tick-sched.c 30.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24 25
#include <linux/posix-timers.h>
#include <linux/perf_event.h>
26
#include <linux/context_tracking.h>
27

28 29
#include <asm/irq_regs.h>

30 31
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
32 33
#include <trace/events/timer.h>

34 35 36
/*
 * Per cpu nohz control structure
 */
37
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 39

/*
40
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 42 43
 */
static ktime_t last_jiffies_update;

44 45 46 47 48
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

49 50 51 52 53 54 55 56
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

57
	/*
58
	 * Do a quick check without holding jiffies_lock:
59 60 61 62 63
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

64 65
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
84 85 86

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 88 89
	} else {
		write_sequnlock(&jiffies_lock);
		return;
90
	}
91
	write_sequnlock(&jiffies_lock);
92
	update_wall_time();
93 94 95 96 97 98 99 100 101
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

102
	write_seqlock(&jiffies_lock);
103 104 105 106
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
107
	write_sequnlock(&jiffies_lock);
108 109 110
	return period;
}

111 112 113 114 115

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

116
#ifdef CONFIG_NO_HZ_COMMON
117 118 119 120 121
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
122
	 * jiffies_lock.
123
	 */
124
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125
	    && !tick_nohz_full_cpu(cpu))
126 127 128 129 130 131 132 133
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

134 135
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
136
#ifdef CONFIG_NO_HZ_COMMON
137 138 139 140 141 142 143 144 145 146 147 148 149
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
150
#endif
151 152 153 154
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}

155
#ifdef CONFIG_NO_HZ_FULL
156
cpumask_var_t tick_nohz_full_mask;
157
cpumask_var_t housekeeping_mask;
158
bool tick_nohz_full_running;
159

160 161 162 163
static bool can_stop_full_tick(void)
{
	WARN_ON_ONCE(!irqs_disabled());

F
Frederic Weisbecker 已提交
164 165
	if (!sched_can_stop_tick()) {
		trace_tick_stop(0, "more than 1 task in runqueue\n");
166
		return false;
F
Frederic Weisbecker 已提交
167
	}
168

F
Frederic Weisbecker 已提交
169 170
	if (!posix_cpu_timers_can_stop_tick(current)) {
		trace_tick_stop(0, "posix timers running\n");
171
		return false;
F
Frederic Weisbecker 已提交
172
	}
173

F
Frederic Weisbecker 已提交
174 175
	if (!perf_event_can_stop_tick()) {
		trace_tick_stop(0, "perf events running\n");
176
		return false;
F
Frederic Weisbecker 已提交
177
	}
178 179 180 181 182 183 184

	/* sched_clock_tick() needs us? */
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
	/*
	 * TODO: kick full dynticks CPUs when
	 * sched_clock_stable is set.
	 */
185
	if (!sched_clock_stable()) {
F
Frederic Weisbecker 已提交
186
		trace_tick_stop(0, "unstable sched clock\n");
187 188 189 190
		/*
		 * Don't allow the user to think they can get
		 * full NO_HZ with this machine.
		 */
191
		WARN_ONCE(tick_nohz_full_running,
192
			  "NO_HZ FULL will not work with unstable sched clock");
193
		return false;
F
Frederic Weisbecker 已提交
194
	}
195 196 197 198 199 200 201
#endif

	return true;
}

static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);

202 203 204 205
/*
 * Re-evaluate the need for the tick on the current CPU
 * and restart it if necessary.
 */
206
void __tick_nohz_full_check(void)
207
{
208
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
209 210 211 212 213 214 215

	if (tick_nohz_full_cpu(smp_processor_id())) {
		if (ts->tick_stopped && !is_idle_task(current)) {
			if (!can_stop_full_tick())
				tick_nohz_restart_sched_tick(ts, ktime_get());
		}
	}
216 217 218 219
}

static void nohz_full_kick_work_func(struct irq_work *work)
{
220
	__tick_nohz_full_check();
221 222 223 224 225 226
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
	.func = nohz_full_kick_work_func,
};

227 228 229 230 231 232 233 234 235 236 237
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
void tick_nohz_full_kick(void)
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

238
	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
239 240
}

241
/*
242
 * Kick the CPU if it's full dynticks in order to force it to
243 244
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
245
void tick_nohz_full_kick_cpu(int cpu)
246
{
247 248 249 250
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
251 252 253 254
}

static void nohz_full_kick_ipi(void *info)
{
255
	__tick_nohz_full_check();
256 257 258 259 260 261 262 263
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
void tick_nohz_full_kick_all(void)
{
264
	if (!tick_nohz_full_running)
265 266 267
		return;

	preempt_disable();
268
	smp_call_function_many(tick_nohz_full_mask,
269
			       nohz_full_kick_ipi, NULL, false);
270
	tick_nohz_full_kick();
271 272 273
	preempt_enable();
}

