netdev.c 174.8 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
39
#include <linux/interrupt.h>
40 41
#include <linux/tcp.h>
#include <linux/ipv6.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
50
#include <linux/pm_qos_params.h>
51
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54 55 56

#include "e1000.h"

B
Bruce Allan 已提交
57
#define DRV_EXTRAVERSION "-k"
58

B
Bruce Allan 已提交
59
#define DRV_VERSION "1.3.16" DRV_EXTRAVERSION
60 61 62
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

63 64
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);

65 66 67 68
static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
69
	[board_82574]		= &e1000_82574_info,
70
	[board_82583]		= &e1000_82583_info,
71 72 73
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
74
	[board_ich10lan]	= &e1000_ich10_info,
75
	[board_pchlan]		= &e1000_pch_info,
76
	[board_pch2lan]		= &e1000_pch2_info,
77 78
};

79 80 81 82 83
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

84 85 86 87 88 89 90 91 92 93 94
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
95 96 97 98 99 100 101 102 103 104 105

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

106
	/* Rx Registers */
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN, "RDLEN"},
	{E1000_RDH, "RDH"},
	{E1000_RDT, "RDT"},
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
	{E1000_RDBAL, "RDBAL"},
	{E1000_RDBAH, "RDBAH"},
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

122
	/* Tx Registers */
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL, "TDBAL"},
	{E1000_TDBAH, "TDBAH"},
	{E1000_TDLEN, "TDLEN"},
	{E1000_TDH, "TDH"},
	{E1000_TDT, "TDT"},
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
167
		       reginfo->name, __er32(hw, reginfo->ofs));
168 169 170 171 172 173 174 175 176 177 178
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 2; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}

/*
179
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
180 181 182 183 184 185 186 187
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
188 189 190 191
	struct my_u0 {
		u64 a;
		u64 b;
	} *u0;
192 193 194
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
195
	union e1000_rx_desc_extended *rx_desc;
196 197 198 199 200 201
	struct my_u1 {
		u64 a;
		u64 b;
		u64 c;
		u64 d;
	} *u1;
202 203 204 205 206 207 208 209 210 211
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
212
		       "trans_start      last_rx\n");
213
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
214 215
		       netdev->name, netdev->state, netdev->trans_start,
		       netdev->last_rx);
216 217 218 219 220 221 222 223 224 225
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

226
	/* Print Tx Ring Summary */
227 228 229
	if (!netdev || !netif_running(netdev))
		goto exit;

230
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
231
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
232
	       " leng ntw timestamp\n");
233 234
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
	printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
235 236 237 238 239
	       0, tx_ring->next_to_use, tx_ring->next_to_clean,
	       (unsigned long long)buffer_info->dma,
	       buffer_info->length,
	       buffer_info->next_to_watch,
	       (unsigned long long)buffer_info->time_stamp);
240

241
	/* Print Tx Ring */
242 243 244
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

245
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
	printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
275 276
	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
	       "<-- Legacy format\n");
277
	printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
278 279
	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
	       "<-- Ext Context format\n");
280
	printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
281 282
	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
	       "<-- Ext Data format\n");
283 284 285 286 287
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
288 289 290
		       "%04X  %3X %016llX %p",
		       (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
291 292 293 294 295
		       (unsigned long long)le64_to_cpu(u0->a),
		       (unsigned long long)le64_to_cpu(u0->b),
		       (unsigned long long)buffer_info->dma,
		       buffer_info->length, buffer_info->next_to_watch,
		       (unsigned long long)buffer_info->time_stamp,
296 297 298 299 300 301 302 303 304 305 306 307
		       buffer_info->skb);
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
			printk(KERN_CONT " NTC/U\n");
		else if (i == tx_ring->next_to_use)
			printk(KERN_CONT " NTU\n");
		else if (i == tx_ring->next_to_clean)
			printk(KERN_CONT " NTC\n");
		else
			printk(KERN_CONT "\n");

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
308 309
				       16, 1, phys_to_virt(buffer_info->dma),
				       buffer_info->length, true);
310 311
	}

312
	/* Print Rx Ring Summary */
313
rx_ring_summary:
314
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
315 316
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	printk(KERN_INFO " %5d %5X %5X\n", 0,
317
	       rx_ring->next_to_use, rx_ring->next_to_clean);
318

319
	/* Print Rx Ring */
320 321 322
	if (!netif_msg_rx_status(adapter))
		goto exit;

323
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
		printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
341
		       "[buffer 1 63:0 ] "
342 343 344 345 346 347 348 349 350 351 352 353 354 355
		       "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
		       "[bi->skb] <-- Ext Pkt Split format\n");
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
		printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
356
		       "[vl   l0 ee  es] "
357 358 359 360 361 362 363
		       "[ l3  l2  l1 hs] [reserved      ] ---------------- "
		       "[bi->skb] <-- Ext Rx Write-Back format\n");
		for (i = 0; i < rx_ring->count; i++) {
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
364
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
365 366 367
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
368 369 370 371 372 373 374
				       "%016llX %016llX %016llX "
				       "---------------- %p", i,
				       (unsigned long long)le64_to_cpu(u1->a),
				       (unsigned long long)le64_to_cpu(u1->b),
				       (unsigned long long)le64_to_cpu(u1->c),
				       (unsigned long long)le64_to_cpu(u1->d),
				       buffer_info->skb);
375 376
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
377 378 379 380 381 382 383
				       "%016llX %016llX %016llX %016llX %p", i,
				       (unsigned long long)le64_to_cpu(u1->a),
				       (unsigned long long)le64_to_cpu(u1->b),
				       (unsigned long long)le64_to_cpu(u1->c),
				       (unsigned long long)le64_to_cpu(u1->d),
				       (unsigned long long)buffer_info->dma,
				       buffer_info->skb);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");
		}
		break;
	default:
	case 0:
402
		/* Extended Receive Descriptor (Read) Format
403
		 *
404 405 406 407 408
		 *   +-----------------------------------------------------+
		 * 0 |                Buffer Address [63:0]                |
		 *   +-----------------------------------------------------+
		 * 8 |                      Reserved                       |
		 *   +-----------------------------------------------------+
409
		 */
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
		printk(KERN_INFO "R  [desc]      [buf addr 63:0 ] "
		       "[reserved 63:0 ] [bi->dma       ] "
		       "[bi->skb] <-- Ext (Read) format\n");
		/* Extended Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31    24 23            4 3        0
		 *   +------------------------------------------------------+
		 *   |     RSS Hash      |        |               |         |
		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
		 *   | Packet   | IP     |        |               |  Type   |
		 *   | Checksum | Ident  |        |               |         |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
		printk(KERN_INFO "RWB[desc]      [cs ipid    mrq] "
		       "[vt   ln xe  xs] "
		       "[bi->skb] <-- Ext (Write-Back) format\n");

		for (i = 0; i < rx_ring->count; i++) {
431
			buffer_info = &rx_ring->buffer_info[i];
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
				       "%016llX ---------------- %p", i,
				       (unsigned long long)le64_to_cpu(u1->a),
				       (unsigned long long)le64_to_cpu(u1->b),
				       buffer_info->skb);
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
				       "%016llX %016llX %p", i,
				       (unsigned long long)le64_to_cpu(u1->a),
				       (unsigned long long)le64_to_cpu(u1->b),
				       (unsigned long long)buffer_info->dma,
				       buffer_info->skb);

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						       DUMP_PREFIX_ADDRESS, 16,
						       1,
						       phys_to_virt
						       (buffer_info->dma),
						       adapter->rx_buffer_len,
						       true);
			}

460 461 462 463 464 465 466 467 468 469 470 471 472
			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");
		}
	}

exit:
	return;
}

473 474 475 476 477 478 479 480 481 482 483 484
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
485
 * e1000_receive_skb - helper function to handle Rx indications
486 487 488 489 490 491
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
492
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
493
			      u8 status, __le16 vlan)
494
{
J
Jeff Kirsher 已提交
495
	u16 tag = le16_to_cpu(vlan);
496 497
	skb->protocol = eth_type_trans(skb, netdev);

J
Jeff Kirsher 已提交
498 499 500 501
	if (status & E1000_RXD_STAT_VP)
		__vlan_hwaccel_put_tag(skb, tag);

	napi_gro_receive(&adapter->napi, skb);
502 503 504
}

/**
505
 * e1000_rx_checksum - Receive Checksum Offload
506 507 508 509 510 511 512 513 514 515
 * @adapter:     board private structure
 * @status_err:  receive descriptor status and error fields
 * @csum:	receive descriptor csum field
 * @sk_buff:     socket buffer with received data
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
			      u32 csum, struct sk_buff *skb)
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
516 517

	skb_checksum_none_assert(skb);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
538 539 540
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
541 542
		 * and then put the value in host order for further stack use.
		 */
A
Al Viro 已提交
543 544
		__sum16 sum = (__force __sum16)htons(csum);
		skb->csum = csum_unfold(~sum);
545 546 547 548 549 550
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

/**
551
 * e1000_alloc_rx_buffers - Replace used receive buffers
552 553 554
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
555
				   int cleaned_count, gfp_t gfp)
556 557 558 559
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
560
	union e1000_rx_desc_extended *rx_desc;
561 562 563
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
564
	unsigned int bufsz = adapter->rx_buffer_len;
565 566 567 568 569 570 571 572 573 574 575

