 940 941 942 943 944 945
	mutex_unlock(&node->mutex);
	return ret;
}

static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

946 947
	if (delayed_node &&
	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
948
		BUG_ON(!delayed_node->root);
949
		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
950 951 952
		delayed_node->count--;

		delayed_root = delayed_node->root->fs_info->delayed_root;
953
		finish_one_item(delayed_root);
954 955 956
	}
}

957 958 959 960 961 962 963 964 965 966 967 968
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

	ASSERT(delayed_node->root);
	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count--;

	delayed_root = delayed_node->root->fs_info->delayed_root;
	finish_one_item(delayed_root);
}

969 970 971 972
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct btrfs_delayed_node *node)
973
{
974
	struct btrfs_fs_info *fs_info = root->fs_info;
975 976 977
	struct btrfs_key key;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
978
	int mod;
979 980 981
	int ret;

	key.objectid = node->inode_id;
982
	key.type = BTRFS_INODE_ITEM_KEY;
983
	key.offset = 0;
984

985 986 987 988 989 990
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		mod = -1;
	else
		mod = 1;

	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
991
	if (ret > 0) {
992
		btrfs_release_path(path);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		return -ENOENT;
	} else if (ret < 0) {
		return ret;
	}

	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
			    sizeof(struct btrfs_inode_item));
	btrfs_mark_buffer_dirty(leaf);

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		goto no_iref;

	path->slots[0]++;
	if (path->slots[0] >= btrfs_header_nritems(leaf))
		goto search;
again:
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != node->inode_id)
		goto out;

	if (key.type != BTRFS_INODE_REF_KEY &&
	    key.type != BTRFS_INODE_EXTREF_KEY)
		goto out;

	/*
	 * Delayed iref deletion is for the inode who has only one link,
	 * so there is only one iref. The case that several irefs are
	 * in the same item doesn't exist.
	 */
	btrfs_del_item(trans, root, path);
out:
	btrfs_release_delayed_iref(node);
no_iref:
	btrfs_release_path(path);
err_out:
1031
	btrfs_delayed_inode_release_metadata(fs_info, node);
1032 1033
	btrfs_release_delayed_inode(node);

1034 1035 1036 1037 1038
	return ret;

search:
	btrfs_release_path(path);

1039
	key.type = BTRFS_INODE_EXTREF_KEY;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	key.offset = -1;
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto err_out;
	ASSERT(ret);

	ret = 0;
	leaf = path->nodes[0];
	path->slots[0]--;
	goto again;
1050 1051
}

1052 1053 1054 1055 1056 1057 1058 1059
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					     struct btrfs_root *root,
					     struct btrfs_path *path,
					     struct btrfs_delayed_node *node)
{
	int ret;

	mutex_lock(&node->mutex);
1060
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1061 1062 1063 1064 1065 1066 1067 1068 1069
		mutex_unlock(&node->mutex);
		return 0;
	}

	ret = __btrfs_update_delayed_inode(trans, root, path, node);
	mutex_unlock(&node->mutex);
	return ret;
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_delayed_node *node)
{
	int ret;

	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
	return ret;
}

1089 1090 1091 1092 1093 1094
/*
 * Called when committing the transaction.
 * Returns 0 on success.
 * Returns < 0 on error and returns with an aborted transaction with any
 * outstanding delayed items cleaned up.
 */
1095
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1096
				     struct btrfs_fs_info *fs_info, int nr)
1097 1098 1099 1100
{
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;
	struct btrfs_path *path;
1101
	struct btrfs_block_rsv *block_rsv;
1102
	int ret = 0;
1103
	bool count = (nr > 0);
1104

1105 1106 1107
	if (trans->aborted)
		return -EIO;

1108 1109 1110 1111 1112
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->leave_spinning = 1;

1113
	block_rsv = trans->block_rsv;
1114
	trans->block_rsv = &fs_info->delayed_block_rsv;
1115

1116
	delayed_root = fs_info->delayed_root;
1117 1118

	curr_node = btrfs_first_delayed_node(delayed_root);
1119
	while (curr_node && (!count || (count && nr--))) {
1120 1121
		ret = __btrfs_commit_inode_delayed_items(trans, path,
							 curr_node);
1122 1123
		if (ret) {
			btrfs_release_delayed_node(curr_node);
1124
			curr_node = NULL;
1125
			btrfs_abort_transaction(trans, ret);
1126 1127 1128 1129 1130 1131 1132 1133
			break;
		}