274 275 276 277 278
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
 * perf events, posix cpu timers, ...
 */
279
void __tick_nohz_task_switch(struct task_struct *tsk)
280 281 282 283 284
{
	unsigned long flags;

	local_irq_save(flags);

285 286 287
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

288 289 290
	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
		tick_nohz_full_kick();

291
out:
292 293 294
	local_irq_restore(flags);
}

295
/* Parse the boot-time nohz CPU list from the kernel parameters. */
296
static int __init tick_nohz_full_setup(char *str)
297
{
298 299
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
300
		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
301
		free_bootmem_cpumask_var(tick_nohz_full_mask);
302 303
		return 1;
	}
304
	tick_nohz_full_running = true;
305

306 307
	return 1;
}
308
__setup("nohz_full=", tick_nohz_full_setup);
309

310
static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
311 312 313 314 315 316 317 318 319 320 321
						 unsigned long action,
						 void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/*
		 * If we handle the timekeeping duty for full dynticks CPUs,
		 * we can't safely shutdown that CPU.
		 */
322
		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
323
			return NOTIFY_BAD;
324 325 326 327 328
		break;
	}
	return NOTIFY_OK;
}

329 330 331 332 333
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
334
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
335
		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
336 337
		return err;
	}
338
	err = 0;
339 340
	cpumask_setall(tick_nohz_full_mask);
	tick_nohz_full_running = true;
341 342 343 344
#endif
	return err;
}

345
void __init tick_nohz_init(void)
346
{
347 348
	int cpu;

349
	if (!tick_nohz_full_running) {
350 351 352
		if (tick_nohz_init_all() < 0)
			return;
	}
353

354 355 356 357 358 359 360
	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

361 362 363 364 365 366 367 368 369 370 371 372 373 374
	/*
	 * Full dynticks uses irq work to drive the tick rescheduling on safe
	 * locking contexts. But then we need irq work to raise its own
	 * interrupts to avoid circular dependency on the tick
	 */
	if (!arch_irq_work_has_interrupt()) {
		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
			   "support irq work self-IPIs\n");
		cpumask_clear(tick_nohz_full_mask);
		cpumask_copy(housekeeping_mask, cpu_possible_mask);
		tick_nohz_full_running = false;
		return;
	}

375 376 377 378 379 380 381 382 383 384
	cpu = smp_processor_id();

	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
	}

	cpumask_andnot(housekeeping_mask,
		       cpu_possible_mask, tick_nohz_full_mask);

385
	for_each_cpu(cpu, tick_nohz_full_mask)
386 387
		context_tracking_cpu_set(cpu);

388
	cpu_notifier(tick_nohz_cpu_down_callback, 0);
389 390
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
391 392 393
}
#endif

394 395 396
/*
 * NOHZ - aka dynamic tick functionality
 */
397
#ifdef CONFIG_NO_HZ_COMMON
398 399 400
/*
 * NO HZ enabled ?
 */
401 402
static int tick_nohz_enabled __read_mostly  = 1;
int tick_nohz_active  __read_mostly;
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

419 420 421 422 423
int tick_nohz_tick_stopped(void)
{
	return __this_cpu_read(tick_cpu_sched.tick_stopped);
}

424 425 426 427 428 429 430 431 432 433
/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
434
static void tick_nohz_update_jiffies(ktime_t now)
435 436 437
{
	unsigned long flags;

438
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
439 440 441 442

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
443 444

	touch_softlockup_watchdog();
445 446
}

447 448 449
/*
 * Updates the per cpu time idle statistics counters
 */
450
static void
451
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
452
{
453
	ktime_t delta;
454

455 456
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
457
		if (nr_iowait_cpu(cpu) > 0)
458
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
459 460
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
461
		ts->idle_entrytime = now;
462
	}
463

464
	if (last_update_time)
465 466
		*last_update_time = ktime_to_us(now);

467 468
}

469
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
470
{
471
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
472
	ts->idle_active = 0;
473

474
	sched_clock_idle_wakeup_event(0);
475 476
}

477
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
478
{
479
	ktime_t now = ktime_get();
480

481 482
	ts->idle_entrytime = now;
	ts->idle_active = 1;
483
	sched_clock_idle_sleep_event();
484 485 486
	return now;
}

487 488 489
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
490 491
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
492 493
 *
 * Return the cummulative idle time (since boot) for a given
494
 * CPU, in microseconds.
495 496 497 498 499 500
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
501 502 503
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
504
	ktime_t now, idle;
505

506
	if (!tick_nohz_active)
507 508
		return -1;

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
524

525
}
526
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
527

528
/**
529 530
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
531 532
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
533 534 535 536 537 538 539 540 541 542 543 544
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
545
	ktime_t now, iowait;
546

