fault.c 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Based on arch/arm/mm/fault.c
 *
 * Copyright (C) 1995  Linus Torvalds
 * Copyright (C) 1995-2004 Russell King
 * Copyright (C) 2012 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

21
#include <linux/extable.h>
22 23 24 25 26 27 28
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
29
#include <linux/sched/signal.h>
30
#include <linux/sched/debug.h>
31 32
#include <linux/highmem.h>
#include <linux/perf_event.h>
33
#include <linux/preempt.h>
34
#include <linux/hugetlb.h>
35

36
#include <asm/bug.h>
37
#include <asm/cpufeature.h>
38 39
#include <asm/exception.h>
#include <asm/debug-monitors.h>
40
#include <asm/esr.h>
41
#include <asm/sysreg.h>
42 43 44 45
#include <asm/system_misc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>

46 47
#include <acpi/ghes.h>

48 49 50 51 52 53 54 55 56 57 58 59 60 61
struct fault_info {
	int	(*fn)(unsigned long addr, unsigned int esr,
		      struct pt_regs *regs);
	int	sig;
	int	code;
	const char *name;
};

static const struct fault_info fault_info[];

static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
{
	return fault_info + (esr & 63);
}
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, esr))
			ret = 1;
		preempt_enable();
	}

	return ret;
}
#else
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	return 0;
}
#endif

85
/*
86
 * Dump out the page tables associated with 'addr' in the currently active mm.
87
 */
88
void show_pte(unsigned long addr)
89
{
90
	struct mm_struct *mm;
91 92
	pgd_t *pgd;

93 94 95 96 97 98 99 100 101 102
	if (addr < TASK_SIZE) {
		/* TTBR0 */
		mm = current->active_mm;
		if (mm == &init_mm) {
			pr_alert("[%016lx] user address but active_mm is swapper\n",
				 addr);
			return;
		}
	} else if (addr >= VA_START) {
		/* TTBR1 */
103
		mm = &init_mm;
104 105 106 107 108
	} else {
		pr_alert("[%016lx] address between user and kernel address ranges\n",
			 addr);
		return;
	}
109

110 111 112
	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
		 VA_BITS, mm->pgd);
113
	pgd = pgd_offset(mm, addr);
114
	pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
115 116 117 118 119 120

	do {
		pud_t *pud;
		pmd_t *pmd;
		pte_t *pte;

121
		if (pgd_none(*pgd) || pgd_bad(*pgd))
122 123 124
			break;

		pud = pud_offset(pgd, addr);
125
		pr_cont(", *pud=%016llx", pud_val(*pud));
126
		if (pud_none(*pud) || pud_bad(*pud))
127 128 129
			break;

		pmd = pmd_offset(pud, addr);
130
		pr_cont(", *pmd=%016llx", pmd_val(*pmd));
131
		if (pmd_none(*pmd) || pmd_bad(*pmd))
132 133 134
			break;

		pte = pte_offset_map(pmd, addr);
135
		pr_cont(", *pte=%016llx", pte_val(*pte));
136 137 138
		pte_unmap(pte);
	} while(0);

139
	pr_cont("\n");
140 141
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#ifdef CONFIG_ARM64_HW_AFDBM
/*
 * This function sets the access flags (dirty, accessed), as well as write
 * permission, and only to a more permissive setting.
 *
 * It needs to cope with hardware update of the accessed/dirty state by other
 * agents in the system and can safely skip the __sync_icache_dcache() call as,
 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
 *
 * Returns whether or not the PTE actually changed.
 */
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
	pteval_t old_pteval;
	unsigned int tmp;

	if (pte_same(*ptep, entry))
		return 0;

	/* only preserve the access flags and write permission */
	pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;

166
	/* set PTE_RDONLY if actual read-only or clean PTE */
167
	if (!pte_write(entry) || !pte_sw_dirty(entry))
168 169 170 171
		pte_val(entry) |= PTE_RDONLY;