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}

1134 1135
	if (curr_node)
		btrfs_release_delayed_node(curr_node);
1136
	btrfs_free_path(path);
1137
	trans->block_rsv = block_rsv;
1138

1139 1140 1141
	return ret;
}

1142
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1143
			    struct btrfs_fs_info *fs_info)
1144
{
1145
	return __btrfs_run_delayed_items(trans, fs_info, -1);
1146 1147 1148
}

int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1149
			       struct btrfs_fs_info *fs_info, int nr)
1150
{
1151
	return __btrfs_run_delayed_items(trans, fs_info, nr);
1152 1153
}

1154
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1155
				     struct btrfs_inode *inode)
1156
{
1157
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1158 1159
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
	if (!delayed_node->count) {
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

1173
	path = btrfs_alloc_path();
1174 1175
	if (!path) {
		btrfs_release_delayed_node(delayed_node);
1176
		return -ENOMEM;
1177
	}
1178 1179 1180 1181 1182 1183 1184
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);

1185
	btrfs_release_delayed_node(delayed_node);
1186 1187 1188
	btrfs_free_path(path);
	trans->block_rsv = block_rsv;

1189 1190 1191
	return ret;
}

1192
int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1193
{
1194
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1195
	struct btrfs_trans_handle *trans;
1196
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1197 1198 1199 1200 1201 1202 1203 1204
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
1205
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

	trans = btrfs_join_transaction(delayed_node->root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto out;
	}

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto trans_out;
	}
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
1226
	trans->block_rsv = &fs_info->delayed_block_rsv;
1227 1228

	mutex_lock(&delayed_node->mutex);
1229
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1230 1231 1232 1233 1234 1235 1236 1237 1238
		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
						   path, delayed_node);
	else
		ret = 0;
	mutex_unlock(&delayed_node->mutex);

	btrfs_free_path(path);
	trans->block_rsv = block_rsv;
trans_out:
1239
	btrfs_end_transaction(trans);
1240
	btrfs_btree_balance_dirty(fs_info);
1241 1242 1243 1244 1245 1246
out:
	btrfs_release_delayed_node(delayed_node);

	return ret;
}

1247
void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1248 1249 1250
{
	struct btrfs_delayed_node *delayed_node;

1251
	delayed_node = READ_ONCE(inode->delayed_node);
1252 1253 1254
	if (!delayed_node)
		return;

1255
	inode->delayed_node = NULL;
1256 1257 1258
	btrfs_release_delayed_node(delayed_node);
}

1259 1260 1261
struct btrfs_async_delayed_work {
	struct btrfs_delayed_root *delayed_root;
	int nr;
1262
	struct btrfs_work work;
1263 1264
};

1265
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1266
{
1267 1268
	struct btrfs_async_delayed_work *async_work;
	struct btrfs_delayed_root *delayed_root;
1269 1270 1271 1272
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_delayed_node *delayed_node = NULL;
	struct btrfs_root *root;
1273
	struct btrfs_block_rsv *block_rsv;
1274
	int total_done = 0;
1275

1276 1277
	async_work = container_of(work, struct btrfs_async_delayed_work, work);
	delayed_root = async_work->delayed_root;
1278 1279 1280 1281 1282

	path = btrfs_alloc_path();
	if (!path)
		goto out;

1283 1284 1285 1286 1287 1288 1289 1290 1291
again:
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
		goto free_path;

	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
	if (!delayed_node)
		goto free_path;

	path->leave_spinning = 1;
1292 1293
	root = delayed_node->root;

C
Chris Mason 已提交
1294
	trans = btrfs_join_transaction(root);
1295
	if (IS_ERR(trans))
1296
		goto release_path;
1297

1298
	block_rsv = trans->block_rsv;
1299
	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1300

1301
	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1302

1303
	trans->block_rsv = block_rsv;
1304
	btrfs_end_transaction(trans);
1305
	btrfs_btree_balance_dirty_nodelay(root->fs_info);
1306 1307 1308 1309 1310 1311

release_path:
	btrfs_release_path(path);
	total_done++;

	btrfs_release_prepared_delayed_node(delayed_node);
1312 1313
	if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
	    total_done < async_work->nr)
1314 1315
		goto again;

