fault.c 25.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Based on arch/arm/mm/fault.c
 *
 * Copyright (C) 1995  Linus Torvalds
 * Copyright (C) 1995-2004 Russell King
 * Copyright (C) 2012 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

21
#include <linux/acpi.h>
22
#include <linux/extable.h>
23 24 25 26 27 28 29
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
30
#include <linux/sched/signal.h>
31
#include <linux/sched/debug.h>
32 33
#include <linux/highmem.h>
#include <linux/perf_event.h>
34
#include <linux/preempt.h>
35
#include <linux/hugetlb.h>
36

37
#include <asm/acpi.h>
38
#include <asm/bug.h>
39
#include <asm/cmpxchg.h>
40
#include <asm/cpufeature.h>
41 42
#include <asm/exception.h>
#include <asm/debug-monitors.h>
43
#include <asm/esr.h>
44
#include <asm/sysreg.h>
45 46 47
#include <asm/system_misc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
48
#include <asm/traps.h>
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63
struct fault_info {
	int	(*fn)(unsigned long addr, unsigned int esr,
		      struct pt_regs *regs);
	int	sig;
	int	code;
	const char *name;
};

static const struct fault_info fault_info[];

static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
{
	return fault_info + (esr & 63);
}
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, esr))
			ret = 1;
		preempt_enable();
	}

	return ret;
}
#else
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	return 0;
}
#endif

87 88 89 90 91 92 93 94 95 96 97 98 99 100
static void data_abort_decode(unsigned int esr)
{
	pr_alert("Data abort info:\n");

	if (esr & ESR_ELx_ISV) {
		pr_alert("  Access size = %u byte(s)\n",
			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
		pr_alert("  SSE = %lu, SRT = %lu\n",
			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
		pr_alert("  SF = %lu, AR = %lu\n",
			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
	} else {
101
		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
102 103 104 105 106 107 108 109 110 111 112
	}

	pr_alert("  CM = %lu, WnR = %lu\n",
		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
}

static void mem_abort_decode(unsigned int esr)
{
	pr_alert("Mem abort info:\n");

113
	pr_alert("  ESR = 0x%08x\n", esr);
114 115 116 117 118 119 120 121 122 123 124 125 126 127
	pr_alert("  Exception class = %s, IL = %u bits\n",
		 esr_get_class_string(esr),
		 (esr & ESR_ELx_IL) ? 32 : 16);
	pr_alert("  SET = %lu, FnV = %lu\n",
		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
	pr_alert("  EA = %lu, S1PTW = %lu\n",
		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);

	if (esr_is_data_abort(esr))
		data_abort_decode(esr);
}

128
/*
129
 * Dump out the page tables associated with 'addr' in the currently active mm.
130
 */
131
void show_pte(unsigned long addr)
132
{
133
	struct mm_struct *mm;
134 135
	pgd_t *pgdp;
	pgd_t pgd;
136

137 138 139 140 141 142 143 144 145 146
	if (addr < TASK_SIZE) {
		/* TTBR0 */
		mm = current->active_mm;
		if (mm == &init_mm) {
			pr_alert("[%016lx] user address but active_mm is swapper\n",
				 addr);
			return;
		}
	} else if (addr >= VA_START) {
		/* TTBR1 */
147
		mm = &init_mm;
148 149 150 151 152
	} else {
		pr_alert("[%016lx] address between user and kernel address ranges\n",
			 addr);
		return;
	}
153

154
	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
155 156
		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
		 VA_BITS, mm->pgd);
157 158 159
	pgdp = pgd_offset(mm, addr);
	pgd = READ_ONCE(*pgdp);
	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
160 161

	do {
162 163 164
		pud_t *pudp, pud;
		pmd_t *pmdp, pmd;
		pte_t *ptep, pte;
165

166
		if (pgd_none(pgd) || pgd_bad(pgd))
167 168
			break;