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

576
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
577 578 579 580 581 582 583 584
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
585
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
586
						  adapter->rx_buffer_len,
587 588
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
589
			dev_err(&pdev->dev, "Rx DMA map failed\n");
590 591 592 593
			adapter->rx_dma_failed++;
			break;
		}

594 595
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
596

597 598 599 600 601 602 603 604 605 606
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
			writel(i, adapter->hw.hw_addr + rx_ring->tail);
		}
607 608 609 610 611 612
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

613
	rx_ring->next_to_use = i;
614 615 616 617 618 619 620
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
621
				      int cleaned_count, gfp_t gfp)
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
639 640 641
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
642 643
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
644 645 646
				continue;
			}
			if (!ps_page->page) {
647
				ps_page->page = alloc_page(gfp);
648
				if (!ps_page->page) {
A
Auke Kok 已提交
649 650 651
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
652 653 654 655 656 657
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
658
					dev_err(&adapter->pdev->dev,
659
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
660 661
					adapter->rx_dma_failed++;
					goto no_buffers;
662 663
				}
			}
A
Auke Kok 已提交
664 665 666 667 668
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
669 670
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
671 672
		}

673 674 675
		skb = __netdev_alloc_skb_ip_align(netdev,
						  adapter->rx_ps_bsize0,
						  gfp);
676 677 678 679 680 681 682

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
683
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
684
						  adapter->rx_ps_bsize0,
685 686
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
687
			dev_err(&pdev->dev, "Rx DMA map failed\n");
688 689 690 691 692 693 694 695 696
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

697 698 699 700 701 702 703 704
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
705
			writel(i << 1, adapter->hw.hw_addr + rx_ring->tail);
706 707
		}

708 709 710 711 712 713 714
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
715
	rx_ring->next_to_use = i;
716 717
}

718 719 720 721 722 723 724
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 * @adapter: address of board private structure
 * @cleaned_count: number of buffers to allocate this pass
 **/

static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
725
					 int cleaned_count, gfp_t gfp)
726 727 728
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
729
	union e1000_rx_desc_extended *rx_desc;
730 731 732 733
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
734
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
735 736 737 738 739 740 741 742 743 744 745

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

746
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
747 748 749 750 751 752 753 754 755 756
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
757
			buffer_info->page = alloc_page(gfp);
758 759 760 761 762 763 764
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
765
			buffer_info->dma = dma_map_page(&pdev->dev,
766 767
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
768
							DMA_FROM_DEVICE);
769

770 771
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

792 793 794 795 796 797 798 799 800 801 802 803
/**
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
			       int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
804
	struct e1000_hw *hw = &adapter->hw;
805
	struct e1000_ring *rx_ring = adapter->rx_ring;
806
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
807
	struct e1000_buffer *buffer_info, *next_buffer;
808
	u32 length, staterr;
809 810 811 812 813 814
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
815 816
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
817 818
	buffer_info = &rx_ring->buffer_info[i];

819
	while (staterr & E1000_RXD_STAT_DD) {
820 821 822 823 824
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
825
		rmb();	/* read descriptor and rx_buffer_info after status DD */
826 827 828 829 830 831 832 833 834

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
835
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
836 837 838 839 840 841
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
842
		dma_unmap_single(&pdev->dev,
843 844
				 buffer_info->dma,
				 adapter->rx_buffer_len,
845
				 DMA_FROM_DEVICE);
846 847
		buffer_info->dma = 0;

848
		length = le16_to_cpu(rx_desc->wb.upper.length);
849

850 851 852 853 854 855 856
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
857
		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
858 859 860
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
861
			/* All receives must fit into a single buffer */
862
			e_dbg("Receive packet consumed multiple buffers\n");
863 864
			/* recycle */
			buffer_info->skb = skb;
865
			if (staterr & E1000_RXD_STAT_EOP)
866
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
867 868 869
			goto next_desc;
		}

870
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
871 872 873 874 875
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
876 877 878 879
		/* adjust length to remove Ethernet CRC */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			length -= 4;

880 881 882
		total_rx_bytes += length;
		total_rx_packets++;

883 884
		/*
		 * code added for copybreak, this should improve
885
		 * performance for small packets with large amounts
886 887
		 * of reassembly being done in the stack
		 */
888 889
		if (length < copybreak) {
			struct sk_buff *new_skb =
890
			    netdev_alloc_skb_ip_align(netdev, length);
891
			if (new_skb) {
892 893 894 895 896 897
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
898 899 900 901 902 903 904 905 906 907
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
908 909 910
		e1000_rx_checksum(adapter, staterr,
				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
					      csum_ip.csum), skb);
911

912 913
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
914 915

next_desc:
916
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
917 918 919

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
920 921
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
922 923 924 925 926 927
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
928 929

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
930 931 932 933 934
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
935
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
936 937

	adapter->total_rx_bytes += total_rx_bytes;
938
	adapter->total_rx_packets += total_rx_packets;
939 940 941 942 943 944
	return cleaned;
}

static void e1000_put_txbuf(struct e1000_adapter *adapter,
			     struct e1000_buffer *buffer_info)
{
945 946
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
947 948
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
949
		else
950 951
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
952 953
		buffer_info->dma = 0;
	}
954 955 956 957
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
958
	buffer_info->time_stamp = 0;
959 960
}

961
static void e1000_print_hw_hang(struct work_struct *work)
962
{
963 964 965
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
966 967 968 969
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
970 971 972 973
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

974 975 976
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

977 978 979
	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
980

981 982 983 984
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
985 986 987 988 989 990 991 992
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
993 994 995 996 997 998
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
999 1000 1001 1002 1003 1004 1005
	      readl(adapter->hw.hw_addr + tx_ring->head),
	      readl(adapter->hw.hw_addr + tx_ring->tail),
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
1006 1007 1008 1009 1010 1011
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

1036 1037
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1038
		bool cleaned = false;
1039
		rmb(); /* read buffer_info after eop_desc */
1040
		for (; !cleaned; count++) {
1041 1042 1043 1044 1045
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1046 1047
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
			}

			e1000_put_txbuf(adapter, buffer_info);
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1058 1059
		if (i == tx_ring->next_to_use)
			break;
1060 1061 1062 1063 1064 1065 1066
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

#define TX_WAKE_THRESHOLD 32
1067 1068
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1082 1083 1084 1085
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1086
		adapter->detect_tx_hung = 0;
1087 1088
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1089 1090
			       + (adapter->tx_timeout_factor * HZ)) &&
		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1091
			schedule_work(&adapter->print_hang_task);
1092 1093 1094 1095 1096
			netif_stop_queue(netdev);
		}
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1097
	return count < tx_ring->count;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
				  int *work_done, int work_to_do)
{
1110
	struct e1000_hw *hw = &adapter->hw;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1134
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
1149
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1150
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1151 1152
		buffer_info->dma = 0;

1153
		/* see !EOP comment in other Rx routine */
1154 1155 1156 1157
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1158 1159
			e_dbg("Packet Split buffers didn't pick up the full "
			      "packet\n");
1160
			dev_kfree_skb_irq(skb);
1161 1162
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1174 1175
			e_dbg("Last part of the packet spanning multiple "
			      "descriptors\n");
1176 1177 1178 1179 1180 1181 1182 1183
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1184 1185 1186 1187
		/*
		 * this looks ugly, but it seems compiler issues make it
		 * more efficient than reusing j
		 */
1188 1189
		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);

1190 1191 1192 1193 1194
		/*
		 * page alloc/put takes too long and effects small packet
		 * throughput, so unsplit small packets and save the alloc/put
		 * only valid in softirq (napi) context to call kmap_*
		 */
1195 1196 1197 1198
		if (l1 && (l1 <= copybreak) &&
		    ((length + l1) <= adapter->rx_ps_bsize0)) {
			u8 *vaddr;

A
Auke Kok 已提交
1199
			ps_page = &buffer_info->ps_pages[0];
1200

1201 1202
			/*
			 * there is no documentation about how to call
1203
			 * kmap_atomic, so we can't hold the mapping
1204 1205
			 * very long
			 */
1206 1207
			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
						PAGE_SIZE, DMA_FROM_DEVICE);
1208 1209 1210
			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
			memcpy(skb_tail_pointer(skb), vaddr, l1);
			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1211 1212
			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
						   PAGE_SIZE, DMA_FROM_DEVICE);
A
Auke Kok 已提交
1213

J
Jeff Kirsher 已提交
1214 1215 1216 1217
			/* remove the CRC */
			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
				l1 -= 4;

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
			skb_put(skb, l1);
			goto copydone;
		} /* if */
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1228
			ps_page = &buffer_info->ps_pages[j];
1229 1230
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1231 1232 1233 1234 1235 1236 1237 1238
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;
		}

J
Jeff Kirsher 已提交
1239 1240 1241 1242 1243 1244
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			pskb_trim(skb, skb->len - 4);

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);