1316 1317 1318
free_path:
	btrfs_free_path(path);
out:
1319 1320
	wake_up(&delayed_root->wait);
	kfree(async_work);
1321 1322
}

1323

1324
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1325
				     struct btrfs_fs_info *fs_info, int nr)
1326
{
1327
	struct btrfs_async_delayed_work *async_work;
1328

1329 1330
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
	    btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1331 1332
		return 0;

1333 1334
	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
	if (!async_work)
1335 1336
		return -ENOMEM;

1337
	async_work->delayed_root = delayed_root;
1338 1339
	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
			btrfs_async_run_delayed_root, NULL, NULL);
1340
	async_work->nr = nr;
1341

1342
	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1343 1344 1345
	return 0;
}

1346
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1347
{
1348
	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1349 1350
}

1351
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1352 1353 1354
{
	int val = atomic_read(&delayed_root->items_seq);

1355
	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1356
		return 1;
1357 1358 1359 1360

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return 1;

1361 1362 1363
	return 0;
}

1364
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1365
{
1366
	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1367 1368 1369 1370 1371

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return;

	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1372
		int seq;
1373
		int ret;
1374 1375

		seq = atomic_read(&delayed_root->items_seq);
1376

1377
		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1378 1379 1380
		if (ret)
			return;

1381 1382
		wait_event_interruptible(delayed_root->wait,
					 could_end_wait(delayed_root, seq));
1383
		return;
1384 1385
	}

1386
	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1387 1388
}

1389
/* Will return 0 or -ENOMEM */
1390
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1391 1392
				   struct btrfs_fs_info *fs_info,
				   const char *name, int name_len,
1393
				   struct btrfs_inode *dir,
1394 1395 1396 1397 1398 1399 1400 1401
				   struct btrfs_disk_key *disk_key, u8 type,
				   u64 index)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *delayed_item;
	struct btrfs_dir_item *dir_item;
	int ret;

1402
	delayed_node = btrfs_get_or_create_delayed_node(dir);
1403 1404 1405 1406 1407 1408 1409 1410 1411
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
	if (!delayed_item) {
		ret = -ENOMEM;
		goto release_node;
	}

1412
	delayed_item->key.objectid = btrfs_ino(dir);
1413
	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1414 1415 1416 1417
	delayed_item->key.offset = index;

	dir_item = (struct btrfs_dir_item *)delayed_item->data;
	dir_item->location = *disk_key;
1418 1419 1420 1421
	btrfs_set_stack_dir_transid(dir_item, trans->transid);
	btrfs_set_stack_dir_data_len(dir_item, 0);
	btrfs_set_stack_dir_name_len(dir_item, name_len);
	btrfs_set_stack_dir_type(dir_item, type);
1422 1423
	memcpy((char *)(dir_item + 1), name, name_len);

1424
	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
J
Josef Bacik 已提交
1425 1426 1427 1428 1429 1430 1431
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible
	 */
	BUG_ON(ret);


1432 1433 1434
	mutex_lock(&delayed_node->mutex);
	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
	if (unlikely(ret)) {
1435
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1436 1437 1438
			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  name_len, name, delayed_node->root->objectid,
			  delayed_node->inode_id, ret);
1439 1440 1441 1442 1443 1444 1445 1446 1447
		BUG();
	}
	mutex_unlock(&delayed_node->mutex);

release_node:
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1448
static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
					       struct btrfs_delayed_node *node,
					       struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	mutex_lock(&node->mutex);
	item = __btrfs_lookup_delayed_insertion_item(node, key);
	if (!item) {
		mutex_unlock(&node->mutex);
		return 1;
	}

1461
	btrfs_delayed_item_release_metadata(fs_info, item);
1462 1463 1464 1465 1466 1467
	btrfs_release_delayed_item(item);
	mutex_unlock(&node->mutex);
	return 0;
}

int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1468
				   struct btrfs_fs_info *fs_info,
1469
				   struct btrfs_inode *dir, u64 index)
1470 1471 1472 1473 1474 1475
{
	struct btrfs_delayed_node *node;
	struct btrfs_delayed_item *item;
	struct btrfs_key item_key;
	int ret;