169 170 171 172
		pudp = pud_offset(pgdp, addr);
		pud = READ_ONCE(*pudp);
		pr_cont(", pud=%016llx", pud_val(pud));
		if (pud_none(pud) || pud_bad(pud))
173 174
			break;

175 176 177 178
		pmdp = pmd_offset(pudp, addr);
		pmd = READ_ONCE(*pmdp);
		pr_cont(", pmd=%016llx", pmd_val(pmd));
		if (pmd_none(pmd) || pmd_bad(pmd))
179 180
			break;

181 182 183 184
		ptep = pte_offset_map(pmdp, addr);
		pte = READ_ONCE(*ptep);
		pr_cont(", pte=%016llx", pte_val(pte));
		pte_unmap(ptep);
185 186
	} while(0);

187
	pr_cont("\n");
188 189
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * This function sets the access flags (dirty, accessed), as well as write
 * permission, and only to a more permissive setting.
 *
 * It needs to cope with hardware update of the accessed/dirty state by other
 * agents in the system and can safely skip the __sync_icache_dcache() call as,
 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
 *
 * Returns whether or not the PTE actually changed.
 */
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
204
	pteval_t old_pteval, pteval;
205
	pte_t pte = READ_ONCE(*ptep);
206

207
	if (pte_same(pte, entry))
208 209 210
		return 0;

	/* only preserve the access flags and write permission */
211
	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
212 213 214

	/*
	 * Setting the flags must be done atomically to avoid racing with the
215 216 217
	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
	 * be set to the most permissive (lowest value) of *ptep and entry
	 * (calculated as: a & b == ~(~a | ~b)).
218
	 */
219
	pte_val(entry) ^= PTE_RDONLY;
220
	pteval = pte_val(pte);
221 222 223 224 225 226 227
	do {
		old_pteval = pteval;
		pteval ^= PTE_RDONLY;
		pteval |= pte_val(entry);
		pteval ^= PTE_RDONLY;
		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
	} while (pteval != old_pteval);
228 229 230 231 232

	flush_tlb_fix_spurious_fault(vma, address);
	return 1;
}

233 234 235 236 237
static bool is_el1_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}

238 239 240
static inline bool is_el1_permission_fault(unsigned int esr,
					   struct pt_regs *regs,
					   unsigned long addr)
241 242 243 244 245 246 247 248 249 250
{
	unsigned int ec       = ESR_ELx_EC(esr);
	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;

	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
		return false;

	if (fsc_type == ESR_ELx_FSC_PERM)
		return true;

251
	if (addr < TASK_SIZE && system_uses_ttbr0_pan())
252 253 254 255 256 257
		return fsc_type == ESR_ELx_FSC_FAULT &&
			(regs->pstate & PSR_PAN_BIT);

	return false;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static void die_kernel_fault(const char *msg, unsigned long addr,
			     unsigned int esr, struct pt_regs *regs)
{
	bust_spinlocks(1);

	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
		 addr);

	mem_abort_decode(esr);

	show_pte(addr);
	die("Oops", regs, esr);
	bust_spinlocks(0);
	do_exit(SIGKILL);
}

274 275
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
276
{
277 278
	const char *msg;

279 280
	/*
	 * Are we prepared to handle this kernel fault?
281
	 * We are almost certainly not prepared to handle instruction faults.
282
	 */
283
	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
284 285
		return;

286
	if (is_el1_permission_fault(esr, regs, addr)) {
287 288 289 290 291 292 293 294 295 296
		if (esr & ESR_ELx_WNR)
			msg = "write to read-only memory";
		else
			msg = "read from unreadable memory";
	} else if (addr < PAGE_SIZE) {
		msg = "NULL pointer dereference";
	} else {
		msg = "paging request";
	}

297
	die_kernel_fault(msg, addr, esr, regs);
298 299
}

300
static void __do_user_fault(struct siginfo *info, unsigned int esr)
301
{
302
	current->thread.fault_address = (unsigned long)info->si_addr;
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