547
	if (!tick_nohz_active)
548 549
		return -1;

550 551 552 553 554 555 556
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
557

558 559 560 561 562
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
563

564
	return ktime_to_us(iowait);
565 566 567
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

568 569
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
570
{
571
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
572
	ktime_t last_update, expires, ret = { .tv64 = 0 };
573
	unsigned long rcu_delta_jiffies;
574
	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
575
	u64 time_delta;
576

577 578
	time_delta = timekeeping_max_deferment();

579 580
	/* Read jiffies and the time when jiffies were updated last */
	do {
581
		seq = read_seqbegin(&jiffies_lock);
582 583
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
584
	} while (read_seqretry(&jiffies_lock, seq));
585

586
	if (rcu_needs_cpu(&rcu_delta_jiffies) ||
587
	    arch_needs_cpu() || irq_work_needs_cpu()) {
588
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
589
		delta_jiffies = 1;
590 591 592 593
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
594 595 596 597
		if (rcu_delta_jiffies < delta_jiffies) {
			next_jiffies = last_jiffies + rcu_delta_jiffies;
			delta_jiffies = rcu_delta_jiffies;
		}
598
	}
599

600
	/*
601 602
	 * Do not stop the tick, if we are only one off (or less)
	 * or if the cpu is required for RCU:
603
	 */
604
	if (!ts->tick_stopped && delta_jiffies <= 1)
605 606 607 608 609
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

610 611 612 613 614 615
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
616 617 618 619 620 621
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
622
		 */
T
Thomas Gleixner 已提交
623
		if (cpu == tick_do_timer_cpu) {
624
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
625 626 627 628 629 630 631 632
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

633 634 635 636 637 638 639
#ifdef CONFIG_NO_HZ_FULL
		if (!ts->inidle) {
			time_delta = min(time_delta,
					 scheduler_tick_max_deferment());
		}
#endif

640
		/*
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
658

T
Thomas Gleixner 已提交
659 660 661 662
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
663 664 665 666 667

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

668 669
		ret = expires;

670 671 672 673 674 675 676 677
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
678
			nohz_balance_enter_idle(cpu);
679
			calc_load_enter_idle();
680

681
			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
682
			ts->tick_stopped = 1;
F
Frederic Weisbecker 已提交
683
			trace_tick_stop(1, " ");
684
		}
685

686
		/*
687 688
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
689
		 */
690
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
691 692 693 694 695
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

696 697
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
698
				      HRTIMER_MODE_ABS_PINNED);
699 700 701
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
702
		} else if (!tick_program_event(expires, 0))
703 704 705 706 707 708 709 710 711 712 713 714
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
715
	ts->sleep_length = ktime_sub(dev->next_event, now);
716 717

	return ret;
718 719
}

720 721 722
static void tick_nohz_full_stop_tick(struct tick_sched *ts)
{
#ifdef CONFIG_NO_HZ_FULL
723
	int cpu = smp_processor_id();
724

725 726
	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
		return;
727

728 729
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
730

731 732
	if (!can_stop_full_tick())
		return;
733

734
	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
735 736 737
#endif
}

738 739 740 741 742 743 744 745 746 747 748 749
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
750
		return false;
751 752
	}

753 754
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
755
		return false;
756
	}
757 758 759 760 761 762 763

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

764 765
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
766 767
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
768 769 770 771 772
			ratelimit++;
		}
		return false;
	}

773
	if (tick_nohz_full_enabled()) {
774 775 776 777 778 779 780 781 782 783 784 785 786 787
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

788 789 790
	return true;
}

791 792
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
793
	ktime_t now, expires;
794
	int cpu = smp_processor_id();
795

796
	now = tick_nohz_start_idle(ts);
797

798 799 800 801
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
802 803 804 805 806 807

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
808 809 810 811

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
812 813 814 815 816 817 818
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
819
 *
820
 * The arch is responsible of calling:
821 822 823 824
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
825
 */
826
void tick_nohz_idle_enter(void)
827 828 829
{
	struct tick_sched *ts;

830 831
	WARN_ON_ONCE(irqs_disabled());

832 833 834 835 836 837 838 839
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

840 841
	local_irq_disable();

842
	ts = this_cpu_ptr(&tick_cpu_sched);
843
	ts->inidle = 1;
844
	__tick_nohz_idle_enter(ts);
845 846

	local_irq_enable();
847 848 849 850 851 852 853 854 855 856 857 858
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
859
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
860

861
	if (ts->inidle)
862
		__tick_nohz_idle_enter(ts);
863
	else
864
		tick_nohz_full_stop_tick(ts);
865 866
}

867 868 869 870 871 872 873
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
874
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
875 876 877 878

	return ts->sleep_length;
}

879 880 881
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
882
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
883 884 885 886 887 888