		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1265 1266
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1280
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1281 1282

	adapter->total_rx_bytes += total_rx_bytes;
1283
	adapter->total_rx_packets += total_rx_packets;
1284 1285 1286
	return cleaned;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
	skb->truesize += length;
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/

static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
                                     int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
1313
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1314
	struct e1000_buffer *buffer_info, *next_buffer;
1315
	u32 length, staterr;
1316 1317 1318 1319 1320 1321
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
1322 1323
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1324 1325
	buffer_info = &rx_ring->buffer_info[i];

1326
	while (staterr & E1000_RXD_STAT_DD) {
1327 1328 1329 1330 1331
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1332
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1333 1334 1335 1336 1337 1338 1339

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
1340
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1341 1342 1343 1344 1345 1346
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1347 1348
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1349 1350
		buffer_info->dma = 0;

1351
		length = le16_to_cpu(rx_desc->wb.upper.length);
1352 1353

		/* errors is only valid for DD + EOP descriptors */
1354 1355 1356 1357 1358 1359 1360 1361 1362
		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
			     (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
			/* recycle both page and skb */
			buffer_info->skb = skb;
			/* an error means any chain goes out the window too */
			if (rx_ring->rx_skb_top)
				dev_kfree_skb_irq(rx_ring->rx_skb_top);
			rx_ring->rx_skb_top = NULL;
			goto next_desc;
1363 1364
		}

1365
#define rxtop (rx_ring->rx_skb_top)
1366
		if (!(staterr & E1000_RXD_STAT_EOP)) {
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1421 1422 1423
		e1000_rx_checksum(adapter, staterr,
				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
					      csum_ip.csum), skb);
1424 1425 1426 1427 1428 1429 1430

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1431
			e_err("pskb_may_pull failed.\n");
1432
			dev_kfree_skb_irq(skb);
1433 1434 1435
			goto next_desc;
		}

1436 1437
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
1438 1439

next_desc:
1440
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1441 1442 1443

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1444 1445
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
1446 1447 1448 1449 1450 1451
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1452 1453

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1454 1455 1456 1457 1458
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1459
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1460 1461 1462 1463 1464 1465

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
	return cleaned;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
 * @adapter: board private structure
 **/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1483
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1484
						 adapter->rx_buffer_len,
1485
						 DMA_FROM_DEVICE);
1486
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1487
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1488
				               PAGE_SIZE,
1489
					       DMA_FROM_DEVICE);
1490
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1491
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1492
						 adapter->rx_ps_bsize0,
1493
						 DMA_FROM_DEVICE);
1494 1495 1496
			buffer_info->dma = 0;
		}

1497 1498 1499 1500 1501
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1502 1503 1504 1505 1506 1507
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1508
			ps_page = &buffer_info->ps_pages[j];
1509 1510
			if (!ps_page->page)
				break;
1511 1512
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1530
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1531 1532 1533 1534 1535

	writel(0, adapter->hw.hw_addr + rx_ring->head);
	writel(0, adapter->hw.hw_addr + rx_ring->tail);
}

1536 1537 1538 1539 1540
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

1541 1542 1543
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1544 1545 1546
	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1559 1560 1561
	/*
	 * read ICR disables interrupts using IAM
	 */
1562

1563
	if (icr & E1000_ICR_LSC) {
1564
		hw->mac.get_link_status = 1;
1565 1566 1567 1568
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1569 1570
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1571
			schedule_work(&adapter->downshift_task);
1572

1573 1574
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1575
		 * link down event; disable receives here in the ISR and reset
1576 1577
		 * adapter in watchdog
		 */
1578 1579 1580 1581 1582
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1583
			adapter->flags |= FLAG_RX_RESTART_NOW;
1584 1585 1586 1587 1588 1589
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1590
	if (napi_schedule_prep(&adapter->napi)) {
1591 1592 1593 1594
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1595
		__napi_schedule(&adapter->napi);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1612

1613
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1614 1615
		return IRQ_NONE;  /* Not our interrupt */

1616 1617 1618 1619
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1620 1621 1622
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1623 1624 1625 1626 1627
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1628

1629
	if (icr & E1000_ICR_LSC) {
1630
		hw->mac.get_link_status = 1;
1631 1632 1633 1634
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1635 1636
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1637
			schedule_work(&adapter->downshift_task);
1638

1639 1640
		/*
		 * 80003ES2LAN workaround--
1641 1642 1643 1644 1645 1646 1647 1648 1649
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1650
			adapter->flags |= FLAG_RX_RESTART_NOW;
1651 1652 1653 1654 1655 1656
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1657
	if (napi_schedule_prep(&adapter->napi)) {
1658 1659 1660 1661
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1662
		__napi_schedule(&adapter->napi);
1663 1664 1665 1666 1667
	}

	return IRQ_HANDLED;
}

1668 1669 1670 1671 1672 1673 1674 1675
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1676 1677
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1694 1695
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

	if (!e1000_clean_tx_irq(adapter))
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
	if (adapter->rx_ring->set_itr) {
		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
		adapter->rx_ring->set_itr = 0;
	}

1733
	if (napi_schedule_prep(&adapter->napi)) {
1734 1735
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1736
		__napi_schedule(&adapter->napi);
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + rx_ring->itr_register);
	else
		writel(1, hw->hw_addr + rx_ring->itr_register);
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
		       hw->hw_addr + tx_ring->itr_register);
	else
		writel(1, hw->hw_addr + tx_ring->itr_register);
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1833
	int i;
1834 1835 1836 1837

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1838 1839
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1840 1841 1842
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1843
				for (i = 0; i < adapter->num_vectors; i++)
1844 1845 1846 1847
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1848
						      adapter->num_vectors);
B
Bruce Allan 已提交
1849
				if (err == 0)
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
			e_err("Failed to initialize MSI-X interrupts.  "
			      "Falling back to MSI interrupts.\n");
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
			e_err("Failed to initialize MSI interrupts.  Falling "
			      "back to legacy interrupts.\n");
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1872 1873 1874

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1889 1890 1891
		snprintf(adapter->rx_ring->name,
			 sizeof(adapter->rx_ring->name) - 1,
			 "%s-rx-0", netdev->name);
1892 1893 1894
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1895
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1896 1897 1898 1899 1900 1901 1902 1903
			  netdev);
	if (err)
		goto out;
	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1904 1905 1906
		snprintf(adapter->tx_ring->name,
			 sizeof(adapter->tx_ring->name) - 1,
			 "%s-tx-0", netdev->name);
1907 1908 1909
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1910
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1911 1912 1913 1914 1915 1916 1917 1918
			  netdev);
	if (err)
		goto out;
	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
1919
			  e1000_msix_other, 0, netdev->name, netdev);
1920 1921 1922 1923 1924 1925 1926 1927 1928
	if (err)
		goto out;

	e1000_configure_msix(adapter);
	return 0;
out:
	return err;
}

1929 1930 1931 1932 1933 1934
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1935 1936 1937 1938 1939
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

1940 1941 1942 1943 1944 1945 1946 1947
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
1948
	}
1949
	if (adapter->flags & FLAG_MSI_ENABLED) {
1950
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1951 1952 1953
				  netdev->name, netdev);
		if (!err)
			return err;
1954

1955 1956 1957
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1958 1959
	}

1960
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1961 1962 1963 1964
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

1965 1966 1967 1968 1969 1970 1971
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
1984
	}
1985 1986

	free_irq(adapter->pdev->irq, netdev);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
1997 1998
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
1999
	e1e_flush();
2000 2001 2002 2003 2004 2005 2006 2007

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
2008 2009 2010 2011 2012 2013 2014 2015 2016
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2017 2018 2019 2020 2021 2022
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
2023
	e1e_flush();
2024 2025 2026
}

/**
2027
 * e1000e_get_hw_control - get control of the h/w from f/w
2028 2029
 * @adapter: address of board private structure
 *
2030
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2031 2032 2033 2034
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
2035
void e1000e_get_hw_control(struct e1000_adapter *adapter)
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2047
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2048 2049 2050 2051
	}
}

/**
2052
 * e1000e_release_hw_control - release control of the h/w to f/w
2053 2054
 * @adapter: address of board private structure
 *
2055
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2056 2057 2058 2059 2060
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2061
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2073
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2105
	tx_ring->buffer_info = vzalloc(size);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2123
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2136 2137
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2138 2139

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2140
	rx_ring->buffer_info = vzalloc(size);
2141 2142 2143
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2144 2145 2146 2147 2148 2149 2150 2151
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2152 2153 2154 2155 2156 2157 2158 2159 2160

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2161
		goto err_pages;
2162 2163 2164 2165 2166 2167

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2168 2169 2170 2171 2172 2173

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2174 2175
err:
	vfree(rx_ring->buffer_info);
2176
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 **/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);
	}

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	writel(0, adapter->hw.hw_addr + tx_ring->head);
	writel(0, adapter->hw.hw_addr + tx_ring->tail);
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *tx_ring = adapter->tx_ring;

	e1000_clean_tx_ring(adapter);

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/

void e1000e_free_rx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2240
	int i;
2241 2242 2243

	e1000_clean_rx_ring(adapter);

B
Bruce Allan 已提交
2244
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2245 2246
		kfree(rx_ring->buffer_info[i].ps_pages);