1476
	node = btrfs_get_or_create_delayed_node(dir);
1477 1478 1479
	if (IS_ERR(node))
		return PTR_ERR(node);

1480
	item_key.objectid = btrfs_ino(dir);
1481
	item_key.type = BTRFS_DIR_INDEX_KEY;
1482 1483
	item_key.offset = index;

1484
	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	if (!ret)
		goto end;

	item = btrfs_alloc_delayed_item(0);
	if (!item) {
		ret = -ENOMEM;
		goto end;
	}

	item->key = item_key;

1496
	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1497 1498 1499 1500 1501 1502 1503 1504 1505
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible.
	 */
	BUG_ON(ret);

	mutex_lock(&node->mutex);
	ret = __btrfs_add_delayed_deletion_item(node, item);
	if (unlikely(ret)) {
1506
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1507 1508
			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  index, node->root->objectid, node->inode_id, ret);
1509 1510 1511 1512 1513 1514 1515 1516
		BUG();
	}
	mutex_unlock(&node->mutex);
end:
	btrfs_release_delayed_node(node);
	return ret;
}

1517
int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1518
{
1519
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1520 1521 1522 1523 1524 1525 1526 1527 1528

	if (!delayed_node)
		return -ENOENT;

	/*
	 * Since we have held i_mutex of this directory, it is impossible that
	 * a new directory index is added into the delayed node and index_cnt
	 * is updated now. So we needn't lock the delayed node.
	 */
1529 1530
	if (!delayed_node->index_cnt) {
		btrfs_release_delayed_node(delayed_node);
1531
		return -EINVAL;
1532
	}
1533

1534
	inode->index_cnt = delayed_node->index_cnt;
1535 1536
	btrfs_release_delayed_node(delayed_node);
	return 0;
1537 1538
}

1539 1540 1541
bool btrfs_readdir_get_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1542 1543 1544 1545
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *item;

1546
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1547
	if (!delayed_node)
1548 1549 1550 1551 1552 1553 1554 1555
		return false;

	/*
	 * We can only do one readdir with delayed items at a time because of
	 * item->readdir_list.
	 */
	inode_unlock_shared(inode);
	inode_lock(inode);
1556 1557 1558 1559

	mutex_lock(&delayed_node->mutex);
	item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (item) {
1560
		refcount_inc(&item->refs);
1561 1562 1563 1564 1565 1566
		list_add_tail(&item->readdir_list, ins_list);
		item = __btrfs_next_delayed_item(item);
	}

	item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (item) {
1567
		refcount_inc(&item->refs);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
		list_add_tail(&item->readdir_list, del_list);
		item = __btrfs_next_delayed_item(item);
	}
	mutex_unlock(&delayed_node->mutex);
	/*
	 * This delayed node is still cached in the btrfs inode, so refs
	 * must be > 1 now, and we needn't check it is going to be freed
	 * or not.
	 *
	 * Besides that, this function is used to read dir, we do not
	 * insert/delete delayed items in this period. So we also needn't
	 * requeue or dequeue this delayed node.
	 */
1581
	refcount_dec(&delayed_node->refs);
1582 1583

	return true;
1584 1585
}

1586 1587 1588
void btrfs_readdir_put_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1589 1590 1591 1592 1593
{
	struct btrfs_delayed_item *curr, *next;

	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);
1594
		if (refcount_dec_and_test(&curr->refs))
1595 1596 1597 1598 1599
			kfree(curr);
	}

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		list_del(&curr->readdir_list);
1600
		if (refcount_dec_and_test(&curr->refs))
1601 1602
			kfree(curr);
	}
1603 1604 1605 1606 1607 1608

	/*
	 * The VFS is going to do up_read(), so we need to downgrade back to a
	 * read lock.
	 */
	downgrade_write(&inode->i_rwsem);
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
}

int btrfs_should_delete_dir_index(struct list_head *del_list,
				  u64 index)
{
	struct btrfs_delayed_item *curr, *next;
	int ret;

	if (list_empty(del_list))
		return 0;

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		if (curr->key.offset > index)
			break;

		list_del(&curr->readdir_list);
		ret = (curr->key.offset == index);