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
889
			hrtimer_start_expires(&ts->sched_timer,
890
					      HRTIMER_MODE_ABS_PINNED);
891 892 893 894
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
895 896
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
897 898
				break;
		}
899
		/* Reread time and update jiffies */
900
		now = ktime_get();
901
		tick_do_update_jiffies64(now);
902 903 904
	}
}

905
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
906 907 908
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
909
	update_cpu_load_nohz();
910

911
	calc_load_exit_idle();
912 913 914 915 916 917 918 919 920 921 922 923
	touch_softlockup_watchdog();
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}

static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
924
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
925
	unsigned long ticks;
926 927 928

	if (vtime_accounting_enabled())
		return;
929 930 931 932 933 934 935 936 937
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
938 939 940
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
941 942
}

943
/**
944
 * tick_nohz_idle_exit - restart the idle tick from the idle task
945 946
 *
 * Restart the idle tick when the CPU is woken up from idle
947 948
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
949
 */
950
void tick_nohz_idle_exit(void)
951
{
952
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
953
	ktime_t now;
954

955
	local_irq_disable();
956

957 958 959 960 961
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
962 963 964
		now = ktime_get();

	if (ts->idle_active)
965
		tick_nohz_stop_idle(ts, now);
966

967
	if (ts->tick_stopped) {
968
		tick_nohz_restart_sched_tick(ts, now);
969
		tick_nohz_account_idle_ticks(ts);
970
	}
971 972 973 974 975 976 977

	local_irq_enable();
}

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
978
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
979 980 981 982 983 984 985
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
986
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
987 988 989 990 991
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

992
	tick_sched_do_timer(now);
993
	tick_sched_handle(ts, regs);
994

995 996 997 998
	/* No need to reprogram if we are running tickless  */
	if (unlikely(ts->tick_stopped))
		return;

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
1010
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1011 1012
	ktime_t next;

1013
	if (!tick_nohz_enabled)
1014 1015 1016 1017 1018 1019 1020
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}
1021
	tick_nohz_active = 1;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
1033
		hrtimer_set_expires(&ts->sched_timer, next);
1034 1035 1036 1037 1038 1039 1040
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
1052
static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1053
{
1054 1055
#if 0
	/* Switch back to 2.6.27 behaviour */
1056
	ktime_t delta;
1057

1058 1059 1060 1061
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
1062
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1063 1064 1065 1066
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
1067
#endif
1068 1069
}

1070
static inline void tick_nohz_irq_enter(void)
1071
{
1072
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1073 1074 1075 1076 1077 1078
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1079
		tick_nohz_stop_idle(ts, now);
1080 1081
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
1082
		tick_nohz_kick_tick(ts, now);
1083 1084 1085
	}
}

1086 1087 1088
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1089
static inline void tick_nohz_irq_enter(void) { }
1090

1091
#endif /* CONFIG_NO_HZ_COMMON */
1092

1093 1094 1095
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1096
void tick_irq_enter(void)
1097
{
1098
	tick_check_oneshot_broadcast_this_cpu();
1099
	tick_nohz_irq_enter();
1100 1101
}

1102 1103 1104 1105 1106
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1107
 * We rearm the timer until we get disabled by the idle code.
1108
 * Called with interrupts disabled.
1109 1110 1111 1112 1113 1114 1115
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1116

1117
	tick_sched_do_timer(now);
1118 1119 1120 1121 1122

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1123 1124
	if (regs)
		tick_sched_handle(ts, regs);
1125

1126 1127 1128 1129
	/* No need to reprogram if we are in idle or full dynticks mode */
	if (unlikely(ts->tick_stopped))
		return HRTIMER_NORESTART;

1130 1131 1132 1133 1134
	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1135 1136
static int sched_skew_tick;

1137 1138 1139 1140 1141 1142 1143 1144
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1145 1146 1147 1148 1149
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
1150
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1151 1152 1153 1154 1155 1156 1157 1158
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1159
	/* Get the next period (per cpu) */
1160
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1161

1162
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1163 1164 1165 1166 1167 1168 1169
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1170 1171
	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
1172 1173
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
1174 1175 1176 1177 1178 1179
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

1180
#ifdef CONFIG_NO_HZ_COMMON
1181
	if (tick_nohz_enabled) {
1182
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1183 1184
		tick_nohz_active = 1;
	}
1185 1186
#endif
}
1187
#endif /* HIGH_RES_TIMERS */
1188

1189
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1190 1191 1192 1193
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1194
# ifdef CONFIG_HIGH_RES_TIMERS
1195 1196
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1197
# endif
1198

1199
	memset(ts, 0, sizeof(*ts));
1200
}
1201
#endif
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
1219
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
1234
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1235 1236 1237 1238 1239 1240 1241

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1242
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1243 1244 1245 1246 1247 1248 1249 1250
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}