	/*
	 * If the faulting address is in the kernel, we must sanitize the ESR.
	 * From userspace's point of view, kernel-only mappings don't exist
	 * at all, so we report them as level 0 translation faults.
	 * (This is not quite the way that "no mapping there at all" behaves:
	 * an alignment fault not caused by the memory type would take
	 * precedence over translation fault for a real access to empty
	 * space. Unfortunately we can't easily distinguish "alignment fault
	 * not caused by memory type" from "alignment fault caused by memory
	 * type", so we ignore this wrinkle and just return the translation
	 * fault.)
	 */
	if (current->thread.fault_address >= TASK_SIZE) {
		switch (ESR_ELx_EC(esr)) {
		case ESR_ELx_EC_DABT_LOW:
			/*
			 * These bits provide only information about the
			 * faulting instruction, which userspace knows already.
			 * We explicitly clear bits which are architecturally
			 * RES0 in case they are given meanings in future.
			 * We always report the ESR as if the fault was taken
			 * to EL1 and so ISV and the bits in ISS[23:14] are
			 * clear. (In fact it always will be a fault to EL1.)
			 */
			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
				ESR_ELx_CM | ESR_ELx_WNR;
			esr |= ESR_ELx_FSC_FAULT;
			break;
		case ESR_ELx_EC_IABT_LOW:
			/*
			 * Claim a level 0 translation fault.
			 * All other bits are architecturally RES0 for faults
			 * reported with that DFSC value, so we clear them.
			 */
			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
			esr |= ESR_ELx_FSC_FAULT;
			break;
		default:
			/*
			 * This should never happen (entry.S only brings us
			 * into this code for insn and data aborts from a lower
			 * exception level). Fail safe by not providing an ESR
			 * context record at all.
			 */
			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
			esr = 0;
			break;
		}
	}

354 355
	current->thread.fault_code = esr;
	arm64_force_sig_info(info, esr_to_fault_info(esr)->name, current);
356 357
}

358
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
359 360 361 362 363
{
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
364
	if (user_mode(regs)) {
365
		const struct fault_info *inf = esr_to_fault_info(esr);
366 367 368 369 370 371
		struct siginfo si;

		clear_siginfo(&si);
		si.si_signo	= inf->sig;
		si.si_code	= inf->code;
		si.si_addr	= (void __user *)addr;
372 373 374

		__do_user_fault(&si, esr);
	} else {
375
		__do_kernel_fault(addr, esr, regs);
376
	}
377 378 379 380 381
}

#define VM_FAULT_BADMAP		0x010000
#define VM_FAULT_BADACCESS	0x020000

382
static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
383
			   unsigned int mm_flags, unsigned long vm_flags,
384 385 386
			   struct task_struct *tsk)
{
	struct vm_area_struct *vma;
387
	vm_fault_t fault;
388 389 390 391 392 393 394 395 396 397 398 399 400

	vma = find_vma(mm, addr);
	fault = VM_FAULT_BADMAP;
	if (unlikely(!vma))
		goto out;
	if (unlikely(vma->vm_start > addr))
		goto check_stack;

	/*
	 * Ok, we have a good vm_area for this memory access, so we can handle
	 * it.
	 */
good_area:
401 402
	/*
	 * Check that the permissions on the VMA allow for the fault which
403
	 * occurred.
404 405
	 */
	if (!(vma->vm_flags & vm_flags)) {
406 407 408 409
		fault = VM_FAULT_BADACCESS;
		goto out;
	}

410
	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
411 412 413 414 415 416 417 418

check_stack:
	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
		goto good_area;
out:
	return fault;
}

M
Mark Rutland 已提交
419 420 421 422 423
static bool is_el0_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}

424 425 426 427 428
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
				   struct pt_regs *regs)
{
	struct task_struct *tsk;
	struct mm_struct *mm;
429
	struct siginfo si;
430
	vm_fault_t fault, major = 0;
431
	unsigned long vm_flags = VM_READ | VM_WRITE;
432 433
	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;