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2257 2258 2259 2260 2261
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2262 2263 2264 2265 2266 2267
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2268 2269
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2285
		else if ((packets < 5) && (bytes > 512))
2286 2287 2288 2289 2290
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2291
			if (bytes/packets > 8000)
2292
				retval = bulk_latency;
B
Bruce Allan 已提交
2293
			else if ((packets < 10) || ((bytes/packets) > 1200))
2294
				retval = bulk_latency;
B
Bruce Allan 已提交
2295
			else if ((packets > 35))
2296 2297 2298 2299 2300 2301 2302 2303 2304
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2305
			if (packets > 35)
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2330 2331 2332 2333 2334
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2370 2371
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2372
		 * by adding intermediate steps when interrupt rate is
2373 2374
		 * increasing
		 */
2375 2376 2377 2378
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2379 2380 2381 2382
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2383 2384 2385 2386
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2387 2388 2389
	}
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		goto err;

	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->rx_ring)
		goto err;

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2412 2413
/**
 * e1000_clean - NAPI Rx polling callback
2414
 * @napi: struct associated with this polling callback
2415
 * @budget: amount of packets driver is allowed to process this poll
2416 2417 2418 2419
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2420
	struct e1000_hw *hw = &adapter->hw;
2421
	struct net_device *poll_dev = adapter->netdev;
2422
	int tx_cleaned = 1, work_done = 0;
2423

2424
	adapter = netdev_priv(poll_dev);
2425

2426 2427 2428 2429
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2430
	tx_cleaned = e1000_clean_tx_irq(adapter);
2431

2432
clean_rx:
2433
	adapter->clean_rx(adapter, &work_done, budget);
2434

2435
	if (!tx_cleaned)
2436
		work_done = budget;
2437

2438 2439
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2440 2441
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2442
		napi_complete(napi);
2443 2444 2445 2446 2447 2448
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	}

	return work_done;
}

static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
2465

2466
	/* add VID to filter table */
2467 2468 2469 2470 2471 2472
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2473 2474

	set_bit(vid, adapter->active_vlans);
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
}

static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2487
		e1000e_release_hw_control(adapter);
2488 2489 2490 2491
		return;
	}

	/* remove VID from filter table */
2492 2493 2494 2495 2496 2497
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2498 2499

	clear_bit(vid, adapter->active_vlans);
2500 2501
}

J
Jeff Kirsher 已提交
2502 2503 2504 2505 2506
/**
 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2507 2508
{
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
2509 2510
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
2511

J
Jeff Kirsher 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* disable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
		ew32(RCTL, rctl);

		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2521 2522 2523 2524
		}
	}
}

J
Jeff Kirsher 已提交
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
/**
 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* enable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		ew32(RCTL, rctl);
	}
}
2542

J
Jeff Kirsher 已提交
2543 2544 2545 2546 2547
/**
 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2548 2549
{
	struct e1000_hw *hw = &adapter->hw;
J
Jeff Kirsher 已提交
2550
	u32 ctrl;
2551

J
Jeff Kirsher 已提交
2552 2553 2554 2555 2556
	/* disable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl &= ~E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2557

J
Jeff Kirsher 已提交
2558 2559 2560 2561 2562 2563 2564 2565
/**
 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl;
2566

J
Jeff Kirsher 已提交
2567 2568 2569 2570 2571
	/* enable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2572

J
Jeff Kirsher 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		e1000_vlan_rx_add_vid(netdev, vid);
		adapter->mng_vlan_id = vid;
2583 2584
	}

J
Jeff Kirsher 已提交
2585 2586
	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
		e1000_vlan_rx_kill_vid(netdev, old_vid);
2587 2588 2589 2590 2591 2592
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

J
Jeff Kirsher 已提交
2593
	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2594

J
Jeff Kirsher 已提交
2595
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2596 2597 2598
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
}

2599
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2600 2601
{
	struct e1000_hw *hw = &adapter->hw;
2602
	u32 manc, manc2h, mdef, i, j;
2603 2604 2605 2606 2607 2608

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2609 2610
	/*
	 * enable receiving management packets to the host. this will probably
2611
	 * generate destination unreachable messages from the host OS, but
2612 2613
	 * the packets will be handled on SMBUS
	 */
2614 2615
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2631
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2659 2660 2661 2662 2663
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2664
 * e1000_configure_tx - Configure Transmit Unit after Reset
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
	u32 tdlen, tctl, tipg, tarc;
	u32 ipgr1, ipgr2;

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2680
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
	tx_ring->head = E1000_TDH;
	tx_ring->tail = E1000_TDT;

	/* Set the default values for the Tx Inter Packet Gap timer */
	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */

	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */

	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
	ew32(TIPG, tipg);

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2702
	/* Tx irq moderation */
2703 2704
	ew32(TADV, adapter->tx_abs_int_delay);

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2717
		 * there are Tx hangs or other Tx related bugs
2718 2719 2720 2721 2722 2723 2724
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
		/* erratum work around: set txdctl the same for both queues */
		ew32(TXDCTL(1), txdctl);
	}

2725 2726 2727 2728 2729 2730 2731
	/* Program the Transmit Control Register */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2732
		tarc = er32(TARC(0));
2733 2734 2735 2736
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2737 2738
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2739
		ew32(TARC(0), tarc);
2740 2741 2742 2743
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2744
		tarc = er32(TARC(0));
2745
		tarc |= 1;
2746 2747
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2748
		tarc |= 1;
2749
		ew32(TARC(1), tarc);
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

	ew32(TCTL, tctl);

2764
	e1000e_config_collision_dist(hw);
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 pages = 0;

2779 2780 2781 2782 2783 2784 2785 2786
	/* Workaround Si errata on 82579 - configure jumbo frame flow */
	if (hw->mac.type == e1000_pch2lan) {
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2787 2788 2789

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2790 2791
	}

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2808 2809 2810 2811 2812 2813
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2814

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

2852 2853 2854 2855
	/* Enable Extended Status in all Receive Descriptors */
	rfctl = er32(RFCTL);
	rfctl |= E1000_RFCTL_EXTEN;

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2872
	if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2873
	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2874
		adapter->rx_ps_pages = pages;
2875 2876
	else
		adapter->rx_ps_pages = 0;
2877 2878

	if (adapter->rx_ps_pages) {
2879 2880
		u32 psrctl = 0;

2881 2882 2883 2884
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2885 2886 2887
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

A
Auke Kok 已提交
2888 2889
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

2910
	ew32(RFCTL, rfctl);
2911
	ew32(RCTL, rctl);
2912 2913
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
2932
		    sizeof(union e1000_rx_desc_packet_split);
2933 2934
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2935
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2936
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
2937 2938
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2939
	} else {
2940
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
2941 2942 2943 2944 2945 2946 2947 2948
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	e1e_flush();
2949
	usleep_range(10000, 20000);
2950

2951 2952 2953 2954
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
2955
		 * enable prefetching of 0x20 Rx descriptors
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

2974 2975 2976 2977 2978
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
2979
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
2980
		ew32(ITR, 1000000000 / (adapter->itr * 256));
2981 2982 2983 2984 2985 2986 2987 2988

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

2989 2990 2991 2992
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
2993
	rdba = rx_ring->dma;
2994
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rx_ring->head = E1000_RDH;
	rx_ring->tail = E1000_RDT;

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
		rxcsum |= E1000_RXCSUM_TUOFL;

3007 3008 3009 3010
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
3011 3012 3013 3014 3015 3016 3017 3018
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

3019 3020
	/*
	 * Enable early receives on supported devices, only takes effect when
3021
	 * packet size is equal or larger than the specified value (in 8 byte
3022 3023
	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
	 */
3024 3025
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan)) {
3026 3027 3028
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
3029 3030
			if (adapter->flags & FLAG_HAS_ERT)
				ew32(ERT, E1000_ERT_2048 | (1 << 13));
3031 3032 3033 3034 3035
			/*
			 * With jumbo frames and early-receive enabled,
			 * excessive C-state transition latencies result in
			 * dropped transactions.
			 */
3036
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3037
		} else {
3038 3039
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
3040
		}
3041
	}
3042 3043 3044 3045 3046 3047

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3048
 *  e1000_update_mc_addr_list - Update Multicast addresses
3049 3050 3051 3052
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *
3053
 *  Updates the Multicast Table Array.
3054 3055
 *  The caller must have a packed mc_addr_list of multicast addresses.
 **/
3056
static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3057
				      u32 mc_addr_count)
3058
{
3059
	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
}

/**
 * e1000_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void e1000_set_multi(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3075
	struct netdev_hw_addr *ha;
3076 3077 3078 3079 3080 3081 3082 3083 3084
	u8  *mta_list;
	u32 rctl;

	/* Check for Promiscuous and All Multicast modes */

	rctl = er32(RCTL);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3085
		rctl &= ~E1000_RCTL_VFE;
J
Jeff Kirsher 已提交
3086 3087
		/* Do not hardware filter VLANs in promisc mode */
		e1000e_vlan_filter_disable(adapter);
3088
	} else {
3089 3090 3091 3092 3093 3094
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			rctl &= ~E1000_RCTL_UPE;
		} else {
			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
		}
J
Jeff Kirsher 已提交
3095
		e1000e_vlan_filter_enable(adapter);
3096 3097 3098 3099
	}

	ew32(RCTL, rctl);