	/*
	 * Setting the flags must be done atomically to avoid racing with the
172 173 174
	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
	 * be set to the most permissive (lowest value) of *ptep and entry
	 * (calculated as: a & b == ~(~a | ~b)).
175
	 */
176
	pte_val(entry) ^= PTE_RDONLY;
177 178 179
	asm volatile("//	ptep_set_access_flags\n"
	"	prfm	pstl1strm, %2\n"
	"1:	ldxr	%0, %2\n"
180
	"	eor	%0, %0, %3		// negate PTE_RDONLY in *ptep\n"
181
	"	orr	%0, %0, %4		// set flags\n"
182
	"	eor	%0, %0, %3		// negate final PTE_RDONLY\n"
183 184 185
	"	stxr	%w1, %0, %2\n"
	"	cbnz	%w1, 1b\n"
	: "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
186
	: "L" (PTE_RDONLY), "r" (pte_val(entry)));
187 188 189 190 191 192

	flush_tlb_fix_spurious_fault(vma, address);
	return 1;
}
#endif

193 194 195 196 197
static bool is_el1_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
				       unsigned long addr)
{
	unsigned int ec       = ESR_ELx_EC(esr);
	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;

	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
		return false;

	if (fsc_type == ESR_ELx_FSC_PERM)
		return true;

	if (addr < USER_DS && system_uses_ttbr0_pan())
		return fsc_type == ESR_ELx_FSC_FAULT &&
			(regs->pstate & PSR_PAN_BIT);

	return false;
}

217 218 219
/*
 * The kernel tried to access some page that wasn't present.
 */
220 221
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
222
{
223 224
	const char *msg;

225 226
	/*
	 * Are we prepared to handle this kernel fault?
227
	 * We are almost certainly not prepared to handle instruction faults.
228
	 */
229
	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
230 231 232 233 234 235
		return;

	/*
	 * No handler, we'll have to terminate things with extreme prejudice.
	 */
	bust_spinlocks(1);
236 237 238 239 240 241 242 243 244 245 246 247 248 249

	if (is_permission_fault(esr, regs, addr)) {
		if (esr & ESR_ELx_WNR)
			msg = "write to read-only memory";
		else
			msg = "read from unreadable memory";
	} else if (addr < PAGE_SIZE) {
		msg = "NULL pointer dereference";
	} else {
		msg = "paging request";
	}

	pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
		 addr);
250

251
	show_pte(addr);
252 253 254 255 256 257 258 259 260 261 262
	die("Oops", regs, esr);
	bust_spinlocks(0);
	do_exit(SIGKILL);
}

/*
 * Something tried to access memory that isn't in our memory map. User mode
 * accesses just cause a SIGSEGV
 */
static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
			    unsigned int esr, unsigned int sig, int code,
263
			    struct pt_regs *regs, int fault)
264 265
{
	struct siginfo si;
266
	const struct fault_info *inf;
267
	unsigned int lsb = 0;
268

269
	if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
270
		inf = esr_to_fault_info(esr);
271
		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
272
			tsk->comm, task_pid_nr(tsk), inf->name, sig,
273
			addr, esr);
274 275
		print_vma_addr(KERN_CONT ", in ", regs->pc);
		pr_cont("\n");
K
Kefeng Wang 已提交
276
		__show_regs(regs);
277 278 279
	}

	tsk->thread.fault_address = addr;
280
	tsk->thread.fault_code = esr;
281 282 283 284
	si.si_signo = sig;
	si.si_errno = 0;
	si.si_code = code;
	si.si_addr = (void __user *)addr;
285 286 287 288 289 290 291 292 293 294 295
	/*
	 * Either small page or large page may be poisoned.
	 * In other words, VM_FAULT_HWPOISON_LARGE and
	 * VM_FAULT_HWPOISON are mutually exclusive.
	 */
	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
	else if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
	si.si_addr_lsb = lsb;

296 297 298
	force_sig_info(sig, &si, tsk);
}

299
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
300 301
{
	struct task_struct *tsk = current;
302
	const struct fault_info *inf;
303 304 305 306 307

	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
308 309
	if (user_mode(regs)) {
		inf = esr_to_fault_info(esr);
310
		__do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
311
	} else
312
		__do_kernel_fault(addr, esr, regs);
313 314 315 316 317 318
}