1627
		if (refcount_dec_and_test(&curr->refs))
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
			kfree(curr);

		if (ret)
			return 1;
		else
			continue;
	}
	return 0;
}

/*
 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
 *
 */
A
Al Viro 已提交
1642
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1643
				    struct list_head *ins_list)
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
{
	struct btrfs_dir_item *di;
	struct btrfs_delayed_item *curr, *next;
	struct btrfs_key location;
	char *name;
	int name_len;
	int over = 0;
	unsigned char d_type;

	if (list_empty(ins_list))
		return 0;

	/*
	 * Changing the data of the delayed item is impossible. So
	 * we needn't lock them. And we have held i_mutex of the
	 * directory, nobody can delete any directory indexes now.
	 */
	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);

A
Al Viro 已提交
1664
		if (curr->key.offset < ctx->pos) {
1665
			if (refcount_dec_and_test(&curr->refs))
1666 1667 1668 1669
				kfree(curr);
			continue;
		}

A
Al Viro 已提交
1670
		ctx->pos = curr->key.offset;
1671 1672 1673

		di = (struct btrfs_dir_item *)curr->data;
		name = (char *)(di + 1);
1674
		name_len = btrfs_stack_dir_name_len(di);
1675 1676 1677 1678

		d_type = btrfs_filetype_table[di->type];
		btrfs_disk_key_to_cpu(&location, &di->location);

A
Al Viro 已提交
1679
		over = !dir_emit(ctx, name, name_len,
1680 1681
			       location.objectid, d_type);

1682
		if (refcount_dec_and_test(&curr->refs))
1683 1684 1685 1686
			kfree(curr);

		if (over)
			return 1;
1687
		ctx->pos++;
1688 1689 1690 1691 1692 1693 1694 1695
	}
	return 0;
}

static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
				  struct btrfs_inode_item *inode_item,
				  struct inode *inode)
{
1696 1697
	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1698 1699 1700 1701 1702 1703
	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
	btrfs_set_stack_inode_generation(inode_item,
					 BTRFS_I(inode)->generation);
1704 1705
	btrfs_set_stack_inode_sequence(inode_item,
				       inode_peek_iversion(inode));
1706 1707 1708
	btrfs_set_stack_inode_transid(inode_item, trans->transid);
	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
C
Chris Mason 已提交
1709
	btrfs_set_stack_inode_block_group(inode_item, 0);
1710

1711
	btrfs_set_stack_timespec_sec(&inode_item->atime,
1712
				     inode->i_atime.tv_sec);
1713
	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1714 1715
				      inode->i_atime.tv_nsec);

1716
	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1717
				     inode->i_mtime.tv_sec);
1718
	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1719 1720
				      inode->i_mtime.tv_nsec);

1721
	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1722
				     inode->i_ctime.tv_sec);
1723
	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1724
				      inode->i_ctime.tv_nsec);
1725 1726 1727 1728 1729

	btrfs_set_stack_timespec_sec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_sec);
	btrfs_set_stack_timespec_nsec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_nsec);
1730 1731
}

1732 1733 1734 1735 1736
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_inode_item *inode_item;

1737
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1738 1739 1740 1741
	if (!delayed_node)
		return -ENOENT;

	mutex_lock(&delayed_node->mutex);
1742
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1743 1744 1745 1746 1747 1748 1749
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return -ENOENT;
	}

	inode_item = &delayed_node->inode_item;

1750 1751
	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1752
	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1753
	inode->i_mode = btrfs_stack_inode_mode(inode_item);
M
Miklos Szeredi 已提交
1754
	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1755 1756
	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1757 1758
        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);

1759 1760
	inode_set_iversion_queried(inode,
				   btrfs_stack_inode_sequence(inode_item));
1761 1762 1763 1764
	inode->i_rdev = 0;
	*rdev = btrfs_stack_inode_rdev(inode_item);
	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);

1765 1766
	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1767

1768 1769
	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1770

1771 1772
	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1773

1774 1775 1776 1777 1778
	BTRFS_I(inode)->i_otime.tv_sec =
		btrfs_stack_timespec_sec(&inode_item->otime);
	BTRFS_I(inode)->i_otime.tv_nsec =
		btrfs_stack_timespec_nsec(&inode_item->otime);