3100
	if (!netdev_mc_empty(netdev)) {
3101 3102
		int i = 0;

3103
		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3104 3105 3106 3107
		if (!mta_list)
			return;

		/* prepare a packed array of only addresses. */
3108 3109
		netdev_for_each_mc_addr(ha, netdev)
			memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3110

3111
		e1000_update_mc_addr_list(hw, mta_list, i);
3112 3113 3114 3115 3116 3117
		kfree(mta_list);
	} else {
		/*
		 * if we're called from probe, we might not have
		 * anything to do here, so clear out the list
		 */
3118
		e1000_update_mc_addr_list(hw, NULL, 0);
3119
	}
J
Jeff Kirsher 已提交
3120 3121 3122 3123 3124

	if (netdev->features & NETIF_F_HW_VLAN_RX)
		e1000e_vlan_strip_enable(adapter);
	else
		e1000e_vlan_strip_disable(adapter);
3125 3126 3127
}

/**
3128
 * e1000_configure - configure the hardware for Rx and Tx
3129 3130 3131 3132 3133 3134 3135
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
	e1000_set_multi(adapter->netdev);

	e1000_restore_vlan(adapter);
3136
	e1000_init_manageability_pt(adapter);
3137 3138 3139 3140

	e1000_configure_tx(adapter);
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3141 3142
	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
			      GFP_KERNEL);
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3155 3156
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3157 3158 3159 3160 3161 3162 3163

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3164 3165
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3166 3167 3168 3169
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3170
	if (adapter->wol)
3171 3172
		return;

3173 3174
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3175 3176 3177 3178 3179 3180 3181 3182
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3183
 * properly configured for Rx, Tx etc.
3184 3185 3186 3187
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3188
	struct e1000_fc_info *fc = &adapter->hw.fc;
3189 3190
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3191
	u32 pba = adapter->pba;
3192 3193
	u16 hwm;

3194
	/* reset Packet Buffer Allocation to default */
3195
	ew32(PBA, pba);
3196

3197
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3198 3199
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3200 3201 3202 3203
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3204 3205
		 * expressed in KB.
		 */
3206
		pba = er32(PBA);
3207
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3208
		tx_space = pba >> 16;
3209
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3210
		pba &= 0xffff;
3211
		/*
3212
		 * the Tx fifo also stores 16 bytes of information about the Tx
3213
		 * but don't include ethernet FCS because hardware appends it
3214 3215
		 */
		min_tx_space = (adapter->max_frame_size +
3216 3217 3218 3219 3220
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3221
		min_rx_space = adapter->max_frame_size;
3222 3223 3224
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3225 3226
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3227
		 * and the min Tx FIFO size is less than the current Rx FIFO
3228 3229
		 * allocation, take space away from current Rx allocation
		 */
3230 3231 3232
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3233

3234
			/*
3235
			 * if short on Rx space, Rx wins and must trump Tx
3236 3237
			 * adjustment or use Early Receive if available
			 */
3238
			if ((pba < min_rx_space) &&
3239 3240
			    (!(adapter->flags & FLAG_HAS_ERT)))
				/* ERT enabled in e1000_configure_rx */
3241
				pba = min_rx_space;
3242
		}
3243 3244

		ew32(PBA, pba);
3245 3246
	}

3247 3248 3249
	/*
	 * flow control settings
	 *
3250
	 * The high water mark must be low enough to fit one full frame
3251 3252 3253 3254 3255
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
	 * - the full Rx FIFO size minus the early receive size (for parts
	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
3256
	 * - the full Rx FIFO size minus one full frame
3257
	 */
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
	default:
		if ((adapter->flags & FLAG_HAS_ERT) &&
		    (adapter->netdev->mtu > ETH_DATA_LEN))
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - (E1000_ERT_2048 << 3)));
		else
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - adapter->max_frame_size));

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3290
		fc->refresh_time = 0x1000;
3291 3292 3293 3294 3295 3296
		break;
	case e1000_pch2lan:
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3297 3298 3299 3300
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3301
		break;
3302
	}
3303

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
	 * fit in receive buffer and early-receive not supported.
	 */
	if (adapter->itr_setting & 0x3) {
		if (((adapter->max_frame_size * 2) > (pba << 10)) &&
		    !(adapter->flags & FLAG_HAS_ERT)) {
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
				ew32(ITR, 0);
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
			ew32(ITR, 1000000000 / (adapter->itr * 256));
		}
	}

3326 3327
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3328 3329 3330 3331 3332

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3333
	if (adapter->flags & FLAG_HAS_AMT)
3334
		e1000e_get_hw_control(adapter);
3335

3336 3337 3338
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3339
		e_err("Hardware Error\n");
3340 3341 3342 3343 3344 3345 3346

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3347 3348 3349 3350 3351 3352 3353

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3354 3355
	e1000_get_phy_info(hw);

3356 3357
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3358
		u16 phy_data = 0;
3359 3360
		/*
		 * speed up time to link by disabling smart power down, ignore
3361
		 * the return value of this function because there is nothing
3362 3363
		 * different we would do if it failed
		 */
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);
3380 3381
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3382 3383
	e1000_irq_enable(adapter);

3384
	netif_start_queue(adapter->netdev);
3385

3386
	/* fire a link change interrupt to start the watchdog */
3387 3388 3389 3390 3391
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3392 3393 3394
	return 0;
}

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags2 & FLAG2_DMA_BURST))
		return;

	/* flush pending descriptor writebacks to memory */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);

	/* execute the writes immediately */
	e1e_flush();
}

J
Jeff Kirsher 已提交
3410 3411
static void e1000e_update_stats(struct e1000_adapter *adapter);

3412 3413 3414 3415 3416 3417
void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3418 3419 3420 3421
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3422 3423 3424 3425 3426 3427 3428
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

3429
	netif_stop_queue(netdev);
3430 3431 3432 3433 3434 3435 3436

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
	/* flush both disables and wait for them to finish */
	e1e_flush();
3437
	usleep_range(10000, 20000);
3438 3439 3440 3441 3442 3443 3444 3445

	napi_disable(&adapter->napi);
	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
J
Jeff Kirsher 已提交
3446 3447 3448 3449 3450

	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

3451 3452 3453 3454
	e1000e_flush_descriptors(adapter);
	e1000_clean_tx_ring(adapter);
	e1000_clean_rx_ring(adapter);

3455 3456 3457
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3458 3459
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3460

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3471
		usleep_range(1000, 2000);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3491 3492
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3493

J
Jeff Kirsher 已提交
3494 3495
	spin_lock_init(&adapter->stats64_lock);

3496
	e1000e_set_interrupt_capability(adapter);
3497

3498 3499
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3500 3501 3502 3503 3504 3505 3506 3507

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3520
	e_dbg("icr is %08X\n", icr);
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3547
	e1000e_reset_interrupt_capability(adapter);
3548 3549 3550 3551 3552 3553 3554 3555 3556

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3557
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3578
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3579 3580 3581
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
	} else
		e_dbg("MSI interrupt test succeeded!\n");
3582 3583 3584 3585 3586

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3587
	e1000e_set_interrupt_capability(adapter);
3588
	return e1000_request_irq(adapter);
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3607 3608 3609
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3610 3611 3612

	err = e1000_test_msi_interrupt(adapter);

3613 3614 3615 3616 3617 3618
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3619 3620 3621 3622

	return err;
}

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3639
	struct pci_dev *pdev = adapter->pdev;
3640 3641 3642 3643 3644 3645
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3646 3647
	pm_runtime_get_sync(&pdev->dev);

3648 3649
	netif_carrier_off(netdev);

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	/* allocate transmit descriptors */
	err = e1000e_setup_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = e1000e_setup_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

3660 3661 3662 3663 3664
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3665
		e1000e_get_hw_control(adapter);
3666 3667 3668
		e1000e_reset(adapter);
	}

3669 3670 3671 3672 3673 3674 3675
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3676
	/* DMA latency requirement to workaround early-receive/jumbo issue */
3677 3678
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan))
3679 3680 3681
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3682

3683 3684
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3685 3686
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3687 3688
	 * clean_rx handler before we do so.
	 */
3689 3690 3691 3692 3693 3694
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3695 3696 3697 3698 3699
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3700
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3701 3702 3703 3704 3705 3706 3707
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3708 3709 3710 3711 3712 3713 3714
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3715
	netif_start_queue(netdev);
3716

3717 3718 3719
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3720
	/* fire a link status change interrupt to start the watchdog */
3721 3722 3723 3724
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3725 3726 3727 3728

	return 0;

err_req_irq:
3729
	e1000e_release_hw_control(adapter);
3730 3731 3732 3733 3734 3735
	e1000_power_down_phy(adapter);
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	e1000e_free_tx_resources(adapter);
err_setup_tx:
	e1000e_reset(adapter);
3736
	pm_runtime_put_sync(&pdev->dev);
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3755
	struct pci_dev *pdev = adapter->pdev;
3756 3757