#define VM_FAULT_BADMAP		0x010000
#define VM_FAULT_BADACCESS	0x020000

static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
319
			   unsigned int mm_flags, unsigned long vm_flags,
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
			   struct task_struct *tsk)
{
	struct vm_area_struct *vma;
	int fault;

	vma = find_vma(mm, addr);
	fault = VM_FAULT_BADMAP;
	if (unlikely(!vma))
		goto out;
	if (unlikely(vma->vm_start > addr))
		goto check_stack;

	/*
	 * Ok, we have a good vm_area for this memory access, so we can handle
	 * it.
	 */
good_area:
337 338
	/*
	 * Check that the permissions on the VMA allow for the fault which
339
	 * occurred.
340 341
	 */
	if (!(vma->vm_flags & vm_flags)) {
342 343 344 345
		fault = VM_FAULT_BADACCESS;
		goto out;
	}

346
	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
347 348 349 350 351 352 353 354

check_stack:
	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
		goto good_area;
out:
	return fault;
}

M
Mark Rutland 已提交
355 356 357 358 359
static bool is_el0_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}

360 361 362 363 364
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
				   struct pt_regs *regs)
{
	struct task_struct *tsk;
	struct mm_struct *mm;
365
	int fault, sig, code, major = 0;
366
	unsigned long vm_flags = VM_READ | VM_WRITE;
367 368
	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;

369 370 371
	if (notify_page_fault(regs, esr))
		return 0;

372 373 374 375 376 377 378
	tsk = current;
	mm  = tsk->mm;

	/*
	 * If we're in an interrupt or have no user context, we must not take
	 * the fault.
	 */
379
	if (faulthandler_disabled() || !mm)
380 381
		goto no_context;

382 383 384
	if (user_mode(regs))
		mm_flags |= FAULT_FLAG_USER;

M
Mark Rutland 已提交
385
	if (is_el0_instruction_abort(esr)) {
386
		vm_flags = VM_EXEC;
M
Mark Rutland 已提交
387
	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
388 389 390 391
		vm_flags = VM_WRITE;
		mm_flags |= FAULT_FLAG_WRITE;
	}

392
	if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
393 394
		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
		if (regs->orig_addr_limit == KERNEL_DS)
395
			die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
396

397 398 399
		if (is_el1_instruction_abort(esr))
			die("Attempting to execute userspace memory", regs, esr);

400
		if (!search_exception_tables(regs->pc))
401
			die("Accessing user space memory outside uaccess.h routines", regs, esr);
402
	}
403

404 405
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	/*
	 * As per x86, we may deadlock here. However, since the kernel only
	 * validly references user space from well defined areas of the code,
	 * we can bug out early if this is from code which shouldn't.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
retry:
		down_read(&mm->mmap_sem);
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in which
		 * case, we'll have missed the might_sleep() from down_read().
		 */
		might_sleep();
#ifdef CONFIG_DEBUG_VM
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
#endif
	}

428
	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
429
	major |= fault & VM_FAULT_MAJOR;
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	if (fault & VM_FAULT_RETRY) {
		/*
		 * If we need to retry but a fatal signal is pending,
		 * handle the signal first. We do not need to release
		 * the mmap_sem because it would already be released
		 * in __lock_page_or_retry in mm/filemap.c.
		 */
		if (fatal_signal_pending(current))
			return 0;

		/*
		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
		 * starvation.
		 */
		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			mm_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}
	up_read(&mm->mmap_sem);
452 453

	/*
454
	 * Handle the "normal" (no error) case first.
455
	 */
456 457 458 459 460 461 462 463 464
	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
			      VM_FAULT_BADACCESS)))) {
		/*
		 * Major/minor page fault accounting is only done
		 * once. If we go through a retry, it is extremely
		 * likely that the page will be found in page cache at
		 * that point.
		 */
		if (major) {
465 466 467 468 469 470 471 472 473 474
			tsk->maj_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
				      addr);
		} else {
			tsk->min_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
				      addr);
		}

		return 0;
475
	}
476

477 478 479 480 481 482 483
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
	if (!user_mode(regs))
		goto no_context;