1779 1780 1781 1782 1783 1784 1785 1786
	inode->i_generation = BTRFS_I(inode)->generation;
	BTRFS_I(inode)->index_cnt = (u64)-1;

	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1787 1788 1789 1790
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;
1791
	int ret = 0;
1792

1793
	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1794 1795 1796 1797
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	mutex_lock(&delayed_node->mutex);
1798
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1799 1800 1801 1802
		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
		goto release_node;
	}

1803
	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1804
						   delayed_node);
1805 1806
	if (ret)
		goto release_node;
1807 1808

	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1809
	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1810 1811 1812 1813 1814 1815 1816 1817
	delayed_node->count++;
	atomic_inc(&root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1818
int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1819
{
1820
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1821 1822
	struct btrfs_delayed_node *delayed_node;

1823 1824 1825 1826 1827
	/*
	 * we don't do delayed inode updates during log recovery because it
	 * leads to enospc problems.  This means we also can't do
	 * delayed inode refs
	 */
1828
	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1829 1830
		return -EAGAIN;

1831
	delayed_node = btrfs_get_or_create_delayed_node(inode);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	/*
	 * We don't reserve space for inode ref deletion is because:
	 * - We ONLY do async inode ref deletion for the inode who has only
	 *   one link(i_nlink == 1), it means there is only one inode ref.
	 *   And in most case, the inode ref and the inode item are in the
	 *   same leaf, and we will deal with them at the same time.
	 *   Since we are sure we will reserve the space for the inode item,
	 *   it is unnecessary to reserve space for inode ref deletion.
	 * - If the inode ref and the inode item are not in the same leaf,
	 *   We also needn't worry about enospc problem, because we reserve
	 *   much more space for the inode update than it needs.
	 * - At the worst, we can steal some space from the global reservation.
	 *   It is very rare.
	 */
	mutex_lock(&delayed_node->mutex);
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		goto release_node;

	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count++;
1855
	atomic_inc(&fs_info->delayed_root->items);
1856 1857 1858 1859 1860 1861
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1862 1863 1864
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_root *root = delayed_node->root;
1865
	struct btrfs_fs_info *fs_info = root->fs_info;
1866 1867 1868 1869 1870
	struct btrfs_delayed_item *curr_item, *prev_item;

	mutex_lock(&delayed_node->mutex);
	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (curr_item) {
1871
		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1872 1873 1874 1875 1876 1877 1878
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (curr_item) {
1879
		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1880 1881 1882 1883 1884
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

1885 1886 1887
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		btrfs_release_delayed_iref(delayed_node);

1888
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1889
		btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1890 1891 1892 1893 1894
		btrfs_release_delayed_inode(delayed_node);
	}
	mutex_unlock(&delayed_node->mutex);
}

1895
void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1896 1897 1898
{
	struct btrfs_delayed_node *delayed_node;

1899
	delayed_node = btrfs_get_delayed_node(inode);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	if (!delayed_node)
		return;

	__btrfs_kill_delayed_node(delayed_node);
	btrfs_release_delayed_node(delayed_node);
}

void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
	u64 inode_id = 0;
	struct btrfs_delayed_node *delayed_nodes[8];
	int i, n;

	while (1) {
		spin_lock(&root->inode_lock);
		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
					   (void **)delayed_nodes, inode_id,
					   ARRAY_SIZE(delayed_nodes));
		if (!n) {
			spin_unlock(&root->inode_lock);
			break;
		}

		inode_id = delayed_nodes[n - 1]->inode_id + 1;

		for (i = 0; i < n; i++)
1926
			refcount_inc(&delayed_nodes[i]->refs);
1927 1928 1929 1930 1931 1932 1933 1934
		spin_unlock(&root->inode_lock);

		for (i = 0; i < n; i++) {
			__btrfs_kill_delayed_node(delayed_nodes[i]);
			btrfs_release_delayed_node(delayed_nodes[i]);
		}
	}
}
1935

1936
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1937 1938 1939
{
	struct btrfs_delayed_node *curr_node, *prev_node;

1940
	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1941 1942 1943 1944 1945 1946 1947 1948 1949
	while (curr_node) {
		__btrfs_kill_delayed_node(curr_node);

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}
}