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3758 3759 3760 3761 3762 3763 3764

	pm_runtime_get_sync(&pdev->dev);

	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3765 3766 3767 3768 3769
	e1000_power_down_phy(adapter);

	e1000e_free_tx_resources(adapter);
	e1000e_free_rx_resources(adapter);

3770 3771 3772 3773
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
J
Jeff Kirsher 已提交
3774 3775
	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3776 3777
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3778 3779 3780 3781
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
3782 3783 3784
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
3785

3786 3787
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan))
3788
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3789

3790 3791
	pm_runtime_put_sync(&pdev->dev);

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

3818 3819
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
3820 3821 3822 3823
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
3824 3825
		 * RAR[14]
		 */
3826 3827 3828 3829 3830 3831 3832 3833
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
3846 3847 3848 3849

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

3850 3851 3852
	e1000_get_phy_info(&adapter->hw);
}

3853 3854 3855 3856
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
3857 3858 3859
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3860 3861 3862 3863

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

3864
	schedule_work(&adapter->update_phy_task);
3865 3866
}

3867 3868 3869
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
3870 3871
 *
 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
3887
	hw->phy.addr = 1;
3888 3889 3890 3891
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
3892 3893 3894
	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
3895 3896 3897 3898 3899
		if (ret_val)
			goto release;
	}

	/* Single Collision Count */
3900 3901
	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3902 3903 3904 3905
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
3906 3907
	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3908 3909 3910 3911
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
3912 3913
	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3914 3915 3916 3917
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
3918 3919
	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
3920 3921 3922 3923
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
3924 3925
	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
3926 3927 3928 3929
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
3930 3931
	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
3932 3933 3934 3935
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
3936 3937
	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
3938 3939 3940 3941 3942 3943 3944
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

3945 3946 3947 3948
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
J
Jeff Kirsher 已提交
3949
static void e1000e_update_stats(struct e1000_adapter *adapter)
3950
{
3951
	struct net_device *netdev = adapter->netdev;
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
3966 3967
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
3968 3969 3970 3971 3972
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
3992
	}
3993

3994 3995 3996 3997 3998
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
3999 4000
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
4019 4020
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
4021 4022 4023

	/* Rx Errors */

4024 4025 4026 4027
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
4028
	netdev->stats.rx_errors = adapter->stats.rxerrc +
4029 4030 4031
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4032
	netdev->stats.rx_length_errors = adapter->stats.ruc +
4033
					      adapter->stats.roc;
4034 4035 4036
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4037 4038

	/* Tx Errors */
4039
	netdev->stats.tx_errors = adapter->stats.ecol +
4040
				       adapter->stats.latecol;
4041 4042 4043
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4044 4045 4046 4047 4048 4049 4050 4051 4052

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4064 4065
		int ret_val;

4066 4067 4068 4069 4070 4071 4072 4073 4074
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4075
			e_warn("Error reading PHY register\n");
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4095 4096 4097 4098 4099
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4100 4101 4102 4103
	/* Link status message must follow this format for user tools */
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
	       "Flow Control: %s\n",
	       adapter->netdev->name,
4104 4105
	       adapter->link_speed,
	       (adapter->link_duplex == FULL_DUPLEX) ?
4106
	       "Full Duplex" : "Half Duplex",
4107
	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4108 4109 4110
	       "Rx/Tx" :
	       ((ctrl & E1000_CTRL_RFCE) ? "Rx" :
		((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
4111 4112
}

4113
static bool e1000e_has_link(struct e1000_adapter *adapter)
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = 0;
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = 1;
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4150
		e_info("Gigabit has been disabled, downgrading speed\n");
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4207
	struct e1000_phy_info *phy = &adapter->hw.phy;
4208 4209 4210 4211
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;

4212 4213 4214
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4215
	link = e1000e_has_link(adapter);
4216
	if ((netif_carrier_ok(netdev)) && link) {
4217 4218 4219
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4220
		e1000e_enable_receives(adapter);
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			bool txb2b = 1;
4231 4232 4233 4234

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4235
			/* update snapshot of PHY registers on LSC */
4236
			e1000_phy_read_status(adapter);
4237 4238 4239 4240
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
					e_info("Autonegotiated half duplex but"
					       " link partner cannot autoneg. "
					       " Try forcing full duplex if "
					       "link gets many collisions.\n");
			}

4262
			/* adjust timeout factor according to speed/duplex */
4263 4264 4265 4266
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				txb2b = 0;
4267
				adapter->tx_timeout_factor = 16;
4268 4269 4270
				break;
			case SPEED_100:
				txb2b = 0;
4271
				adapter->tx_timeout_factor = 10;
4272 4273 4274
				break;
			}

4275 4276 4277 4278
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4279 4280 4281
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4282
				tarc0 = er32(TARC(0));
4283
				tarc0 &= ~SPEED_MODE_BIT;
4284
				ew32(TARC(0), tarc0);
4285 4286
			}

4287 4288 4289 4290
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4291 4292 4293 4294
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4295
					e_info("10/100 speed: disabling TSO\n");
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4309 4310 4311 4312
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4313 4314 4315 4316
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4317 4318 4319 4320 4321 4322 4323
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4334 4335 4336
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4337 4338 4339 4340 4341 4342 4343
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4344 4345 4346
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4347 4348 4349 4350
		}
	}

link_up:
J
Jeff Kirsher 已提交
4351
	spin_lock(&adapter->stats64_lock);
4352 4353 4354 4355 4356 4357 4358
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4359 4360 4361 4362
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4363
	spin_unlock(&adapter->stats64_lock);
4364 4365 4366

	e1000e_update_adaptive(&adapter->hw);

4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
	if (!netif_carrier_ok(netdev) &&
	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
		/*
		 * We've lost link, so the controller stops DMA,
		 * but we've got queued Tx work that's never going
		 * to get done, so reset controller to flush Tx.
		 * (Do the reset outside of interrupt context).
		 */
		schedule_work(&adapter->reset_task);
		/* return immediately since reset is imminent */
		return;
4378 4379
	}

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

		ew32(ITR, 1000000000 / (itr * 256));
	}

4396
	/* Cause software interrupt to ensure Rx ring is cleaned */
4397 4398 4399 4400
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4401

4402 4403 4404
	/* flush pending descriptors to memory before detecting Tx hang */
	e1000e_flush_descriptors(adapter);

4405 4406 4407
	/* Force detection of hung controller every watchdog period */
	adapter->detect_tx_hung = 1;

4408 4409 4410 4411
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4412 4413 4414
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

4415 4416 4417
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

static int e1000_tso(struct e1000_adapter *adapter,
		     struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;

4442 4443
	if (!skb_is_gso(skb))
		return 0;
4444

4445
	if (skb_header_cloned(skb)) {
4446 4447
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);

4448 4449
		if (err)
			return err;
4450 4451
	}

4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4462
	} else if (skb_is_gso_v6(skb)) {
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4501 4502 4503 4504 4505 4506 4507 4508 4509
}

static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4510
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4511
	__be16 protocol;
4512

4513 4514
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4515

4516 4517 4518 4519 4520
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4521
	switch (protocol) {
4522
	case cpu_to_be16(ETH_P_IP):
4523 4524 4525
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4526
	case cpu_to_be16(ETH_P_IPV6):
4527 4528 4529 4530 4531 4532
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4533 4534
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4535
		break;
4536 4537
	}

4538
	css = skb_checksum_start_offset(skb);
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

static int e1000_tx_map(struct e1000_adapter *adapter,
			struct sk_buff *skb, unsigned int first,
			unsigned int max_per_txd, unsigned int nr_frags,
			unsigned int mss)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
4572
	struct pci_dev *pdev = adapter->pdev;
4573
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4574
	unsigned int len = skb_headlen(skb);
4575
	unsigned int offset = 0, size, count = 0, i;
4576
	unsigned int f, bytecount, segs;
4577 4578 4579 4580

	i = tx_ring->next_to_use;

	while (len) {
4581
		buffer_info = &tx_ring->buffer_info[i];
4582 4583 4584 4585 4586
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4587 4588
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4589
						  size, DMA_TO_DEVICE);
4590
		buffer_info->mapped_as_page = false;
4591
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4592
			goto dma_error;
4593 4594 4595

		len -= size;
		offset += size;
4596
		count++;
4597 4598 4599 4600 4601 4602

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4603 4604 4605 4606 4607 4608 4609
	}

	for (f = 0; f < nr_frags; f++) {
		struct skb_frag_struct *frag;

		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;
4610
		offset = frag->page_offset;
4611 4612

		while (len) {
4613 4614 4615 4616
			i++;
			if (i == tx_ring->count)
				i = 0;

4617 4618 4619 4620 4621 4622
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4623
			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4624
							offset, size,
4625
							DMA_TO_DEVICE);
4626
			buffer_info->mapped_as_page = true;
4627
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4628
				goto dma_error;
4629 4630 4631 4632 4633 4634 4635

			len -= size;
			offset += size;
			count++;
		}
	}

4636
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4637 4638 4639
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4640
	tx_ring->buffer_info[i].skb = skb;
4641 4642
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4643 4644 4645
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4646 4647

dma_error:
4648
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4649
	buffer_info->dma = 0;
4650
	if (count)
4651
		count--;
4652 4653

	while (count--) {
4654
		if (i == 0)
4655
			i += tx_ring->count;
4656
		i--;
4657
		buffer_info = &tx_ring->buffer_info[i];
4658
		e1000_put_txbuf(adapter, buffer_info);
4659 4660 4661
	}

	return 0;
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
}

static void e1000_tx_queue(struct e1000_adapter *adapter,
			   int tx_flags, int count)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