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	if (fault & VM_FAULT_OOM) {
		/*
		 * We ran out of memory, call the OOM killer, and return to
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed).
		 */
		pagefault_out_of_memory();
		return 0;
	}

	if (fault & VM_FAULT_SIGBUS) {
		/*
		 * We had some memory, but were unable to successfully fix up
		 * this page fault.
		 */
		sig = SIGBUS;
		code = BUS_ADRERR;
501 502 503
	} else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
		sig = SIGBUS;
		code = BUS_MCEERR_AR;
504 505 506 507 508 509 510 511 512 513
	} else {
		/*
		 * Something tried to access memory that isn't in our memory
		 * map.
		 */
		sig = SIGSEGV;
		code = fault == VM_FAULT_BADACCESS ?
			SEGV_ACCERR : SEGV_MAPERR;
	}

514
	__do_user_fault(tsk, addr, esr, sig, code, regs, fault);
515 516 517
	return 0;

no_context:
518
	__do_kernel_fault(addr, esr, regs);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	return 0;
}

/*
 * First Level Translation Fault Handler
 *
 * We enter here because the first level page table doesn't contain a valid
 * entry for the address.
 *
 * If the address is in kernel space (>= TASK_SIZE), then we are probably
 * faulting in the vmalloc() area.
 *
 * If the init_task's first level page tables contains the relevant entry, we
 * copy the it to this task.  If not, we send the process a signal, fixup the
 * exception, or oops the kernel.
 *
 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
 * or a critical region, and should only copy the information from the master
 * page table, nothing more.
 */
static int __kprobes do_translation_fault(unsigned long addr,
					  unsigned int esr,
					  struct pt_regs *regs)
{
	if (addr < TASK_SIZE)
		return do_page_fault(addr, esr, regs);

	do_bad_area(addr, esr, regs);
	return 0;
}

550 551 552 553 554 555 556
static int do_alignment_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
{
	do_bad_area(addr, esr, regs);
	return 0;
}

557 558 559 560 561 562 563 564
/*
 * This abort handler always returns "fault".
 */
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
	return 1;
}

565 566 567 568 569 570 571 572
/*
 * This abort handler deals with Synchronous External Abort.
 * It calls notifiers, and then returns "fault".
 */
static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
	struct siginfo info;
	const struct fault_info *inf;
573
	int ret = 0;
574 575 576 577 578

	inf = esr_to_fault_info(esr);
	pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
		inf->name, esr, addr);

579 580 581 582 583 584 585 586 587
	/*
	 * Synchronous aborts may interrupt code which had interrupts masked.
	 * Before calling out into the wider kernel tell the interested
	 * subsystems.
	 */
	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
		if (interrupts_enabled(regs))
			nmi_enter();

588
		ret = ghes_notify_sea();
589 590 591 592 593

		if (interrupts_enabled(regs))
			nmi_exit();
	}

594 595 596 597 598 599 600 601 602
	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code  = 0;
	if (esr & ESR_ELx_FnV)
		info.si_addr = NULL;
	else
		info.si_addr  = (void __user *)addr;
	arm64_notify_die("", regs, &info, esr);

603
	return ret;
604 605
}

606
static const struct fault_info fault_info[] = {
607 608 609 610
	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
611
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
612 613 614
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
615
	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
S
Steve Capper 已提交
616 617
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
618
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
619
	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
S
Steve Capper 已提交
620 621
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
622
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
623
	{ do_sea,		SIGBUS,  0,		"synchronous external abort"	},
624
	{ do_bad,		SIGBUS,  0,		"unknown 17"			},
625 626
	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
627 628 629 630 631
	{ do_sea,		SIGBUS,  0,		"level 0 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 1 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 2 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 3 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"synchronous parity or ECC error" },
632
	{ do_bad,		SIGBUS,  0,		"unknown 25"			},
633 634
	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
635 636 637 638
	{ do_sea,		SIGBUS,  0,		"level 0 synchronous parity error (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 1 synchronous parity error (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 2 synchronous parity error (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 3 synchronous parity error (translation table walk)"	},
639
	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
640
	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
641
	{ do_bad,		SIGBUS,  0,		"unknown 34"			},
642 643 644 645 646 647 648 649 650 651 652 653 654
	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
655
	{ do_bad,		SIGBUS,  0,		"TLB conflict abort"		},
656 657 658 659
	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
660
	{ do_bad,		SIGBUS,  0,		"implementation fault (unsupported exclusive)" },
661 662 663 664
	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
665
	{ do_bad,		SIGBUS,  0,		"unknown 58" 			},
666 667
	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
668 669
	{ do_bad,		SIGBUS,  0,		"section domain fault"		},
	{ do_bad,		SIGBUS,  0,		"page domain fault"		},
670 671 672
	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
};

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
/*
 * Handle Synchronous External Aborts that occur in a guest kernel.
 *
 * The return value will be zero if the SEA was successfully handled
 * and non-zero if there was an error processing the error or there was
 * no error to process.
 */
int handle_guest_sea(phys_addr_t addr, unsigned int esr)
{
	int ret = -ENOENT;

	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
		ret = ghes_notify_sea();

	return ret;
}

690 691 692 693 694 695
/*
 * Dispatch a data abort to the relevant handler.
 */
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
					 struct pt_regs *regs)
{
696
	const struct fault_info *inf = esr_to_fault_info(esr);
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	struct siginfo info;

	if (!inf->fn(addr, esr, regs))
		return;

	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
		 inf->name, esr, addr);

	info.si_signo = inf->sig;
	info.si_errno = 0;
	info.si_code  = inf->code;
	info.si_addr  = (void __user *)addr;
	arm64_notify_die("", regs, &info, esr);
}

/*
 * Handle stack alignment exceptions.
 */
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
					   unsigned int esr,
					   struct pt_regs *regs)
{
	struct siginfo info;
720 721 722 723 724 725 726
	struct task_struct *tsk = current;

	if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
		pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
				    tsk->comm, task_pid_nr(tsk),
				    esr_get_class_string(esr), (void *)regs->pc,
				    (void *)regs->sp);
727 728 729 730 731

	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code  = BUS_ADRALN;
	info.si_addr  = (void __user *)addr;
732
	arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
733 734
}

735 736 737 738 739 740 741 742 743
int __init early_brk64(unsigned long addr, unsigned int esr,
		       struct pt_regs *regs);

/*
 * __refdata because early_brk64 is __init, but the reference to it is
 * clobbered at arch_initcall time.
 * See traps.c and debug-monitors.c:debug_traps_init().
 */
static struct fault_info __refdata debug_fault_info[] = {
744 745 746 747 748 749
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
750
	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
};

void __init hook_debug_fault_code(int nr,
				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
				  int sig, int code, const char *name)
{
	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));

	debug_fault_info[nr].fn		= fn;
	debug_fault_info[nr].sig	= sig;
	debug_fault_info[nr].code	= code;
	debug_fault_info[nr].name	= name;
}

asmlinkage int __exception do_debug_exception(unsigned long addr,
					      unsigned int esr,
					      struct pt_regs *regs)
{
	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
	struct siginfo info;
772
	int rv;
773

774 775 776 777 778 779
	/*
	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
	 * already disabled to preserve the last enabled/disabled addresses.
	 */
	if (interrupts_enabled(regs))
		trace_hardirqs_off();
780

781 782 783 784 785 786 787 788 789 790 791 792 793
	if (!inf->fn(addr, esr, regs)) {
		rv = 1;
	} else {
		pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
			 inf->name, esr, addr);

		info.si_signo = inf->sig;
		info.si_errno = 0;
		info.si_code  = inf->code;
		info.si_addr  = (void __user *)addr;
		arm64_notify_die("", regs, &info, 0);
		rv = 0;
	}
794

795 796
	if (interrupts_enabled(regs))
		trace_hardirqs_on();
797

798
	return rv;
799
}
800
NOKPROBE_SYMBOL(do_debug_exception);
801 802

#ifdef CONFIG_ARM64_PAN
803
int cpu_enable_pan(void *__unused)
804
{
805 806 807 808 809 810
	/*
	 * We modify PSTATE. This won't work from irq context as the PSTATE
	 * is discarded once we return from the exception.
	 */
	WARN_ON_ONCE(in_interrupt());

811
	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
812
	asm(SET_PSTATE_PAN(1));
813
	return 0;
814 815
}
#endif /* CONFIG_ARM64_PAN */