434 435 436
	if (notify_page_fault(regs, esr))
		return 0;

437 438 439 440 441 442 443
	tsk = current;
	mm  = tsk->mm;

	/*
	 * If we're in an interrupt or have no user context, we must not take
	 * the fault.
	 */
444
	if (faulthandler_disabled() || !mm)
445 446
		goto no_context;

447 448 449
	if (user_mode(regs))
		mm_flags |= FAULT_FLAG_USER;

M
Mark Rutland 已提交
450
	if (is_el0_instruction_abort(esr)) {
451
		vm_flags = VM_EXEC;
M
Mark Rutland 已提交
452
	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
453 454 455 456
		vm_flags = VM_WRITE;
		mm_flags |= FAULT_FLAG_WRITE;
	}

457
	if (addr < TASK_SIZE && is_el1_permission_fault(esr, regs, addr)) {
458 459
		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
		if (regs->orig_addr_limit == KERNEL_DS)
460 461
			die_kernel_fault("access to user memory with fs=KERNEL_DS",
					 addr, esr, regs);
462

463
		if (is_el1_instruction_abort(esr))
464 465
			die_kernel_fault("execution of user memory",
					 addr, esr, regs);
466

467
		if (!search_exception_tables(regs->pc))
468 469
			die_kernel_fault("access to user memory outside uaccess routines",
					 addr, esr, regs);
470
	}
471

472 473
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	/*
	 * As per x86, we may deadlock here. However, since the kernel only
	 * validly references user space from well defined areas of the code,
	 * we can bug out early if this is from code which shouldn't.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
retry:
		down_read(&mm->mmap_sem);
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in which
		 * case, we'll have missed the might_sleep() from down_read().
		 */
		might_sleep();
#ifdef CONFIG_DEBUG_VM
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
#endif
	}

496
	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
497
	major |= fault & VM_FAULT_MAJOR;
498

499 500 501 502 503 504 505
	if (fault & VM_FAULT_RETRY) {
		/*
		 * If we need to retry but a fatal signal is pending,
		 * handle the signal first. We do not need to release
		 * the mmap_sem because it would already be released
		 * in __lock_page_or_retry in mm/filemap.c.
		 */
506 507 508
		if (fatal_signal_pending(current)) {
			if (!user_mode(regs))
				goto no_context;
509
			return 0;
510
		}
511 512 513 514 515 516 517 518 519 520 521 522

		/*
		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
		 * starvation.
		 */
		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			mm_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}
	up_read(&mm->mmap_sem);
523 524

	/*
525
	 * Handle the "normal" (no error) case first.
526
	 */
527 528 529 530 531 532 533 534 535
	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
			      VM_FAULT_BADACCESS)))) {
		/*
		 * Major/minor page fault accounting is only done
		 * once. If we go through a retry, it is extremely
		 * likely that the page will be found in page cache at
		 * that point.
		 */
		if (major) {
536 537 538 539 540 541 542 543 544 545
			tsk->maj_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
				      addr);
		} else {
			tsk->min_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
				      addr);
		}

		return 0;
546
	}
547

548 549 550 551 552 553 554
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
	if (!user_mode(regs))
		goto no_context;

555 556 557 558 559 560 561 562 563 564
	if (fault & VM_FAULT_OOM) {
		/*
		 * We ran out of memory, call the OOM killer, and return to
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed).
		 */
		pagefault_out_of_memory();
		return 0;
	}

565 566 567
	clear_siginfo(&si);
	si.si_addr = (void __user *)addr;

568 569 570 571 572
	if (fault & VM_FAULT_SIGBUS) {
		/*
		 * We had some memory, but were unable to successfully fix up
		 * this page fault.
		 */
573 574 575 576 577 578 579 580 581 582 583 584
		si.si_signo	= SIGBUS;
		si.si_code	= BUS_ADRERR;
	} else if (fault & VM_FAULT_HWPOISON_LARGE) {
		unsigned int hindex = VM_FAULT_GET_HINDEX(fault);

		si.si_signo	= SIGBUS;
		si.si_code	= BUS_MCEERR_AR;
		si.si_addr_lsb	= hstate_index_to_shift(hindex);
	} else if (fault & VM_FAULT_HWPOISON) {
		si.si_signo	= SIGBUS;
		si.si_code	= BUS_MCEERR_AR;
		si.si_addr_lsb	= PAGE_SHIFT;
585 586 587 588 589
	} else {
		/*
		 * Something tried to access memory that isn't in our memory
		 * map.
		 */
590 591 592
		si.si_signo	= SIGSEGV;
		si.si_code	= fault == VM_FAULT_BADACCESS ?
				  SEGV_ACCERR : SEGV_MAPERR;
593 594
	}

595
	__do_user_fault(&si, esr);
596 597 598
	return 0;

no_context:
599
	__do_kernel_fault(addr, esr, regs);
600 601 602 603 604 605 606 607 608 609 610 611 612 613
	return 0;
}

static int __kprobes do_translation_fault(unsigned long addr,
					  unsigned int esr,
					  struct pt_regs *regs)
{
	if (addr < TASK_SIZE)
		return do_page_fault(addr, esr, regs);

	do_bad_area(addr, esr, regs);
	return 0;
}

614 615 616 617 618 619 620
static int do_alignment_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
{
	do_bad_area(addr, esr, regs);
	return 0;
}

621 622
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
623
	return 1; /* "fault" */
624 625
}

626 627 628 629 630 631 632
static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
	struct siginfo info;
	const struct fault_info *inf;

	inf = esr_to_fault_info(esr);

633
	/*
634 635
	 * Return value ignored as we rely on signal merging.
	 * Future patches will make this more robust.
636 637
	 */

638
	apei_claim_sea(regs);
639
	clear_siginfo(&info);
640
	info.si_signo = inf->sig;
641
	info.si_errno = 0;
642
	info.si_code  = inf->code;
643 644 645 646
	if (esr & ESR_ELx_FnV)
		info.si_addr = NULL;
	else
		info.si_addr  = (void __user *)addr;
647
	arm64_notify_die(inf->name, regs, &info, esr);
648

649
	return 0;
650 651
}

652
static const struct fault_info fault_info[] = {
653 654 655 656
	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
657
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
658 659
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
660
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
661
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
S
Steve Capper 已提交
662 663
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
664
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
665
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
S
Steve Capper 已提交
666 667
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
668
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
686
	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
717 718 719 720 721
};

asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
					 struct pt_regs *regs)
{
722
	const struct fault_info *inf = esr_to_fault_info(esr);
723 724 725 726 727
	struct siginfo info;

	if (!inf->fn(addr, esr, regs))
		return;

728 729 730
	if (!user_mode(regs)) {
		pr_alert("Unhandled fault at 0x%016lx\n", addr);
		mem_abort_decode(esr);
731
		show_pte(addr);
732
	}
733

734
	clear_siginfo(&info);
735 736 737 738
	info.si_signo = inf->sig;
	info.si_errno = 0;
	info.si_code  = inf->code;
	info.si_addr  = (void __user *)addr;
739
	arm64_notify_die(inf->name, regs, &info, esr);
740 741
}

742 743 744 745 746 747
asmlinkage void __exception do_el0_irq_bp_hardening(void)
{
	/* PC has already been checked in entry.S */
	arm64_apply_bp_hardening();
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
						   unsigned int esr,
						   struct pt_regs *regs)
{
	/*
	 * We've taken an instruction abort from userspace and not yet
	 * re-enabled IRQs. If the address is a kernel address, apply
	 * BP hardening prior to enabling IRQs and pre-emption.
	 */
	if (addr > TASK_SIZE)
		arm64_apply_bp_hardening();

	local_irq_enable();
	do_mem_abort(addr, esr, regs);
}


765 766 767 768 769
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
					   unsigned int esr,
					   struct pt_regs *regs)
{
	struct siginfo info;
770

771 772 773 774 775 776
	if (user_mode(regs)) {
		if (instruction_pointer(regs) > TASK_SIZE)
			arm64_apply_bp_hardening();
		local_irq_enable();
	}

777
	clear_siginfo(&info);
778 779 780 781
	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code  = BUS_ADRALN;
	info.si_addr  = (void __user *)addr;
782
	arm64_notify_die("SP/PC alignment exception", regs, &info, esr);
783 784
}

785 786 787 788 789 790 791 792 793
int __init early_brk64(unsigned long addr, unsigned int esr,
		       struct pt_regs *regs);

/*
 * __refdata because early_brk64 is __init, but the reference to it is
 * clobbered at arch_initcall time.
 * See traps.c and debug-monitors.c:debug_traps_init().
 */
static struct fault_info __refdata debug_fault_info[] = {
794 795 796
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
797
	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
798
	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
799
	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
800
	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
801
	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
802 803 804 805 806 807 808 809 810 811 812 813 814 815
};

void __init hook_debug_fault_code(int nr,
				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
				  int sig, int code, const char *name)
{
	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));

	debug_fault_info[nr].fn		= fn;
	debug_fault_info[nr].sig	= sig;
	debug_fault_info[nr].code	= code;
	debug_fault_info[nr].name	= name;
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
#ifdef CONFIG_ARM64_ERRATUM_1463225
DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);

static int __exception
cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
	if (user_mode(regs))
		return 0;

	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
		return 0;

	/*
	 * We've taken a dummy step exception from the kernel to ensure
	 * that interrupts are re-enabled on the syscall path. Return back
	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
	 * masked so that we can safely restore the mdscr and get on with
	 * handling the syscall.
	 */
	regs->pstate |= PSR_D_BIT;
	return 1;
}
#else
static int __exception
cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
	return 0;
}
#endif /* CONFIG_ARM64_ERRATUM_1463225 */

846
asmlinkage int __exception do_debug_exception(unsigned long addr_if_watchpoint,
847 848
					       unsigned int esr,
					       struct pt_regs *regs)
849 850
{
	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
851
	unsigned long pc = instruction_pointer(regs);
852
	int rv;
853

854 855 856
	if (cortex_a76_erratum_1463225_debug_handler(regs))
		return 0;

857 858 859 860 861 862
	/*
	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
	 * already disabled to preserve the last enabled/disabled addresses.
	 */
	if (interrupts_enabled(regs))
		trace_hardirqs_off();
863

864
	if (user_mode(regs) && pc > TASK_SIZE)
865 866
		arm64_apply_bp_hardening();

867
	if (!inf->fn(addr_if_watchpoint, esr, regs)) {
868 869
		rv = 1;
	} else {
870 871 872
		struct siginfo info;

		clear_siginfo(&info);
873 874 875
		info.si_signo = inf->sig;
		info.si_errno = 0;
		info.si_code  = inf->code;
876
		info.si_addr  = (void __user *)pc;
877
		arm64_notify_die(inf->name, regs, &info, esr);
878 879
		rv = 0;
	}
880

881 882
	if (interrupts_enabled(regs))
		trace_hardirqs_on();
883

884
	return rv;
885
}
886
NOKPROBE_SYMBOL(do_debug_exception);
887 888

#ifdef CONFIG_ARM64_PAN
889
void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
890
{
891 892 893 894 895 896
	/*
	 * We modify PSTATE. This won't work from irq context as the PSTATE
	 * is discarded once we return from the exception.
	 */
	WARN_ON_ONCE(in_interrupt());

M
Mark Rutland 已提交
897
	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
898
	asm(SET_PSTATE_PAN(1));
899 900
}
#endif /* CONFIG_ARM64_PAN */