4694
	do {
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4705
	} while (--count > 0);
4706 4707 4708

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4709 4710
	/*
	 * Force memory writes to complete before letting h/w
4711 4712
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4713 4714
	 * such as IA-64).
	 */
4715 4716 4717 4718
	wmb();

	tx_ring->next_to_use = i;
	writel(i, adapter->hw.hw_addr + tx_ring->tail);
4719 4720 4721 4722
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4734 4735
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_stop_queue(netdev);
4770 4771
	/*
	 * Herbert's original patch had:
4772
	 *  smp_mb__after_netif_stop_queue();
4773 4774
	 * but since that doesn't exist yet, just open code it.
	 */
4775 4776
	smp_mb();

4777 4778 4779 4780
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	if (e1000_desc_unused(adapter->tx_ring) < size)
		return -EBUSY;

	/* A reprieve! */
	netif_start_queue(netdev);
	++adapter->restart_queue;
	return 0;
}

static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000_desc_unused(adapter->tx_ring) >= size)
		return 0;
	return __e1000_maybe_stop_tx(netdev, size);
}

#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4800 4801
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
4802 4803 4804 4805 4806 4807 4808
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
4809
	unsigned int len = skb_headlen(skb);
4810 4811
	unsigned int nr_frags;
	unsigned int mss;
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
4827 4828
	/*
	 * The controller does a simple calculation to
4829 4830 4831 4832
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
4833 4834
	 * drops.
	 */
4835 4836 4837 4838 4839
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

4840 4841 4842 4843 4844
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
4845
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4846 4847 4848 4849
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
4850
		if (skb->data_len && (hdr_len == len)) {
4851 4852 4853 4854
			unsigned int pull_size;

			pull_size = min((unsigned int)4, skb->data_len);
			if (!__pskb_pull_tail(skb, pull_size)) {
4855
				e_err("__pskb_pull_tail failed.\n");
4856 4857 4858
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
4859
			len = skb_headlen(skb);
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

4878 4879 4880 4881
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
4882
	if (e1000_maybe_stop_tx(netdev, count + 2))
4883 4884
		return NETDEV_TX_BUSY;

4885
	if (vlan_tx_tag_present(skb)) {
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

	tso = e1000_tso(adapter, skb);
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
	else if (e1000_tx_csum(adapter, skb))
		tx_flags |= E1000_TX_FLAGS_CSUM;

4903 4904
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
4905
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
4906 4907
	 * no longer assume, we must.
	 */
4908 4909 4910
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

L
Lucas De Marchi 已提交
4911
	/* if count is 0 then mapping error has occurred */
4912
	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4913 4914 4915 4916 4917 4918
	if (count) {
		e1000_tx_queue(adapter, tx_flags, count);
		/* Make sure there is space in the ring for the next send. */
		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);

	} else {
4919
		dev_kfree_skb_any(skb);
4920 4921
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

4945 4946 4947 4948
	/* don't run the task if already down */
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4949 4950 4951 4952 4953
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
4954 4955 4956 4957
	e1000e_reinit_locked(adapter);
}

/**
J
Jeff Kirsher 已提交
4958
 * e1000_get_stats64 - Get System Network Statistics
4959
 * @netdev: network interface device structure
J
Jeff Kirsher 已提交
4960
 * @stats: rtnl_link_stats64 pointer
4961 4962 4963
 *
 * Returns the address of the device statistics structure.
 **/
J
Jeff Kirsher 已提交
4964 4965
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
                                             struct rtnl_link_stats64 *stats)
4966
{
J
Jeff Kirsher 已提交
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
	struct e1000_adapter *adapter = netdev_priv(netdev);

	memset(stats, 0, sizeof(struct rtnl_link_stats64));
	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	/* Fill out the OS statistics structure */
	stats->rx_bytes = adapter->stats.gorc;
	stats->rx_packets = adapter->stats.gprc;
	stats->tx_bytes = adapter->stats.gotc;
	stats->tx_packets = adapter->stats.gptc;
	stats->multicast = adapter->stats.mprc;
	stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	stats->rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	stats->rx_crc_errors = adapter->stats.crcerrs;
	stats->rx_frame_errors = adapter->stats.algnerrc;
	stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	stats->tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	stats->tx_aborted_errors = adapter->stats.ecol;
	stats->tx_window_errors = adapter->stats.latecol;
	stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	spin_unlock(&adapter->stats64_lock);
	return stats;
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

5021 5022 5023 5024
	/* Jumbo frame support */
	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
		e_err("Jumbo Frames not supported.\n");
5025 5026 5027
		return -EINVAL;
	}

5028 5029 5030 5031
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
5032 5033 5034
		return -EINVAL;
	}

5035 5036 5037 5038 5039 5040 5041 5042 5043
	/* Jumbo frame workaround on 82579 requires CRC be stripped */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
		e_err("Jumbo Frames not supported on 82579 when CRC "
		      "stripping is disabled.\n");
		return -EINVAL;
	}

5044 5045 5046 5047 5048 5049 5050 5051
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

5052
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5053
		usleep_range(1000, 2000);
5054
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5055
	adapter->max_frame_size = max_frame;
5056 5057
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
5058 5059 5060
	if (netif_running(netdev))
		e1000e_down(adapter);

5061 5062
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5063 5064
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
5065
	 * i.e. RXBUFFER_2048 --> size-4096 slab
5066 5067
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
5068
	 */
5069

5070
	if (max_frame <= 2048)
5071 5072 5073 5074 5075 5076 5077 5078
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5079
					 + ETH_FCS_LEN;
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

5097
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5098 5099 5100 5101 5102 5103 5104
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5105 5106
		e1000_phy_read_status(adapter);

5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5161 5162 5163 5164
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
5165
	u16 phy_reg, wuc_enable;
5166 5167 5168
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5169
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5170

5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
	retval = hw->phy.ops.acquire(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}

	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
	if (retval)
		goto out;

	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5183 5184
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5185 5186 5187 5188
		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
					   (u16)((mac_reg >> 16) & 0xFFFF));
5189 5190 5191
	}

	/* configure PHY Rx Control register */
5192
	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
5209
	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5210 5211 5212 5213 5214 5215

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
5216 5217
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5218 5219

	/* activate PHY wakeup */
5220 5221
	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5222 5223 5224
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
out:
5225
	hw->phy.ops.release(hw);
5226 5227 5228 5229

	return retval;
}

5230 5231
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5232 5233 5234 5235 5236
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5237 5238
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5239 5240 5241 5242 5243 5244 5245 5246 5247
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5248
	e1000e_reset_interrupt_capability(adapter);
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
		e1000_set_multi(netdev);

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5274 5275 5276
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5277 5278
		ew32(CTRL, ctrl);

5279 5280 5281
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5282 5283
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5284
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5285 5286 5287
			ew32(CTRL_EXT, ctrl_ext);
		}

5288
		if (adapter->flags & FLAG_IS_ICH)
5289
			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5290

5291 5292 5293
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5294
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5295 5296 5297 5298 5299 5300 5301 5302 5303
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5304 5305 5306 5307 5308
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5309 5310
	*enable_wake = !!wufc;

5311
	/* make sure adapter isn't asleep if manageability is enabled */
5312 5313
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5314
		*enable_wake = true;
5315 5316 5317 5318

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5319 5320 5321 5322
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5323
	e1000e_release_hw_control(adapter);
5324 5325 5326

	pci_disable_device(pdev);

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5347 5348 5349 5350 5351 5352 5353 5354
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
5355
		int pos = pci_pcie_cap(us_dev);
5356 5357 5358 5359 5360 5361
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5362
		e1000_power_off(pdev, sleep, wake);
5363 5364 5365

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5366
		e1000_power_off(pdev, sleep, wake);
5367
	}
5368 5369
}

5370 5371 5372
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
5373
	pci_disable_link_state_locked(pdev, state);
5374 5375 5376
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5377 5378
{
	int pos;
5379
	u16 reg16;
5380 5381

	/*
5382 5383
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5384
	 */
5385 5386 5387 5388 5389
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5390 5391 5392
	if (!pdev->bus->self)
		return;

5393 5394 5395 5396 5397 5398
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
5399
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5400 5401 5402 5403 5404 5405
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5406 5407
}

R
Rafael J. Wysocki 已提交
5408
#ifdef CONFIG_PM
5409
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5410
{
5411
	return !!adapter->tx_ring->buffer_info;
5412 5413
}

5414
static int __e1000_resume(struct pci_dev *pdev)
5415 5416 5417 5418
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5419
	u16 aspm_disable_flag = 0;
5420 5421
	u32 err;

5422 5423 5424 5425 5426 5427 5428
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5429 5430
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5431
	pci_save_state(pdev);
T
Taku Izumi 已提交
5432

5433
	e1000e_set_interrupt_capability(adapter);
5434 5435 5436 5437 5438 5439
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

5440 5441 5442
	if (hw->mac.type == e1000_pch2lan)
		e1000_resume_workarounds_pchlan(&adapter->hw);

5443
	e1000e_power_up_phy(adapter);
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
				phy_data & E1000_WUS_LNKC ? "Link Status "
				" Change" : "other");
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5474 5475
	e1000e_reset(adapter);

5476
	e1000_init_manageability_pt(adapter);
5477 5478 5479 5480 5481 5482

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5483 5484
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5485
	 * is up.  For all other cases, let the f/w know that the h/w is now
5486 5487
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5488
	if (!(adapter->flags & FLAG_HAS_AMT))
5489
		e1000e_get_hw_control(adapter);
5490 5491 5492

	return 0;
}
5493

5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5567
#endif /* CONFIG_PM_RUNTIME */
R
Rafael J. Wysocki 已提交
5568
#endif /* CONFIG_PM */
5569 5570 5571

static void e1000_shutdown(struct pci_dev *pdev)
{
5572 5573
	bool wake = false;

5574
	__e1000_shutdown(pdev, &wake, false);
5575 5576 5577

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5578 5579 5580
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5581 5582 5583 5584 5585 5586 5587

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->msix_entries) {
5588 5589
		int vector, msix_irq;

5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5612 5613 5614 5615 5616 5617 5618 5619 5620
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5655 5656 5657
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5678
	u16 aspm_disable_flag = 0;
T
Taku Izumi 已提交
5679
	int err;
J
Jesse Brandeburg 已提交
5680
	pci_ers_result_t result;
5681

5682 5683
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5684
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5685 5686 5687 5688
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5689
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5690
	if (err) {
5691 5692
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5693 5694 5695
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5696
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5697
		pci_restore_state(pdev);
5698

J
Jesse Brandeburg 已提交
5699 5700
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5701

J
Jesse Brandeburg 已提交
5702 5703 5704 5705
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5706

J
Jesse Brandeburg 已提交
5707 5708 5709
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5725
	e1000_init_manageability_pt(adapter);
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5737 5738
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5739
	 * is up.  For all other cases, let the f/w know that the h/w is now
5740 5741
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5742
	if (!(adapter->flags & FLAG_HAS_AMT))
5743
		e1000e_get_hw_control(adapter);
5744 5745 5746 5747 5748 5749 5750

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
5751 5752
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
5753 5754

	/* print bus type/speed/width info */
5755
	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5756 5757 5758 5759
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5760
	       netdev->dev_addr);
5761 5762
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5763 5764 5765
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
5766
		strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5767 5768
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
5769 5770
}

5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5781
	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5782
		/* Deep Smart Power Down (DSPD) */
5783 5784
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
5785 5786 5787
	}
}

5788 5789 5790
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
5791
	.ndo_start_xmit		= e1000_xmit_frame,
J
Jeff Kirsher 已提交
5792
	.ndo_get_stats64	= e1000e_get_stats64,
5793
	.ndo_set_rx_mode	= e1000_set_multi,
5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
};

5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5825 5826
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
5827 5828

	static int cards_found;
5829
	u16 aspm_disable_flag = 0;
5830 5831 5832 5833
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

5834 5835
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5836
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5837 5838 5839
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);
T
Taku Izumi 已提交
5840

5841
	err = pci_enable_device_mem(pdev);
5842 5843 5844 5845
	if (err)
		return err;

	pci_using_dac = 0;
5846
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5847
	if (!err) {
5848
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5849 5850 5851
		if (!err)
			pci_using_dac = 1;
	} else {
5852
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5853
		if (err) {
5854 5855
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
5856 5857 5858 5859 5860 5861 5862 5863
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

5864
	err = pci_request_selected_regions_exclusive(pdev,
5865 5866
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
5867 5868 5869
	if (err)
		goto err_pci_reg;

5870
	/* AER (Advanced Error Reporting) hooks */
5871
	pci_enable_pcie_error_reporting(pdev);
5872

5873
	pci_set_master(pdev);
5874 5875 5876 5877
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
5878 5879 5880 5881 5882 5883 5884 5885

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

5886 5887
	netdev->irq = pdev->irq;

5888 5889 5890 5891 5892 5893 5894 5895
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
5896
	adapter->flags2 = ei->flags2;
5897 5898
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
5899
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
5920
	netdev->netdev_ops		= &e1000e_netdev_ops;
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

5931 5932
	e1000e_check_options(adapter);

5933 5934 5935 5936 5937 5938 5939 5940 5941
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
5942
	err = ei->get_variants(adapter);
5943 5944 5945
	if (err)
		goto err_hw_init;

5946 5947 5948 5949
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

5950 5951
	hw->mac.ops.get_bus_info(&adapter->hw);

5952
	adapter->hw.phy.autoneg_wait_to_complete = 0;
5953 5954

	/* Copper options */
5955
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5956 5957 5958 5959 5960 5961
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

	if (e1000_check_reset_block(&adapter->hw))
5962
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974

	netdev->features = NETIF_F_SG |
			   NETIF_F_HW_CSUM |
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;

5975 5976 5977 5978 5979
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
	netdev->vlan_features |= NETIF_F_HW_CSUM;
	netdev->vlan_features |= NETIF_F_SG;

5980
	if (pci_using_dac) {
5981
		netdev->features |= NETIF_F_HIGHDMA;
5982 5983
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
5984 5985 5986 5987

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

5988 5989 5990 5991
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
6002
			e_err("The NVM Checksum Is Not Valid\n");
6003 6004 6005 6006 6007
			err = -EIO;
			goto err_eeprom;
		}
	}

6008 6009
	e1000_eeprom_checks(adapter);

6010
	/* copy the MAC address */
6011
	if (e1000e_read_mac_addr(&adapter->hw))
6012
		e_err("NVM Read Error while reading MAC address\n");
6013 6014 6015 6016 6017

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
6018
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6019 6020 6021 6022 6023
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
6024
	adapter->watchdog_timer.function = e1000_watchdog;
6025 6026 6027
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
6028
	adapter->phy_info_timer.function = e1000_update_phy_info;
6029 6030 6031 6032
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6033 6034
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6035
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6036 6037 6038

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
6039
	adapter->fc_autoneg = 1;
6040 6041
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
6056 6057
		if ((hw->mac.type > e1000_ich10lan) &&
		    (eeprom_data & E1000_WUC_PHY_WAKE))
6058
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
6083
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6084

6085 6086 6087
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

6088 6089 6090
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

6091 6092
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
6093
	 * is up.  For all other cases, let the f/w know that the h/w is now
6094 6095
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
6096
	if (!(adapter->flags & FLAG_HAS_AMT))
6097
		e1000e_get_hw_control(adapter);
6098

6099
	strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6100 6101 6102 6103
	err = register_netdev(netdev);
	if (err)
		goto err_register;

6104 6105 6106
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

6107 6108
	e1000_print_device_info(adapter);

6109 6110
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
6111

6112 6113 6114
	return 0;

err_register:
J
Jesse Brandeburg 已提交
6115
	if (!(adapter->flags & FLAG_HAS_AMT))
6116
		e1000e_release_hw_control(adapter);
6117 6118 6119
err_eeprom:
	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6120
err_hw_init:
6121 6122 6123
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6124 6125
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6126
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6127
err_flashmap:
6128 6129 6130 6131
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6132 6133
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6153 6154
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6155
	/*
6156 6157
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6158
	 */
6159 6160
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6161 6162 6163
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6164 6165 6166 6167 6168
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
6169

6170 6171 6172
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6173 6174 6175
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6176 6177
	unregister_netdev(netdev);

6178 6179
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6180

6181 6182 6183 6184
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6185
	e1000e_release_hw_control(adapter);
6186

6187
	e1000e_reset_interrupt_capability(adapter);
6188 6189 6190 6191 6192 6193
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6194 6195
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6196 6197 6198

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6199
	/* AER disable */
6200
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6201

6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6212
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6213 6214 6215 6216 6217 6218
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6219 6220 6221
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6222

6223 6224 6225 6226
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6227

6228 6229 6230
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6231

6232
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6233
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6234
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6235

6236 6237 6238 6239 6240 6241 6242 6243
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6244

6245 6246 6247 6248 6249 6250 6251
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6252
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6253

6254 6255 6256 6257 6258
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6259
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6260 6261 6262 6263 6264 6265 6266
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6267

6268 6269
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6270
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6271

6272 6273 6274 6275 6276
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6277 6278 6279
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

6280 6281 6282 6283
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

R
Rafael J. Wysocki 已提交
6284
#ifdef CONFIG_PM
6285
static const struct dev_pm_ops e1000_pm_ops = {
6286 6287 6288
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6289
};
6290
#endif
6291

6292 6293 6294 6295 6296 6297
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
R
Rafael J. Wysocki 已提交
6298
#ifdef CONFIG_PM
6299
	.driver.pm = &e1000_pm_ops,
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6314 6315
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6316
	pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6317
	ret = pci_register_driver(&e1000_driver);
6318

6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */