builtin-sched.c 86.0 KB
Newer Older
I
Ingo Molnar 已提交
1
#include "builtin.h"
2
#include "perf.h"
I
Ingo Molnar 已提交
3 4

#include "util/util.h"
5
#include "util/evlist.h"
I
Ingo Molnar 已提交
6
#include "util/cache.h"
7
#include "util/evsel.h"
I
Ingo Molnar 已提交
8 9 10
#include "util/symbol.h"
#include "util/thread.h"
#include "util/header.h"
11
#include "util/session.h"
12
#include "util/tool.h"
13
#include "util/cloexec.h"
J
Jiri Olsa 已提交
14
#include "util/thread_map.h"
15
#include "util/color.h"
16
#include "util/stat.h"
17
#include "util/callchain.h"
18
#include "util/time-utils.h"
I
Ingo Molnar 已提交
19

20
#include <subcmd/parse-options.h>
21
#include "util/trace-event.h"
I
Ingo Molnar 已提交
22 23 24

#include "util/debug.h"

25
#include <linux/kernel.h>
26
#include <linux/log2.h>
27
#include <sys/prctl.h>
28
#include <sys/resource.h>
I
Ingo Molnar 已提交
29

30 31 32
#include <semaphore.h>
#include <pthread.h>
#include <math.h>
33
#include <api/fs/fs.h>
34
#include <linux/time64.h>
35

36 37 38 39
#define PR_SET_NAME		15               /* Set process name */
#define MAX_CPUS		4096
#define COMM_LEN		20
#define SYM_LEN			129
40
#define MAX_PID			1024000
I
Ingo Molnar 已提交
41

42
struct sched_atom;
I
Ingo Molnar 已提交
43

44 45 46 47
struct task_desc {
	unsigned long		nr;
	unsigned long		pid;
	char			comm[COMM_LEN];
I
Ingo Molnar 已提交
48

49 50
	unsigned long		nr_events;
	unsigned long		curr_event;
51
	struct sched_atom	**atoms;
52 53 54

	pthread_t		thread;
	sem_t			sleep_sem;
I
Ingo Molnar 已提交
55

56 57 58 59 60 61 62 63 64 65
	sem_t			ready_for_work;
	sem_t			work_done_sem;

	u64			cpu_usage;
};

enum sched_event_type {
	SCHED_EVENT_RUN,
	SCHED_EVENT_SLEEP,
	SCHED_EVENT_WAKEUP,
66
	SCHED_EVENT_MIGRATION,
67 68
};

69
struct sched_atom {
70
	enum sched_event_type	type;
71
	int			specific_wait;
72 73 74 75 76 77 78
	u64			timestamp;
	u64			duration;
	unsigned long		nr;
	sem_t			*wait_sem;
	struct task_desc	*wakee;
};

79
#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/* task state bitmask, copied from include/linux/sched.h */
#define TASK_RUNNING		0
#define TASK_INTERRUPTIBLE	1
#define TASK_UNINTERRUPTIBLE	2
#define __TASK_STOPPED		4
#define __TASK_TRACED		8
/* in tsk->exit_state */
#define EXIT_DEAD		16
#define EXIT_ZOMBIE		32
#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
/* in tsk->state again */
#define TASK_DEAD		64
#define TASK_WAKEKILL		128
#define TASK_WAKING		256
#define TASK_PARKED		512

97 98 99 100 101 102 103 104 105 106
enum thread_state {
	THREAD_SLEEPING = 0,
	THREAD_WAIT_CPU,
	THREAD_SCHED_IN,
	THREAD_IGNORE
};

struct work_atom {
	struct list_head	list;
	enum thread_state	state;
107
	u64			sched_out_time;
108 109 110 111 112
	u64			wake_up_time;
	u64			sched_in_time;
	u64			runtime;
};

113 114
struct work_atoms {
	struct list_head	work_list;
115 116 117
	struct thread		*thread;
	struct rb_node		node;
	u64			max_lat;
118
	u64			max_lat_at;
119 120 121
	u64			total_lat;
	u64			nb_atoms;
	u64			total_runtime;
122
	int			num_merged;
123 124
};

125
typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
126

127
struct perf_sched;
128

129 130 131
struct trace_sched_handler {
	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
			    struct perf_sample *sample, struct machine *machine);
132

133 134
	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
			     struct perf_sample *sample, struct machine *machine);
135

136 137
	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
			    struct perf_sample *sample, struct machine *machine);
138

139 140 141
	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
			  struct machine *machine);
142 143

	int (*migrate_task_event)(struct perf_sched *sched,
144 145 146
				  struct perf_evsel *evsel,
				  struct perf_sample *sample,
				  struct machine *machine);
147 148
};

J
Jiri Olsa 已提交
149
#define COLOR_PIDS PERF_COLOR_BLUE
J
Jiri Olsa 已提交
150
#define COLOR_CPUS PERF_COLOR_BG_RED
J
Jiri Olsa 已提交
151

152 153 154 155
struct perf_sched_map {
	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
	int			*comp_cpus;
	bool			 comp;
J
Jiri Olsa 已提交
156 157
	struct thread_map	*color_pids;
	const char		*color_pids_str;
J
Jiri Olsa 已提交
158 159
	struct cpu_map		*color_cpus;
	const char		*color_cpus_str;
160 161
	struct cpu_map		*cpus;
	const char		*cpus_str;
162 163
};

164 165 166 167
struct perf_sched {
	struct perf_tool tool;
	const char	 *sort_order;
	unsigned long	 nr_tasks;
168
	struct task_desc **pid_to_task;
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	struct task_desc **tasks;
	const struct trace_sched_handler *tp_handler;
	pthread_mutex_t	 start_work_mutex;
	pthread_mutex_t	 work_done_wait_mutex;
	int		 profile_cpu;
/*
 * Track the current task - that way we can know whether there's any
 * weird events, such as a task being switched away that is not current.
 */
	int		 max_cpu;
	u32		 curr_pid[MAX_CPUS];
	struct thread	 *curr_thread[MAX_CPUS];
	char		 next_shortname1;
	char		 next_shortname2;
	unsigned int	 replay_repeat;
	unsigned long	 nr_run_events;
	unsigned long	 nr_sleep_events;
	unsigned long	 nr_wakeup_events;
	unsigned long	 nr_sleep_corrections;
	unsigned long	 nr_run_events_optimized;
	unsigned long	 targetless_wakeups;
	unsigned long	 multitarget_wakeups;
	unsigned long	 nr_runs;
	unsigned long	 nr_timestamps;
	unsigned long	 nr_unordered_timestamps;
	unsigned long	 nr_context_switch_bugs;
	unsigned long	 nr_events;
	unsigned long	 nr_lost_chunks;
	unsigned long	 nr_lost_events;
	u64		 run_measurement_overhead;
	u64		 sleep_measurement_overhead;
	u64		 start_time;
	u64		 cpu_usage;
	u64		 runavg_cpu_usage;
	u64		 parent_cpu_usage;
	u64		 runavg_parent_cpu_usage;
	u64		 sum_runtime;
	u64		 sum_fluct;
	u64		 run_avg;
	u64		 all_runtime;
	u64		 all_count;
	u64		 cpu_last_switched[MAX_CPUS];
211
	struct rb_root	 atom_root, sorted_atom_root, merged_atom_root;
212
	struct list_head sort_list, cmp_pid;
213
	bool force;
214
	bool skip_merge;
215
	struct perf_sched_map map;
216 217 218 219

	/* options for timehist command */
	bool		summary;
	bool		summary_only;
220
	bool		idle_hist;
221 222
	bool		show_callchain;
	unsigned int	max_stack;
223
	bool		show_cpu_visual;
224
	bool		show_wakeups;
225
	bool		show_next;
226
	bool		show_migrations;
227
	bool		show_state;
228
	u64		skipped_samples;
229 230
	const char	*time_str;
	struct perf_time_interval ptime;
231
	struct perf_time_interval hist_time;
232
};
233

234 235 236 237
/* per thread run time data */
struct thread_runtime {
	u64 last_time;      /* time of previous sched in/out event */
	u64 dt_run;         /* run time */
238 239 240
	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
241 242 243 244 245
	u64 dt_delay;       /* time between wakeup and sched-in */
	u64 ready_to_run;   /* time of wakeup */

	struct stats run_stats;
	u64 total_run_time;
246 247 248 249
	u64 total_sleep_time;
	u64 total_iowait_time;
	u64 total_preempt_time;
	u64 total_delay_time;
250

251
	int last_state;
252
	u64 migrations;
253 254 255 256 257 258 259 260
};

/* per event run time data */
struct evsel_runtime {
	u64 *last_time; /* time this event was last seen per cpu */
	u32 ncpu;       /* highest cpu slot allocated */
};

261 262 263 264 265 266 267 268 269
/* per cpu idle time data */
struct idle_thread_runtime {
	struct thread_runtime	tr;
	struct thread		*last_thread;
	struct rb_root		sorted_root;
	struct callchain_root	callchain;
	struct callchain_cursor	cursor;
};

270 271 272 273 274
/* track idle times per cpu */
static struct thread **idle_threads;
static int idle_max_cpu;
static char idle_comm[] = "<idle>";

275
static u64 get_nsecs(void)
I
Ingo Molnar 已提交
276 277 278 279 280
{
	struct timespec ts;

	clock_gettime(CLOCK_MONOTONIC, &ts);

281
	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
I
Ingo Molnar 已提交
282 283
}

284
static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
I
Ingo Molnar 已提交
285
{
286
	u64 T0 = get_nsecs(), T1;
I
Ingo Molnar 已提交
287 288 289

	do {
		T1 = get_nsecs();
290
	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
I
Ingo Molnar 已提交
291 292
}

293
static void sleep_nsecs(u64 nsecs)
I
Ingo Molnar 已提交
294 295 296 297 298 299 300 301 302
{
	struct timespec ts;

	ts.tv_nsec = nsecs % 999999999;
	ts.tv_sec = nsecs / 999999999;

	nanosleep(&ts, NULL);
}

303
static void calibrate_run_measurement_overhead(struct perf_sched *sched)
I
Ingo Molnar 已提交
304
{
305
	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
I
Ingo Molnar 已提交
306 307 308 309
	int i;

	for (i = 0; i < 10; i++) {
		T0 = get_nsecs();
310
		burn_nsecs(sched, 0);
I
Ingo Molnar 已提交
311 312 313 314
		T1 = get_nsecs();
		delta = T1-T0;
		min_delta = min(min_delta, delta);
	}
315
	sched->run_measurement_overhead = min_delta;
I
Ingo Molnar 已提交
316

317
	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
I
Ingo Molnar 已提交
318 319
}

320
static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
I
Ingo Molnar 已提交
321
{
322
	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
I
Ingo Molnar 已提交
323 324 325 326 327 328 329 330 331 332
	int i;

	for (i = 0; i < 10; i++) {
		T0 = get_nsecs();
		sleep_nsecs(10000);
		T1 = get_nsecs();
		delta = T1-T0;
		min_delta = min(min_delta, delta);
	}
	min_delta -= 10000;
333
	sched->sleep_measurement_overhead = min_delta;
I
Ingo Molnar 已提交
334

335
	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
I
Ingo Molnar 已提交
336 337
}

338
static struct sched_atom *
339
get_new_event(struct task_desc *task, u64 timestamp)
I
Ingo Molnar 已提交
340
{
341
	struct sched_atom *event = zalloc(sizeof(*event));
I
Ingo Molnar 已提交
342 343 344 345 346 347 348
	unsigned long idx = task->nr_events;
	size_t size;

	event->timestamp = timestamp;
	event->nr = idx;

	task->nr_events++;
349 350 351
	size = sizeof(struct sched_atom *) * task->nr_events;
	task->atoms = realloc(task->atoms, size);
	BUG_ON(!task->atoms);
I
Ingo Molnar 已提交
352

353
	task->atoms[idx] = event;
I
Ingo Molnar 已提交
354 355 356 357

	return event;
}

358
static struct sched_atom *last_event(struct task_desc *task)
I
Ingo Molnar 已提交
359 360 361 362
{
	if (!task->nr_events)
		return NULL;

363
	return task->atoms[task->nr_events - 1];
I
Ingo Molnar 已提交
364 365
}

366 367
static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
				u64 timestamp, u64 duration)
I
Ingo Molnar 已提交
368
{
369
	struct sched_atom *event, *curr_event = last_event(task);
I
Ingo Molnar 已提交
370 371

	/*
372 373 374
	 * optimize an existing RUN event by merging this one
	 * to it:
	 */
I
Ingo Molnar 已提交
375
	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
376
		sched->nr_run_events_optimized++;
I
Ingo Molnar 已提交
377 378 379 380 381 382 383 384 385
		curr_event->duration += duration;
		return;
	}

	event = get_new_event(task, timestamp);

	event->type = SCHED_EVENT_RUN;
	event->duration = duration;

386
	sched->nr_run_events++;
I
Ingo Molnar 已提交
387 388
}

389 390
static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
				   u64 timestamp, struct task_desc *wakee)
I
Ingo Molnar 已提交
391
{
392
	struct sched_atom *event, *wakee_event;
I
Ingo Molnar 已提交
393 394 395 396 397 398 399

	event = get_new_event(task, timestamp);
	event->type = SCHED_EVENT_WAKEUP;
	event->wakee = wakee;

	wakee_event = last_event(wakee);
	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
400
		sched->targetless_wakeups++;
I
Ingo Molnar 已提交
401 402 403
		return;
	}
	if (wakee_event->wait_sem) {
404
		sched->multitarget_wakeups++;
I
Ingo Molnar 已提交
405 406 407
		return;
	}

408
	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
I
Ingo Molnar 已提交
409 410 411 412
	sem_init(wakee_event->wait_sem, 0, 0);
	wakee_event->specific_wait = 1;
	event->wait_sem = wakee_event->wait_sem;

413
	sched->nr_wakeup_events++;
I
Ingo Molnar 已提交
414 415
}

416 417
static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
				  u64 timestamp, u64 task_state __maybe_unused)
I
Ingo Molnar 已提交
418
{
419
	struct sched_atom *event = get_new_event(task, timestamp);
I
Ingo Molnar 已提交
420 421 422

	event->type = SCHED_EVENT_SLEEP;

423
	sched->nr_sleep_events++;
I
Ingo Molnar 已提交
424 425
}

426 427
static struct task_desc *register_pid(struct perf_sched *sched,
				      unsigned long pid, const char *comm)
I
Ingo Molnar 已提交
428 429
{
	struct task_desc *task;
430
	static int pid_max;
I
Ingo Molnar 已提交
431

432 433 434 435 436
	if (sched->pid_to_task == NULL) {
		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
			pid_max = MAX_PID;
		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
	}
437 438 439 440 441 442
	if (pid >= (unsigned long)pid_max) {
		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
			sizeof(struct task_desc *))) == NULL);
		while (pid >= (unsigned long)pid_max)
			sched->pid_to_task[pid_max++] = NULL;
	}
I
Ingo Molnar 已提交
443

444
	task = sched->pid_to_task[pid];
I
Ingo Molnar 已提交
445 446 447 448

	if (task)
		return task;

449
	task = zalloc(sizeof(*task));
I
Ingo Molnar 已提交
450
	task->pid = pid;
451
	task->nr = sched->nr_tasks;
I
Ingo Molnar 已提交
452 453 454 455 456
	strcpy(task->comm, comm);
	/*
	 * every task starts in sleeping state - this gets ignored
	 * if there's no wakeup pointing to this sleep state:
	 */
457
	add_sched_event_sleep(sched, task, 0, 0);
I
Ingo Molnar 已提交
458

459 460
	sched->pid_to_task[pid] = task;
	sched->nr_tasks++;
461
	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
462 463
	BUG_ON(!sched->tasks);
	sched->tasks[task->nr] = task;
I
Ingo Molnar 已提交
464

465
	if (verbose > 0)
466
		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
I
Ingo Molnar 已提交
467 468 469 470 471

	return task;
}


472
static void print_task_traces(struct perf_sched *sched)
I
Ingo Molnar 已提交
473 474 475 476
{
	struct task_desc *task;
	unsigned long i;

477 478
	for (i = 0; i < sched->nr_tasks; i++) {
		task = sched->tasks[i];
I
Ingo Molnar 已提交
479
		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
I
Ingo Molnar 已提交
480 481 482 483
			task->nr, task->comm, task->pid, task->nr_events);
	}
}

484
static void add_cross_task_wakeups(struct perf_sched *sched)
I
Ingo Molnar 已提交
485 486 487 488
{
	struct task_desc *task1, *task2;
	unsigned long i, j;

489 490
	for (i = 0; i < sched->nr_tasks; i++) {
		task1 = sched->tasks[i];
I
Ingo Molnar 已提交
491
		j = i + 1;
492
		if (j == sched->nr_tasks)
I
Ingo Molnar 已提交
493
			j = 0;
494 495
		task2 = sched->tasks[j];
		add_sched_event_wakeup(sched, task1, 0, task2);
I
Ingo Molnar 已提交
496 497 498
	}
}

499 500
static void perf_sched__process_event(struct perf_sched *sched,
				      struct sched_atom *atom)
I
Ingo Molnar 已提交
501 502 503
{
	int ret = 0;

504
	switch (atom->type) {
I
Ingo Molnar 已提交
505
		case SCHED_EVENT_RUN:
506
			burn_nsecs(sched, atom->duration);
I
Ingo Molnar 已提交
507 508
			break;
		case SCHED_EVENT_SLEEP:
509 510
			if (atom->wait_sem)
				ret = sem_wait(atom->wait_sem);
I
Ingo Molnar 已提交
511 512 513
			BUG_ON(ret);
			break;
		case SCHED_EVENT_WAKEUP:
514 515
			if (atom->wait_sem)
				ret = sem_post(atom->wait_sem);
I
Ingo Molnar 已提交
516 517
			BUG_ON(ret);
			break;
518 519
		case SCHED_EVENT_MIGRATION:
			break;
I
Ingo Molnar 已提交
520 521 522 523 524
		default:
			BUG_ON(1);
	}
}

525
static u64 get_cpu_usage_nsec_parent(void)
I
Ingo Molnar 已提交
526 527
{
	struct rusage ru;
528
	u64 sum;
I
Ingo Molnar 已提交
529 530 531 532 533
	int err;

	err = getrusage(RUSAGE_SELF, &ru);
	BUG_ON(err);

534 535
	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
I
Ingo Molnar 已提交
536 537 538 539

	return sum;
}

540
static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
I
Ingo Molnar 已提交
541
{
542
	struct perf_event_attr attr;
543
	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
544
	int fd;
545 546
	struct rlimit limit;
	bool need_privilege = false;
I
Ingo Molnar 已提交
547

548
	memset(&attr, 0, sizeof(attr));
I
Ingo Molnar 已提交
549

550 551
	attr.type = PERF_TYPE_SOFTWARE;
	attr.config = PERF_COUNT_SW_TASK_CLOCK;
I
Ingo Molnar 已提交
552

553
force_again:
554 555
	fd = sys_perf_event_open(&attr, 0, -1, -1,
				 perf_event_open_cloexec_flag());
556

557
	if (fd < 0) {
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
		if (errno == EMFILE) {
			if (sched->force) {
				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
				limit.rlim_cur += sched->nr_tasks - cur_task;
				if (limit.rlim_cur > limit.rlim_max) {
					limit.rlim_max = limit.rlim_cur;
					need_privilege = true;
				}
				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
					if (need_privilege && errno == EPERM)
						strcpy(info, "Need privilege\n");
				} else
					goto force_again;
			} else
				strcpy(info, "Have a try with -f option\n");
		}
574
		pr_err("Error: sys_perf_event_open() syscall returned "
575
		       "with %d (%s)\n%s", fd,
576
		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
577 578
		exit(EXIT_FAILURE);
	}
579 580 581 582 583 584 585 586 587 588 589 590
	return fd;
}

static u64 get_cpu_usage_nsec_self(int fd)
{
	u64 runtime;
	int ret;

	ret = read(fd, &runtime, sizeof(runtime));
	BUG_ON(ret != sizeof(runtime));

	return runtime;
I
Ingo Molnar 已提交
591 592
}

593 594 595
struct sched_thread_parms {
	struct task_desc  *task;
	struct perf_sched *sched;
596
	int fd;
597 598
};

I
Ingo Molnar 已提交
599 600
static void *thread_func(void *ctx)
{
601 602 603
	struct sched_thread_parms *parms = ctx;
	struct task_desc *this_task = parms->task;
	struct perf_sched *sched = parms->sched;
604
	u64 cpu_usage_0, cpu_usage_1;
I
Ingo Molnar 已提交
605 606
	unsigned long i, ret;
	char comm2[22];
607
	int fd = parms->fd;
I
Ingo Molnar 已提交
608

609
	zfree(&parms);
610

I
Ingo Molnar 已提交
611 612
	sprintf(comm2, ":%s", this_task->comm);
	prctl(PR_SET_NAME, comm2);
613 614
	if (fd < 0)
		return NULL;
I
Ingo Molnar 已提交
615 616 617
again:
	ret = sem_post(&this_task->ready_for_work);
	BUG_ON(ret);
618
	ret = pthread_mutex_lock(&sched->start_work_mutex);
I
Ingo Molnar 已提交
619
	BUG_ON(ret);
620
	ret = pthread_mutex_unlock(&sched->start_work_mutex);
I
Ingo Molnar 已提交
621 622
	BUG_ON(ret);

623
	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
I
Ingo Molnar 已提交
624 625 626

	for (i = 0; i < this_task->nr_events; i++) {
		this_task->curr_event = i;
627
		perf_sched__process_event(sched, this_task->atoms[i]);
I
Ingo Molnar 已提交
628 629
	}

630
	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
I
Ingo Molnar 已提交
631 632 633 634
	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
	ret = sem_post(&this_task->work_done_sem);
	BUG_ON(ret);

635
	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
I
Ingo Molnar 已提交
636
	BUG_ON(ret);
637
	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
I
Ingo Molnar 已提交
638 639 640 641 642
	BUG_ON(ret);

	goto again;
}

643
static void create_tasks(struct perf_sched *sched)
I
Ingo Molnar 已提交
644 645 646 647 648 649 650 651
{
	struct task_desc *task;
	pthread_attr_t attr;
	unsigned long i;
	int err;

	err = pthread_attr_init(&attr);
	BUG_ON(err);
652 653
	err = pthread_attr_setstacksize(&attr,
			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
I
Ingo Molnar 已提交
654
	BUG_ON(err);
655
	err = pthread_mutex_lock(&sched->start_work_mutex);
I
Ingo Molnar 已提交
656
	BUG_ON(err);
657
	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
I
Ingo Molnar 已提交
658
	BUG_ON(err);
659 660 661 662 663
	for (i = 0; i < sched->nr_tasks; i++) {
		struct sched_thread_parms *parms = malloc(sizeof(*parms));
		BUG_ON(parms == NULL);
		parms->task = task = sched->tasks[i];
		parms->sched = sched;
664
		parms->fd = self_open_counters(sched, i);
I
Ingo Molnar 已提交
665 666 667 668
		sem_init(&task->sleep_sem, 0, 0);
		sem_init(&task->ready_for_work, 0, 0);
		sem_init(&task->work_done_sem, 0, 0);
		task->curr_event = 0;
669
		err = pthread_create(&task->thread, &attr, thread_func, parms);
I
Ingo Molnar 已提交
670 671 672 673
		BUG_ON(err);
	}
}

674
static void wait_for_tasks(struct perf_sched *sched)
I
Ingo Molnar 已提交
675
{
676
	u64 cpu_usage_0, cpu_usage_1;
I
Ingo Molnar 已提交
677 678 679
	struct task_desc *task;
	unsigned long i, ret;

680 681 682
	sched->start_time = get_nsecs();
	sched->cpu_usage = 0;
	pthread_mutex_unlock(&sched->work_done_wait_mutex);
I
Ingo Molnar 已提交
683

684 685
	for (i = 0; i < sched->nr_tasks; i++) {
		task = sched->tasks[i];
I
Ingo Molnar 已提交
686 687 688 689
		ret = sem_wait(&task->ready_for_work);
		BUG_ON(ret);
		sem_init(&task->ready_for_work, 0, 0);
	}
690
	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
I
Ingo Molnar 已提交
691 692 693 694
	BUG_ON(ret);

	cpu_usage_0 = get_cpu_usage_nsec_parent();

695
	pthread_mutex_unlock(&sched->start_work_mutex);
I
Ingo Molnar 已提交
696

697 698
	for (i = 0; i < sched->nr_tasks; i++) {
		task = sched->tasks[i];
I
Ingo Molnar 已提交
699 700 701
		ret = sem_wait(&task->work_done_sem);
		BUG_ON(ret);
		sem_init(&task->work_done_sem, 0, 0);
702
		sched->cpu_usage += task->cpu_usage;
I
Ingo Molnar 已提交
703 704 705 706
		task->cpu_usage = 0;
	}

	cpu_usage_1 = get_cpu_usage_nsec_parent();
707 708
	if (!sched->runavg_cpu_usage)
		sched->runavg_cpu_usage = sched->cpu_usage;
709
	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
I
Ingo Molnar 已提交
710

711 712 713
	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
	if (!sched->runavg_parent_cpu_usage)
		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
714 715
	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
					 sched->parent_cpu_usage)/sched->replay_repeat;
I
Ingo Molnar 已提交
716

717
	ret = pthread_mutex_lock(&sched->start_work_mutex);
I
Ingo Molnar 已提交
718 719
	BUG_ON(ret);

720 721
	for (i = 0; i < sched->nr_tasks; i++) {
		task = sched->tasks[i];
I
Ingo Molnar 已提交
722 723 724 725 726
		sem_init(&task->sleep_sem, 0, 0);
		task->curr_event = 0;
	}
}

727
static void run_one_test(struct perf_sched *sched)
I
Ingo Molnar 已提交
728
{
K
Kyle McMartin 已提交
729
	u64 T0, T1, delta, avg_delta, fluct;
I
Ingo Molnar 已提交
730 731

	T0 = get_nsecs();
732
	wait_for_tasks(sched);
I
Ingo Molnar 已提交
733 734 735
	T1 = get_nsecs();

	delta = T1 - T0;
736 737
	sched->sum_runtime += delta;
	sched->nr_runs++;
I
Ingo Molnar 已提交
738

739
	avg_delta = sched->sum_runtime / sched->nr_runs;
I
Ingo Molnar 已提交
740 741 742 743
	if (delta < avg_delta)
		fluct = avg_delta - delta;
	else
		fluct = delta - avg_delta;
744 745 746
	sched->sum_fluct += fluct;
	if (!sched->run_avg)
		sched->run_avg = delta;
747
	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
I
Ingo Molnar 已提交
748

749
	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
I
Ingo Molnar 已提交
750

751
	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
I
Ingo Molnar 已提交
752

I
Ingo Molnar 已提交
753
	printf("cpu: %0.2f / %0.2f",
754
		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
I
Ingo Molnar 已提交
755 756 757

#if 0
	/*
758
	 * rusage statistics done by the parent, these are less
759
	 * accurate than the sched->sum_exec_runtime based statistics:
760
	 */
I
Ingo Molnar 已提交
761
	printf(" [%0.2f / %0.2f]",
762 763
		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
I
Ingo Molnar 已提交
764 765
#endif

I
Ingo Molnar 已提交
766
	printf("\n");
I
Ingo Molnar 已提交
767

768 769 770
	if (sched->nr_sleep_corrections)
		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
	sched->nr_sleep_corrections = 0;
I
Ingo Molnar 已提交
771 772
}

773
static void test_calibrations(struct perf_sched *sched)
I
Ingo Molnar 已提交
774
{
775
	u64 T0, T1;
I
Ingo Molnar 已提交
776 777

	T0 = get_nsecs();
778
	burn_nsecs(sched, NSEC_PER_MSEC);
I
Ingo Molnar 已提交
779 780
	T1 = get_nsecs();

781
	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
I
Ingo Molnar 已提交
782 783

	T0 = get_nsecs();
784
	sleep_nsecs(NSEC_PER_MSEC);
I
Ingo Molnar 已提交
785 786
	T1 = get_nsecs();

787
	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
I
Ingo Molnar 已提交
788 789
}

790
static int
791
replay_wakeup_event(struct perf_sched *sched,
792 793
		    struct perf_evsel *evsel, struct perf_sample *sample,
		    struct machine *machine __maybe_unused)
794
{
795 796
	const char *comm = perf_evsel__strval(evsel, sample, "comm");
	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
797
	struct task_desc *waker, *wakee;
798

799
	if (verbose > 0) {
800
		printf("sched_wakeup event %p\n", evsel);
801

802
		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
I
Ingo Molnar 已提交
803
	}
804

805
	waker = register_pid(sched, sample->tid, "<unknown>");
806
	wakee = register_pid(sched, pid, comm);
807

808
	add_sched_event_wakeup(sched, waker, sample->time, wakee);
809
	return 0;
I
Ingo Molnar 已提交
810 811
}

812 813 814 815
static int replay_switch_event(struct perf_sched *sched,
			       struct perf_evsel *evsel,
			       struct perf_sample *sample,
			       struct machine *machine __maybe_unused)
I
Ingo Molnar 已提交
816
{
817 818 819 820 821
	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
822
	struct task_desc *prev, __maybe_unused *next;
823 824
	u64 timestamp0, timestamp = sample->time;
	int cpu = sample->cpu;
825 826
	s64 delta;

827
	if (verbose > 0)
828
		printf("sched_switch event %p\n", evsel);
I
Ingo Molnar 已提交
829

830
	if (cpu >= MAX_CPUS || cpu < 0)
831
		return 0;
832

833
	timestamp0 = sched->cpu_last_switched[cpu];
834 835 836 837 838
	if (timestamp0)
		delta = timestamp - timestamp0;
	else
		delta = 0;

839
	if (delta < 0) {
840
		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
841 842
		return -1;
	}
843

844 845
	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
		 prev_comm, prev_pid, next_comm, next_pid, delta);
846

847 848
	prev = register_pid(sched, prev_pid, prev_comm);
	next = register_pid(sched, next_pid, next_comm);
849

850
	sched->cpu_last_switched[cpu] = timestamp;
851

852
	add_sched_event_run(sched, prev, timestamp, delta);
853
	add_sched_event_sleep(sched, prev, timestamp, prev_state);
854 855

	return 0;
856 857
}

858 859 860
static int replay_fork_event(struct perf_sched *sched,
			     union perf_event *event,
			     struct machine *machine)
861
{
862 863
	struct thread *child, *parent;

864 865 866 867
	child = machine__findnew_thread(machine, event->fork.pid,
					event->fork.tid);
	parent = machine__findnew_thread(machine, event->fork.ppid,
					 event->fork.ptid);
868 869 870 871

	if (child == NULL || parent == NULL) {
		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
				 child, parent);
872
		goto out_put;
873
	}
874

875
	if (verbose > 0) {
876
		printf("fork event\n");
877 878
		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
879
	}
880

881 882
	register_pid(sched, parent->tid, thread__comm_str(parent));
	register_pid(sched, child->tid, thread__comm_str(child));
883 884 885
out_put:
	thread__put(child);
	thread__put(parent);
886
	return 0;
887
}
888

889 890
struct sort_dimension {
	const char		*name;
891
	sort_fn_t		cmp;
892 893 894
	struct list_head	list;
};

895
static int
896
thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
897 898 899 900
{
	struct sort_dimension *sort;
	int ret = 0;

901 902
	BUG_ON(list_empty(list));

903 904 905 906 907 908 909 910 911
	list_for_each_entry(sort, list, list) {
		ret = sort->cmp(l, r);
		if (ret)
			return ret;
	}

	return ret;
}

912
static struct work_atoms *
913 914 915 916
thread_atoms_search(struct rb_root *root, struct thread *thread,
			 struct list_head *sort_list)
{
	struct rb_node *node = root->rb_node;
917
	struct work_atoms key = { .thread = thread };
918 919

	while (node) {
920
		struct work_atoms *atoms;
921 922
		int cmp;

923
		atoms = container_of(node, struct work_atoms, node);
924 925 926 927 928 929 930 931 932 933 934 935 936 937

		cmp = thread_lat_cmp(sort_list, &key, atoms);
		if (cmp > 0)
			node = node->rb_left;
		else if (cmp < 0)
			node = node->rb_right;
		else {
			BUG_ON(thread != atoms->thread);
			return atoms;
		}
	}
	return NULL;
}

938
static void
939
__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
940
			 struct list_head *sort_list)
941 942 943 944
{
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
945
		struct work_atoms *this;
946
		int cmp;
947

948
		this = container_of(*new, struct work_atoms, node);
949
		parent = *new;
950 951 952 953

		cmp = thread_lat_cmp(sort_list, data, this);

		if (cmp > 0)
954 955
			new = &((*new)->rb_left);
		else
956
			new = &((*new)->rb_right);
957 958 959 960 961 962
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);
}

963
static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
964
{
965
	struct work_atoms *atoms = zalloc(sizeof(*atoms));
966 967 968 969
	if (!atoms) {
		pr_err("No memory at %s\n", __func__);
		return -1;
	}
970

971
	atoms->thread = thread__get(thread);
972
	INIT_LIST_HEAD(&atoms->work_list);
973
	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
974
	return 0;
975 976
}

977
static char sched_out_state(u64 prev_state)
978 979 980
{
	const char *str = TASK_STATE_TO_CHAR_STR;

981
	return str[prev_state];
982 983
}

984
static int
985 986 987
add_sched_out_event(struct work_atoms *atoms,
		    char run_state,
		    u64 timestamp)
988
{
989
	struct work_atom *atom = zalloc(sizeof(*atom));
990 991 992 993
	if (!atom) {
		pr_err("Non memory at %s", __func__);
		return -1;
	}
994

995 996
	atom->sched_out_time = timestamp;

997
	if (run_state == 'R') {
998
		atom->state = THREAD_WAIT_CPU;
999
		atom->wake_up_time = atom->sched_out_time;
1000 1001
	}

1002
	list_add_tail(&atom->list, &atoms->work_list);
1003
	return 0;
1004 1005 1006
}

static void
1007 1008
add_runtime_event(struct work_atoms *atoms, u64 delta,
		  u64 timestamp __maybe_unused)
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
{
	struct work_atom *atom;

	BUG_ON(list_empty(&atoms->work_list));

	atom = list_entry(atoms->work_list.prev, struct work_atom, list);

	atom->runtime += delta;
	atoms->total_runtime += delta;
}

static void
add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1022
{
1023
	struct work_atom *atom;
1024
	u64 delta;
1025

1026
	if (list_empty(&atoms->work_list))
1027 1028
		return;

1029
	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1030

1031
	if (atom->state != THREAD_WAIT_CPU)
1032 1033
		return;

1034 1035
	if (timestamp < atom->wake_up_time) {
		atom->state = THREAD_IGNORE;
1036 1037 1038
		return;
	}

1039 1040
	atom->state = THREAD_SCHED_IN;
	atom->sched_in_time = timestamp;
1041

1042
	delta = atom->sched_in_time - atom->wake_up_time;
1043
	atoms->total_lat += delta;
1044
	if (delta > atoms->max_lat) {
1045
		atoms->max_lat = delta;
1046 1047
		atoms->max_lat_at = timestamp;
	}
1048
	atoms->nb_atoms++;
1049 1050
}

1051 1052 1053 1054
static int latency_switch_event(struct perf_sched *sched,
				struct perf_evsel *evsel,
				struct perf_sample *sample,
				struct machine *machine)
1055
{
1056 1057 1058
	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1059
	struct work_atoms *out_events, *in_events;
1060
	struct thread *sched_out, *sched_in;
1061
	u64 timestamp0, timestamp = sample->time;
1062
	int cpu = sample->cpu, err = -1;
I
Ingo Molnar 已提交
1063 1064
	s64 delta;

1065
	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
I
Ingo Molnar 已提交
1066

1067 1068
	timestamp0 = sched->cpu_last_switched[cpu];
	sched->cpu_last_switched[cpu] = timestamp;
I
Ingo Molnar 已提交
1069 1070 1071 1072 1073
	if (timestamp0)
		delta = timestamp - timestamp0;
	else
		delta = 0;

1074 1075 1076 1077
	if (delta < 0) {
		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
		return -1;
	}
1078

1079 1080
	sched_out = machine__findnew_thread(machine, -1, prev_pid);
	sched_in = machine__findnew_thread(machine, -1, next_pid);
1081 1082
	if (sched_out == NULL || sched_in == NULL)
		goto out_put;
1083

1084
	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1085
	if (!out_events) {
1086
		if (thread_atoms_insert(sched, sched_out))
1087
			goto out_put;
1088
		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1089 1090
		if (!out_events) {
			pr_err("out-event: Internal tree error");
1091
			goto out_put;
1092
		}
1093
	}
1094
	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1095
		return -1;
1096

1097
	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1098
	if (!in_events) {
1099
		if (thread_atoms_insert(sched, sched_in))
1100
			goto out_put;
1101
		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1102 1103
		if (!in_events) {
			pr_err("in-event: Internal tree error");
1104
			goto out_put;
1105
		}
1106 1107 1108 1109
		/*
		 * Take came in we have not heard about yet,
		 * add in an initial atom in runnable state:
		 */
1110
		if (add_sched_out_event(in_events, 'R', timestamp))
1111
			goto out_put;
1112
	}
1113
	add_sched_in_event(in_events, timestamp);
1114 1115 1116 1117 1118
	err = 0;
out_put:
	thread__put(sched_out);
	thread__put(sched_in);
	return err;
1119
}
1120

1121 1122 1123 1124
static int latency_runtime_event(struct perf_sched *sched,
				 struct perf_evsel *evsel,
				 struct perf_sample *sample,
				 struct machine *machine)
1125
{
1126 1127
	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1128
	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1129
	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1130
	u64 timestamp = sample->time;
1131 1132 1133 1134
	int cpu = sample->cpu, err = -1;

	if (thread == NULL)
		return -1;
1135 1136 1137

	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
	if (!atoms) {
1138
		if (thread_atoms_insert(sched, thread))
1139
			goto out_put;
1140
		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1141
		if (!atoms) {
1142
			pr_err("in-event: Internal tree error");
1143
			goto out_put;
1144 1145
		}
		if (add_sched_out_event(atoms, 'R', timestamp))
1146
			goto out_put;
1147 1148
	}

1149
	add_runtime_event(atoms, runtime, timestamp);
1150 1151 1152 1153
	err = 0;
out_put:
	thread__put(thread);
	return err;
1154 1155
}

1156 1157 1158 1159
static int latency_wakeup_event(struct perf_sched *sched,
				struct perf_evsel *evsel,
				struct perf_sample *sample,
				struct machine *machine)
1160
{
1161
	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1162
	struct work_atoms *atoms;
1163
	struct work_atom *atom;
1164
	struct thread *wakee;
1165
	u64 timestamp = sample->time;
1166
	int err = -1;
1167

1168
	wakee = machine__findnew_thread(machine, -1, pid);
1169 1170
	if (wakee == NULL)
		return -1;
1171
	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1172
	if (!atoms) {
1173
		if (thread_atoms_insert(sched, wakee))
1174
			goto out_put;
1175
		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1176
		if (!atoms) {
1177
			pr_err("wakeup-event: Internal tree error");
1178
			goto out_put;
1179 1180
		}
		if (add_sched_out_event(atoms, 'S', timestamp))
1181
			goto out_put;
1182 1183
	}

1184
	BUG_ON(list_empty(&atoms->work_list));
1185

1186
	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1187

1188
	/*
1189 1190 1191 1192 1193 1194
	 * As we do not guarantee the wakeup event happens when
	 * task is out of run queue, also may happen when task is
	 * on run queue and wakeup only change ->state to TASK_RUNNING,
	 * then we should not set the ->wake_up_time when wake up a
	 * task which is on run queue.
	 *
1195 1196
	 * You WILL be missing events if you've recorded only
	 * one CPU, or are only looking at only one, so don't
1197
	 * skip in this case.
1198
	 */
1199
	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1200
		goto out_ok;
1201

1202
	sched->nr_timestamps++;
1203
	if (atom->sched_out_time > timestamp) {
1204
		sched->nr_unordered_timestamps++;
1205
		goto out_ok;
1206
	}
1207

1208 1209
	atom->state = THREAD_WAIT_CPU;
	atom->wake_up_time = timestamp;
1210 1211 1212 1213 1214
out_ok:
	err = 0;
out_put:
	thread__put(wakee);
	return err;
1215 1216
}

1217 1218 1219 1220
static int latency_migrate_task_event(struct perf_sched *sched,
				      struct perf_evsel *evsel,
				      struct perf_sample *sample,
				      struct machine *machine)
1221
{
1222
	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1223
	u64 timestamp = sample->time;
1224 1225 1226
	struct work_atoms *atoms;
	struct work_atom *atom;
	struct thread *migrant;
1227
	int err = -1;
1228 1229 1230 1231

	/*
	 * Only need to worry about migration when profiling one CPU.
	 */
1232
	if (sched->profile_cpu == -1)
1233
		return 0;
1234

1235
	migrant = machine__findnew_thread(machine, -1, pid);
1236 1237
	if (migrant == NULL)
		return -1;
1238
	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1239
	if (!atoms) {
1240
		if (thread_atoms_insert(sched, migrant))
1241
			goto out_put;
1242
		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1243
		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1244
		if (!atoms) {
1245
			pr_err("migration-event: Internal tree error");
1246
			goto out_put;
1247 1248
		}
		if (add_sched_out_event(atoms, 'R', timestamp))
1249
			goto out_put;
1250 1251 1252 1253 1254 1255 1256
	}

	BUG_ON(list_empty(&atoms->work_list));

	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;

1257
	sched->nr_timestamps++;
1258 1259

	if (atom->sched_out_time > timestamp)
1260
		sched->nr_unordered_timestamps++;
1261 1262 1263 1264
	err = 0;
out_put:
	thread__put(migrant);
	return err;
1265 1266
}

1267
static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1268 1269 1270
{
	int i;
	int ret;
1271
	u64 avg;
1272
	char max_lat_at[32];
1273

1274
	if (!work_list->nb_atoms)
1275
		return;
1276 1277 1278
	/*
	 * Ignore idle threads:
	 */
1279
	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1280
		return;
1281

1282 1283
	sched->all_runtime += work_list->total_runtime;
	sched->all_count   += work_list->nb_atoms;
1284

1285 1286 1287 1288
	if (work_list->num_merged > 1)
		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
	else
		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1289

M
mingo 已提交
1290
	for (i = 0; i < 24 - ret; i++)
1291 1292
		printf(" ");

1293
	avg = work_list->total_lat / work_list->nb_atoms;
1294
	timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1295

1296
	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1297 1298 1299
	      (double)work_list->total_runtime / NSEC_PER_MSEC,
		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
		 (double)work_list->max_lat / NSEC_PER_MSEC,
1300
		 max_lat_at);
1301 1302
}

1303
static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1304
{
1305 1306
	if (l->thread == r->thread)
		return 0;
1307
	if (l->thread->tid < r->thread->tid)
1308
		return -1;
1309
	if (l->thread->tid > r->thread->tid)
1310
		return 1;
1311
	return (int)(l->thread - r->thread);
1312 1313
}

1314
static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
{
	u64 avgl, avgr;

	if (!l->nb_atoms)
		return -1;

	if (!r->nb_atoms)
		return 1;

	avgl = l->total_lat / l->nb_atoms;
	avgr = r->total_lat / r->nb_atoms;

	if (avgl < avgr)
		return -1;
	if (avgl > avgr)
		return 1;

	return 0;
}

1335
static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1336 1337 1338 1339 1340 1341 1342 1343 1344
{
	if (l->max_lat < r->max_lat)
		return -1;
	if (l->max_lat > r->max_lat)
		return 1;

	return 0;
}

1345
static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1346 1347 1348 1349 1350 1351 1352 1353 1354
{
	if (l->nb_atoms < r->nb_atoms)
		return -1;
	if (l->nb_atoms > r->nb_atoms)
		return 1;

	return 0;
}

1355
static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1356 1357 1358 1359 1360 1361 1362 1363 1364
{
	if (l->total_runtime < r->total_runtime)
		return -1;
	if (l->total_runtime > r->total_runtime)
		return 1;

	return 0;
}

1365
static int sort_dimension__add(const char *tok, struct list_head *list)
1366
{
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	size_t i;
	static struct sort_dimension avg_sort_dimension = {
		.name = "avg",
		.cmp  = avg_cmp,
	};
	static struct sort_dimension max_sort_dimension = {
		.name = "max",
		.cmp  = max_cmp,
	};
	static struct sort_dimension pid_sort_dimension = {
		.name = "pid",
		.cmp  = pid_cmp,
	};
	static struct sort_dimension runtime_sort_dimension = {
		.name = "runtime",
		.cmp  = runtime_cmp,
	};
	static struct sort_dimension switch_sort_dimension = {
		.name = "switch",
		.cmp  = switch_cmp,
	};
	struct sort_dimension *available_sorts[] = {
		&pid_sort_dimension,
		&avg_sort_dimension,
		&max_sort_dimension,
		&switch_sort_dimension,
		&runtime_sort_dimension,
	};
1395

1396
	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		if (!strcmp(available_sorts[i]->name, tok)) {
			list_add_tail(&available_sorts[i]->list, list);

			return 0;
		}
	}

	return -1;
}

1407
static void perf_sched__sort_lat(struct perf_sched *sched)
1408 1409
{
	struct rb_node *node;
1410 1411
	struct rb_root *root = &sched->atom_root;
again:
1412
	for (;;) {
1413
		struct work_atoms *data;
1414
		node = rb_first(root);
1415 1416 1417
		if (!node)
			break;

1418
		rb_erase(node, root);
1419
		data = rb_entry(node, struct work_atoms, node);
1420
		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1421
	}
1422 1423 1424 1425
	if (root == &sched->atom_root) {
		root = &sched->merged_atom_root;
		goto again;
	}
1426 1427
}

1428
static int process_sched_wakeup_event(struct perf_tool *tool,
1429
				      struct perf_evsel *evsel,
1430
				      struct perf_sample *sample,
1431
				      struct machine *machine)
1432
{
1433
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1434

1435 1436
	if (sched->tp_handler->wakeup_event)
		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1437

1438
	return 0;
1439 1440
}

J
Jiri Olsa 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
union map_priv {
	void	*ptr;
	bool	 color;
};

static bool thread__has_color(struct thread *thread)
{
	union map_priv priv = {
		.ptr = thread__priv(thread),
	};

	return priv.color;
}

static struct thread*
map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
{
	struct thread *thread = machine__findnew_thread(machine, pid, tid);
	union map_priv priv = {
		.color = false,
	};

	if (!sched->map.color_pids || !thread || thread__priv(thread))
		return thread;

	if (thread_map__has(sched->map.color_pids, tid))
		priv.color = true;

	thread__set_priv(thread, priv.ptr);
	return thread;
}

1473 1474
static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
			    struct perf_sample *sample, struct machine *machine)
1475
{
1476 1477
	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
	struct thread *sched_in;
1478
	int new_shortname;
1479
	u64 timestamp0, timestamp = sample->time;
1480
	s64 delta;
1481 1482 1483
	int i, this_cpu = sample->cpu;
	int cpus_nr;
	bool new_cpu = false;
1484
	const char *color = PERF_COLOR_NORMAL;
1485
	char stimestamp[32];
1486 1487 1488

	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);

1489 1490
	if (this_cpu > sched->max_cpu)
		sched->max_cpu = this_cpu;
1491

1492 1493 1494 1495 1496 1497 1498 1499 1500
	if (sched->map.comp) {
		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
			sched->map.comp_cpus[cpus_nr++] = this_cpu;
			new_cpu = true;
		}
	} else
		cpus_nr = sched->max_cpu;

1501 1502
	timestamp0 = sched->cpu_last_switched[this_cpu];
	sched->cpu_last_switched[this_cpu] = timestamp;
1503 1504 1505 1506 1507
	if (timestamp0)
		delta = timestamp - timestamp0;
	else
		delta = 0;

1508
	if (delta < 0) {
1509
		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1510 1511
		return -1;
	}
1512

J
Jiri Olsa 已提交
1513
	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1514 1515
	if (sched_in == NULL)
		return -1;
1516

1517
	sched->curr_thread[this_cpu] = thread__get(sched_in);
1518 1519 1520 1521 1522

	printf("  ");

	new_shortname = 0;
	if (!sched_in->shortname[0]) {
1523 1524 1525 1526 1527 1528 1529
		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
			/*
			 * Don't allocate a letter-number for swapper:0
			 * as a shortname. Instead, we use '.' for it.
			 */
			sched_in->shortname[0] = '.';
			sched_in->shortname[1] = ' ';
1530
		} else {
1531 1532 1533 1534 1535
			sched_in->shortname[0] = sched->next_shortname1;
			sched_in->shortname[1] = sched->next_shortname2;

			if (sched->next_shortname1 < 'Z') {
				sched->next_shortname1++;
1536
			} else {
1537 1538 1539 1540 1541
				sched->next_shortname1 = 'A';
				if (sched->next_shortname2 < '9')
					sched->next_shortname2++;
				else
					sched->next_shortname2 = '0';
1542 1543 1544 1545 1546
			}
		}
		new_shortname = 1;
	}

1547 1548
	for (i = 0; i < cpus_nr; i++) {
		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
J
Jiri Olsa 已提交
1549 1550
		struct thread *curr_thread = sched->curr_thread[cpu];
		const char *pid_color = color;
J
Jiri Olsa 已提交
1551
		const char *cpu_color = color;
J
Jiri Olsa 已提交
1552 1553 1554

		if (curr_thread && thread__has_color(curr_thread))
			pid_color = COLOR_PIDS;
1555

1556 1557 1558
		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
			continue;

J
Jiri Olsa 已提交
1559 1560 1561
		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
			cpu_color = COLOR_CPUS;

1562
		if (cpu != this_cpu)
1563
			color_fprintf(stdout, color, " ");
1564
		else
J
Jiri Olsa 已提交
1565
			color_fprintf(stdout, cpu_color, "*");
1566

1567
		if (sched->curr_thread[cpu])
J
Jiri Olsa 已提交
1568
			color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1569
		else
1570
			color_fprintf(stdout, color, "   ");
1571 1572
	}

1573 1574 1575
	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
		goto out;

1576 1577
	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1578
	if (new_shortname || (verbose > 0 && sched_in->tid)) {
J
Jiri Olsa 已提交
1579 1580 1581 1582 1583 1584
		const char *pid_color = color;

		if (thread__has_color(sched_in))
			pid_color = COLOR_PIDS;

		color_fprintf(stdout, pid_color, "%s => %s:%d",
1585
		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1586
	}
1587

1588
	if (sched->map.comp && new_cpu)
1589
		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1590

1591
out:
1592
	color_fprintf(stdout, color, "\n");
1593

1594 1595
	thread__put(sched_in);

1596
	return 0;
1597 1598
}

1599
static int process_sched_switch_event(struct perf_tool *tool,
1600
				      struct perf_evsel *evsel,
1601
				      struct perf_sample *sample,
1602
				      struct machine *machine)
1603
{
1604
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1605
	int this_cpu = sample->cpu, err = 0;
1606 1607
	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1608

1609
	if (sched->curr_pid[this_cpu] != (u32)-1) {
1610 1611 1612 1613
		/*
		 * Are we trying to switch away a PID that is
		 * not current?
		 */
1614
		if (sched->curr_pid[this_cpu] != prev_pid)
1615
			sched->nr_context_switch_bugs++;
1616 1617
	}

1618 1619
	if (sched->tp_handler->switch_event)
		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1620 1621

	sched->curr_pid[this_cpu] = next_pid;
1622
	return err;
1623 1624
}

1625
static int process_sched_runtime_event(struct perf_tool *tool,
1626
				       struct perf_evsel *evsel,
1627
				       struct perf_sample *sample,
1628
				       struct machine *machine)
1629
{
1630
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1631

1632 1633
	if (sched->tp_handler->runtime_event)
		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1634

1635
	return 0;
1636 1637
}

1638 1639 1640 1641
static int perf_sched__process_fork_event(struct perf_tool *tool,
					  union perf_event *event,
					  struct perf_sample *sample,
					  struct machine *machine)
1642
{
1643
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1644

1645 1646 1647 1648
	/* run the fork event through the perf machineruy */
	perf_event__process_fork(tool, event, sample, machine);

	/* and then run additional processing needed for this command */
1649
	if (sched->tp_handler->fork_event)
1650
		return sched->tp_handler->fork_event(sched, event, machine);
1651

1652
	return 0;
1653 1654
}

1655
static int process_sched_migrate_task_event(struct perf_tool *tool,
1656
					    struct perf_evsel *evsel,
1657
					    struct perf_sample *sample,
1658
					    struct machine *machine)
1659
{
1660
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1661

1662 1663
	if (sched->tp_handler->migrate_task_event)
		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1664

1665
	return 0;
1666 1667
}

1668
typedef int (*tracepoint_handler)(struct perf_tool *tool,
1669
				  struct perf_evsel *evsel,
1670
				  struct perf_sample *sample,
1671
				  struct machine *machine);
I
Ingo Molnar 已提交
1672

1673 1674
static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
						 union perf_event *event __maybe_unused,
1675 1676 1677
						 struct perf_sample *sample,
						 struct perf_evsel *evsel,
						 struct machine *machine)
I
Ingo Molnar 已提交
1678
{
1679
	int err = 0;
I
Ingo Molnar 已提交
1680

1681 1682
	if (evsel->handler != NULL) {
		tracepoint_handler f = evsel->handler;
1683
		err = f(tool, evsel, sample, machine);
1684
	}
I
Ingo Molnar 已提交
1685

1686
	return err;
I
Ingo Molnar 已提交
1687 1688
}

1689
static int perf_sched__read_events(struct perf_sched *sched)
I
Ingo Molnar 已提交
1690
{
1691 1692 1693 1694 1695 1696 1697
	const struct perf_evsel_str_handler handlers[] = {
		{ "sched:sched_switch",	      process_sched_switch_event, },
		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
	};
1698
	struct perf_session *session;
1699 1700 1701
	struct perf_data_file file = {
		.path = input_name,
		.mode = PERF_DATA_MODE_READ,
1702
		.force = sched->force,
1703
	};
1704
	int rc = -1;
1705

1706
	session = perf_session__new(&file, false, &sched->tool);
1707 1708 1709 1710
	if (session == NULL) {
		pr_debug("No Memory for session\n");
		return -1;
	}
1711

1712
	symbol__init(&session->header.env);
1713

1714 1715
	if (perf_session__set_tracepoints_handlers(session, handlers))
		goto out_delete;
1716

1717
	if (perf_session__has_traces(session, "record -R")) {
1718
		int err = perf_session__process_events(session);
1719 1720 1721 1722
		if (err) {
			pr_err("Failed to process events, error %d", err);
			goto out_delete;
		}
1723

1724 1725 1726
		sched->nr_events      = session->evlist->stats.nr_events[0];
		sched->nr_lost_events = session->evlist->stats.total_lost;
		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1727
	}
1728

1729
	rc = 0;
1730 1731
out_delete:
	perf_session__delete(session);
1732
	return rc;
I
Ingo Molnar 已提交
1733 1734
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
/*
 * scheduling times are printed as msec.usec
 */
static inline void print_sched_time(unsigned long long nsecs, int width)
{
	unsigned long msecs;
	unsigned long usecs;

	msecs  = nsecs / NSEC_PER_MSEC;
	nsecs -= msecs * NSEC_PER_MSEC;
	usecs  = nsecs / NSEC_PER_USEC;
	printf("%*lu.%03lu ", width, msecs, usecs);
}

/*
 * returns runtime data for event, allocating memory for it the
 * first time it is used.
 */
static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
{
	struct evsel_runtime *r = evsel->priv;

	if (r == NULL) {
		r = zalloc(sizeof(struct evsel_runtime));
		evsel->priv = r;
	}

	return r;
}

/*
 * save last time event was seen per cpu
 */
static void perf_evsel__save_time(struct perf_evsel *evsel,
				  u64 timestamp, u32 cpu)
{
	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);

	if (r == NULL)
		return;

	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
		int i, n = __roundup_pow_of_two(cpu+1);
		void *p = r->last_time;

		p = realloc(r->last_time, n * sizeof(u64));
		if (!p)
			return;

		r->last_time = p;
		for (i = r->ncpu; i < n; ++i)
			r->last_time[i] = (u64) 0;

		r->ncpu = n;
	}

	r->last_time[cpu] = timestamp;
}

/* returns last time this event was seen on the given cpu */
static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
{
	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);

	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
		return 0;

	return r->last_time[cpu];
}

1805
static int comm_width = 30;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

static char *timehist_get_commstr(struct thread *thread)
{
	static char str[32];
	const char *comm = thread__comm_str(thread);
	pid_t tid = thread->tid;
	pid_t pid = thread->pid_;
	int n;

	if (pid == 0)
		n = scnprintf(str, sizeof(str), "%s", comm);

	else if (tid != pid)
		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);

	else
		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);

	if (n > comm_width)
		comm_width = n;

	return str;
}

1830
static void timehist_header(struct perf_sched *sched)
1831
{
1832 1833 1834
	u32 ncpus = sched->max_cpu + 1;
	u32 i, j;

1835 1836
	printf("%15s %6s ", "time", "cpu");

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	if (sched->show_cpu_visual) {
		printf(" ");
		for (i = 0, j = 0; i < ncpus; ++i) {
			printf("%x", j++);
			if (j > 15)
				j = 0;
		}
		printf(" ");
	}

1847
	printf(" %-*s  %9s  %9s  %9s", comm_width,
1848 1849
		"task name", "wait time", "sch delay", "run time");

1850 1851 1852
	if (sched->show_state)
		printf("  %s", "state");

1853 1854 1855 1856 1857 1858 1859
	printf("\n");

	/*
	 * units row
	 */
	printf("%15s %-6s ", "", "");

1860 1861 1862
	if (sched->show_cpu_visual)
		printf(" %*s ", ncpus, "");

1863
	printf(" %-*s  %9s  %9s  %9s", comm_width,
1864
	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1865

1866 1867 1868 1869 1870
	if (sched->show_state)
		printf("  %5s", "");

	printf("\n");

1871 1872 1873 1874 1875
	/*
	 * separator
	 */
	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);

1876 1877 1878
	if (sched->show_cpu_visual)
		printf(" %.*s ", ncpus, graph_dotted_line);

1879
	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1880 1881 1882
		graph_dotted_line, graph_dotted_line, graph_dotted_line,
		graph_dotted_line);

1883 1884 1885
	if (sched->show_state)
		printf("  %.5s", graph_dotted_line);

1886 1887 1888
	printf("\n");
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static char task_state_char(struct thread *thread, int state)
{
	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
	unsigned bit = state ? ffs(state) : 0;

	/* 'I' for idle */
	if (thread->tid == 0)
		return 'I';

	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
}

1901
static void timehist_print_sample(struct perf_sched *sched,
1902
				  struct perf_evsel *evsel,
1903
				  struct perf_sample *sample,
1904
				  struct addr_location *al,
1905
				  struct thread *thread,
1906
				  u64 t, int state)
1907 1908
{
	struct thread_runtime *tr = thread__priv(thread);
1909 1910
	const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1911
	u32 max_cpus = sched->max_cpu + 1;
1912
	char tstr[64];
1913
	char nstr[30];
1914
	u64 wait_time;
1915

1916
	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1917 1918
	printf("%15s [%04d] ", tstr, sample->cpu);

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	if (sched->show_cpu_visual) {
		u32 i;
		char c;

		printf(" ");
		for (i = 0; i < max_cpus; ++i) {
			/* flag idle times with 'i'; others are sched events */
			if (i == sample->cpu)
				c = (thread->tid == 0) ? 'i' : 's';
			else
				c = ' ';
			printf("%c", c);
		}
		printf(" ");
	}

1935 1936
	printf(" %-*s ", comm_width, timehist_get_commstr(thread));

1937 1938 1939
	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
	print_sched_time(wait_time, 6);

1940 1941
	print_sched_time(tr->dt_delay, 6);
	print_sched_time(tr->dt_run, 6);
1942

1943 1944 1945
	if (sched->show_state)
		printf(" %5c ", task_state_char(thread, state));

1946 1947 1948 1949 1950 1951
	if (sched->show_next) {
		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
		printf(" %-*s", comm_width, nstr);
	}

	if (sched->show_wakeups && !sched->show_next)
1952 1953
		printf("  %-*s", comm_width, "");

1954 1955 1956 1957 1958 1959 1960 1961
	if (thread->tid == 0)
		goto out;

	if (sched->show_callchain)
		printf("  ");

	sample__fprintf_sym(sample, al, 0,
			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1962 1963
			    EVSEL__PRINT_CALLCHAIN_ARROW |
			    EVSEL__PRINT_SKIP_IGNORED,
1964 1965 1966
			    &callchain_cursor, stdout);

out:
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	printf("\n");
}

/*
 * Explanation of delta-time stats:
 *
 *            t = time of current schedule out event
 *        tprev = time of previous sched out event
 *                also time of schedule-in event for current task
 *    last_time = time of last sched change event for current task
 *                (i.e, time process was last scheduled out)
 * ready_to_run = time of wakeup for current task
 *
 * -----|------------|------------|------------|------
 *    last         ready        tprev          t
 *    time         to run
 *
 *      |-------- dt_wait --------|
 *                   |- dt_delay -|-- dt_run --|
 *
 *   dt_run = run time of current task
 *  dt_wait = time between last schedule out event for task and tprev
 *            represents time spent off the cpu
 * dt_delay = time between wakeup and schedule-in of task
 */

static void timehist_update_runtime_stats(struct thread_runtime *r,
					 u64 t, u64 tprev)
{
	r->dt_delay   = 0;
1997 1998 1999
	r->dt_sleep   = 0;
	r->dt_iowait  = 0;
	r->dt_preempt = 0;
2000
	r->dt_run     = 0;
2001

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	if (tprev) {
		r->dt_run = t - tprev;
		if (r->ready_to_run) {
			if (r->ready_to_run > tprev)
				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
			else
				r->dt_delay = tprev - r->ready_to_run;
		}

		if (r->last_time > tprev)
			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
		else if (r->last_time) {
			u64 dt_wait = tprev - r->last_time;

			if (r->last_state == TASK_RUNNING)
				r->dt_preempt = dt_wait;
			else if (r->last_state == TASK_UNINTERRUPTIBLE)
				r->dt_iowait = dt_wait;
			else
				r->dt_sleep = dt_wait;
		}
2023 2024 2025
	}

	update_stats(&r->run_stats, r->dt_run);
2026 2027 2028 2029 2030 2031

	r->total_run_time     += r->dt_run;
	r->total_delay_time   += r->dt_delay;
	r->total_sleep_time   += r->dt_sleep;
	r->total_iowait_time  += r->dt_iowait;
	r->total_preempt_time += r->dt_preempt;
2032 2033
}

2034 2035
static bool is_idle_sample(struct perf_sample *sample,
			   struct perf_evsel *evsel)
2036 2037
{
	/* pid 0 == swapper == idle task */
2038 2039
	if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
		return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2040

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	return sample->pid == 0;
}

static void save_task_callchain(struct perf_sched *sched,
				struct perf_sample *sample,
				struct perf_evsel *evsel,
				struct machine *machine)
{
	struct callchain_cursor *cursor = &callchain_cursor;
	struct thread *thread;
2051 2052 2053 2054 2055

	/* want main thread for process - has maps */
	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
	if (thread == NULL) {
		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2056
		return;
2057 2058 2059
	}

	if (!symbol_conf.use_callchain || sample->callchain == NULL)
2060
		return;
2061 2062

	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2063
				      NULL, NULL, sched->max_stack + 2) != 0) {
2064
		if (verbose > 0)
2065 2066
			error("Failed to resolve callchain. Skipping\n");

2067
		return;
2068
	}
2069

2070
	callchain_cursor_commit(cursor);
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

	while (true) {
		struct callchain_cursor_node *node;
		struct symbol *sym;

		node = callchain_cursor_current(cursor);
		if (node == NULL)
			break;

		sym = node->sym;
2081
		if (sym) {
2082 2083 2084 2085 2086 2087 2088 2089
			if (!strcmp(sym->name, "schedule") ||
			    !strcmp(sym->name, "__schedule") ||
			    !strcmp(sym->name, "preempt_schedule"))
				sym->ignore = 1;
		}

		callchain_cursor_advance(cursor);
	}
2090 2091
}

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
static int init_idle_thread(struct thread *thread)
{
	struct idle_thread_runtime *itr;

	thread__set_comm(thread, idle_comm, 0);

	itr = zalloc(sizeof(*itr));
	if (itr == NULL)
		return -ENOMEM;

	init_stats(&itr->tr.run_stats);
	callchain_init(&itr->callchain);
	callchain_cursor_reset(&itr->cursor);
	thread__set_priv(thread, itr);

	return 0;
}

2110 2111 2112 2113 2114 2115
/*
 * Track idle stats per cpu by maintaining a local thread
 * struct for the idle task on each cpu.
 */
static int init_idle_threads(int ncpu)
{
2116
	int i, ret;
2117 2118 2119 2120 2121

	idle_threads = zalloc(ncpu * sizeof(struct thread *));
	if (!idle_threads)
		return -ENOMEM;

2122
	idle_max_cpu = ncpu;
2123 2124 2125 2126 2127 2128 2129

	/* allocate the actual thread struct if needed */
	for (i = 0; i < ncpu; ++i) {
		idle_threads[i] = thread__new(0, 0);
		if (idle_threads[i] == NULL)
			return -ENOMEM;

2130 2131 2132
		ret = init_idle_thread(idle_threads[i]);
		if (ret < 0)
			return ret;
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	}

	return 0;
}

static void free_idle_threads(void)
{
	int i;

	if (idle_threads == NULL)
		return;

2145
	for (i = 0; i < idle_max_cpu; ++i) {
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		if ((idle_threads[i]))
			thread__delete(idle_threads[i]);
	}

	free(idle_threads);
}

static struct thread *get_idle_thread(int cpu)
{
	/*
	 * expand/allocate array of pointers to local thread
	 * structs if needed
	 */
	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
		int i, j = __roundup_pow_of_two(cpu+1);
		void *p;

		p = realloc(idle_threads, j * sizeof(struct thread *));
		if (!p)
			return NULL;

		idle_threads = (struct thread **) p;
2168
		for (i = idle_max_cpu; i < j; ++i)
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
			idle_threads[i] = NULL;

		idle_max_cpu = j;
	}

	/* allocate a new thread struct if needed */
	if (idle_threads[cpu] == NULL) {
		idle_threads[cpu] = thread__new(0, 0);

		if (idle_threads[cpu]) {
2179 2180
			if (init_idle_thread(idle_threads[cpu]) < 0)
				return NULL;
2181 2182 2183 2184 2185 2186
		}
	}

	return idle_threads[cpu];
}

2187 2188 2189 2190 2191 2192 2193 2194 2195
static void save_idle_callchain(struct idle_thread_runtime *itr,
				struct perf_sample *sample)
{
	if (!symbol_conf.use_callchain || sample->callchain == NULL)
		return;

	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
/*
 * handle runtime stats saved per thread
 */
static struct thread_runtime *thread__init_runtime(struct thread *thread)
{
	struct thread_runtime *r;

	r = zalloc(sizeof(struct thread_runtime));
	if (!r)
		return NULL;

	init_stats(&r->run_stats);
	thread__set_priv(thread, r);

	return r;
}

static struct thread_runtime *thread__get_runtime(struct thread *thread)
{
	struct thread_runtime *tr;

	tr = thread__priv(thread);
	if (tr == NULL) {
		tr = thread__init_runtime(thread);
		if (tr == NULL)
			pr_debug("Failed to malloc memory for runtime data.\n");
	}

	return tr;
}

2227 2228
static struct thread *timehist_get_thread(struct perf_sched *sched,
					  struct perf_sample *sample,
2229 2230 2231 2232 2233
					  struct machine *machine,
					  struct perf_evsel *evsel)
{
	struct thread *thread;

2234
	if (is_idle_sample(sample, evsel)) {
2235 2236 2237 2238 2239
		thread = get_idle_thread(sample->cpu);
		if (thread == NULL)
			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);

	} else {
2240 2241 2242
		/* there were samples with tid 0 but non-zero pid */
		thread = machine__findnew_thread(machine, sample->pid,
						 sample->tid ?: sample->pid);
2243 2244 2245 2246
		if (thread == NULL) {
			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
				 sample->tid);
		}
2247 2248

		save_task_callchain(sched, sample, evsel, machine);
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
		if (sched->idle_hist) {
			struct thread *idle;
			struct idle_thread_runtime *itr;

			idle = get_idle_thread(sample->cpu);
			if (idle == NULL) {
				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
				return NULL;
			}

			itr = thread__priv(idle);
			if (itr == NULL)
				return NULL;

			itr->last_thread = thread;

			/* copy task callchain when entering to idle */
			if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
				save_idle_callchain(itr, sample);
		}
2269 2270 2271 2272 2273
	}

	return thread;
}

2274
static bool timehist_skip_sample(struct perf_sched *sched,
2275 2276 2277
				 struct thread *thread,
				 struct perf_evsel *evsel,
				 struct perf_sample *sample)
2278 2279 2280
{
	bool rc = false;

2281
	if (thread__is_filtered(thread)) {
2282
		rc = true;
2283 2284
		sched->skipped_samples++;
	}
2285

2286 2287 2288 2289 2290 2291 2292 2293
	if (sched->idle_hist) {
		if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
			rc = true;
		else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
			 perf_evsel__intval(evsel, sample, "next_pid") != 0)
			rc = true;
	}

2294 2295 2296
	return rc;
}

2297
static void timehist_print_wakeup_event(struct perf_sched *sched,
2298
					struct perf_evsel *evsel,
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
					struct perf_sample *sample,
					struct machine *machine,
					struct thread *awakened)
{
	struct thread *thread;
	char tstr[64];

	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
	if (thread == NULL)
		return;

	/* show wakeup unless both awakee and awaker are filtered */
2311 2312
	if (timehist_skip_sample(sched, thread, evsel, sample) &&
	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2313 2314 2315 2316 2317
		return;
	}

	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
	printf("%15s [%04d] ", tstr, sample->cpu);
2318 2319
	if (sched->show_cpu_visual)
		printf(" %*s ", sched->max_cpu + 1, "");
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

	printf(" %-*s ", comm_width, timehist_get_commstr(thread));

	/* dt spacer */
	printf("  %9s  %9s  %9s ", "", "", "");

	printf("awakened: %s", timehist_get_commstr(awakened));

	printf("\n");
}

static int timehist_sched_wakeup_event(struct perf_tool *tool,
2332 2333 2334 2335 2336
				       union perf_event *event __maybe_unused,
				       struct perf_evsel *evsel,
				       struct perf_sample *sample,
				       struct machine *machine)
{
2337
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	struct thread *thread;
	struct thread_runtime *tr = NULL;
	/* want pid of awakened task not pid in sample */
	const u32 pid = perf_evsel__intval(evsel, sample, "pid");

	thread = machine__findnew_thread(machine, 0, pid);
	if (thread == NULL)
		return -1;

	tr = thread__get_runtime(thread);
	if (tr == NULL)
		return -1;

	if (tr->ready_to_run == 0)
		tr->ready_to_run = sample->time;

2354
	/* show wakeups if requested */
2355 2356
	if (sched->show_wakeups &&
	    !perf_time__skip_sample(&sched->ptime, sample->time))
2357
		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2358

2359 2360 2361
	return 0;
}

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
static void timehist_print_migration_event(struct perf_sched *sched,
					struct perf_evsel *evsel,
					struct perf_sample *sample,
					struct machine *machine,
					struct thread *migrated)
{
	struct thread *thread;
	char tstr[64];
	u32 max_cpus = sched->max_cpu + 1;
	u32 ocpu, dcpu;

	if (sched->summary_only)
		return;

	max_cpus = sched->max_cpu + 1;
	ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
	dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");

	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
	if (thread == NULL)
		return;

2384 2385
	if (timehist_skip_sample(sched, thread, evsel, sample) &&
	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
		return;
	}

	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
	printf("%15s [%04d] ", tstr, sample->cpu);

	if (sched->show_cpu_visual) {
		u32 i;
		char c;

		printf("  ");
		for (i = 0; i < max_cpus; ++i) {
			c = (i == sample->cpu) ? 'm' : ' ';
			printf("%c", c);
		}
		printf("  ");
	}

	printf(" %-*s ", comm_width, timehist_get_commstr(thread));

	/* dt spacer */
	printf("  %9s  %9s  %9s ", "", "", "");

	printf("migrated: %s", timehist_get_commstr(migrated));
	printf(" cpu %d => %d", ocpu, dcpu);

	printf("\n");
}

static int timehist_migrate_task_event(struct perf_tool *tool,
				       union perf_event *event __maybe_unused,
				       struct perf_evsel *evsel,
				       struct perf_sample *sample,
				       struct machine *machine)
{
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
	struct thread *thread;
	struct thread_runtime *tr = NULL;
	/* want pid of migrated task not pid in sample */
	const u32 pid = perf_evsel__intval(evsel, sample, "pid");

	thread = machine__findnew_thread(machine, 0, pid);
	if (thread == NULL)
		return -1;

	tr = thread__get_runtime(thread);
	if (tr == NULL)
		return -1;

	tr->migrations++;

	/* show migrations if requested */
	timehist_print_migration_event(sched, evsel, sample, machine, thread);

	return 0;
}

2443
static int timehist_sched_change_event(struct perf_tool *tool,
2444 2445 2446 2447 2448
				       union perf_event *event,
				       struct perf_evsel *evsel,
				       struct perf_sample *sample,
				       struct machine *machine)
{
2449
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2450
	struct perf_time_interval *ptime = &sched->ptime;
2451 2452 2453
	struct addr_location al;
	struct thread *thread;
	struct thread_runtime *tr = NULL;
2454
	u64 tprev, t = sample->time;
2455
	int rc = 0;
2456 2457
	int state = perf_evsel__intval(evsel, sample, "prev_state");

2458 2459 2460 2461 2462 2463 2464 2465

	if (machine__resolve(machine, &al, sample) < 0) {
		pr_err("problem processing %d event. skipping it\n",
		       event->header.type);
		rc = -1;
		goto out;
	}

2466
	thread = timehist_get_thread(sched, sample, machine, evsel);
2467 2468 2469 2470 2471
	if (thread == NULL) {
		rc = -1;
		goto out;
	}

2472
	if (timehist_skip_sample(sched, thread, evsel, sample))
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
		goto out;

	tr = thread__get_runtime(thread);
	if (tr == NULL) {
		rc = -1;
		goto out;
	}

	tprev = perf_evsel__get_time(evsel, sample->cpu);

2483 2484 2485 2486 2487 2488 2489 2490
	/*
	 * If start time given:
	 * - sample time is under window user cares about - skip sample
	 * - tprev is under window user cares about  - reset to start of window
	 */
	if (ptime->start && ptime->start > t)
		goto out;

2491
	if (tprev && ptime->start > tprev)
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
		tprev = ptime->start;

	/*
	 * If end time given:
	 * - previous sched event is out of window - we are done
	 * - sample time is beyond window user cares about - reset it
	 *   to close out stats for time window interest
	 */
	if (ptime->end) {
		if (tprev > ptime->end)
			goto out;

		if (t > ptime->end)
			t = ptime->end;
	}

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	if (!sched->idle_hist || thread->tid == 0) {
		timehist_update_runtime_stats(tr, t, tprev);

		if (sched->idle_hist) {
			struct idle_thread_runtime *itr = (void *)tr;
			struct thread_runtime *last_tr;

			BUG_ON(thread->tid != 0);

			if (itr->last_thread == NULL)
				goto out;

			/* add current idle time as last thread's runtime */
			last_tr = thread__get_runtime(itr->last_thread);
			if (last_tr == NULL)
				goto out;

			timehist_update_runtime_stats(last_tr, t, tprev);
			/*
			 * remove delta time of last thread as it's not updated
			 * and otherwise it will show an invalid value next
			 * time.  we only care total run time and run stat.
			 */
			last_tr->dt_run = 0;
			last_tr->dt_delay = 0;
2533 2534 2535
			last_tr->dt_sleep = 0;
			last_tr->dt_iowait = 0;
			last_tr->dt_preempt = 0;
2536

2537 2538 2539
			if (itr->cursor.nr)
				callchain_append(&itr->callchain, &itr->cursor, t - tprev);

2540 2541 2542
			itr->last_thread = NULL;
		}
	}
2543

2544
	if (!sched->summary_only)
2545
		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2546 2547

out:
2548 2549 2550 2551 2552
	if (sched->hist_time.start == 0 && t >= ptime->start)
		sched->hist_time.start = t;
	if (ptime->end == 0 || t <= ptime->end)
		sched->hist_time.end = t;

2553 2554 2555 2556
	if (tr) {
		/* time of this sched_switch event becomes last time task seen */
		tr->last_time = sample->time;

2557
		/* last state is used to determine where to account wait time */
2558
		tr->last_state = state;
2559

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
		/* sched out event for task so reset ready to run time */
		tr->ready_to_run = 0;
	}

	perf_evsel__save_time(evsel, sample->time, sample->cpu);

	return rc;
}

static int timehist_sched_switch_event(struct perf_tool *tool,
			     union perf_event *event,
			     struct perf_evsel *evsel,
			     struct perf_sample *sample,
			     struct machine *machine __maybe_unused)
{
	return timehist_sched_change_event(tool, event, evsel, sample, machine);
}

static int process_lost(struct perf_tool *tool __maybe_unused,
			union perf_event *event,
			struct perf_sample *sample,
			struct machine *machine __maybe_unused)
{
	char tstr[64];

	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
	printf("%15s ", tstr);
	printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);

	return 0;
}


2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
static void print_thread_runtime(struct thread *t,
				 struct thread_runtime *r)
{
	double mean = avg_stats(&r->run_stats);
	float stddev;

	printf("%*s   %5d  %9" PRIu64 " ",
	       comm_width, timehist_get_commstr(t), t->ppid,
	       (u64) r->run_stats.n);

	print_sched_time(r->total_run_time, 8);
	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
	print_sched_time(r->run_stats.min, 6);
	printf(" ");
	print_sched_time((u64) mean, 6);
	printf(" ");
	print_sched_time(r->run_stats.max, 6);
	printf("  ");
	printf("%5.2f", stddev);
2612
	printf("   %5" PRIu64, r->migrations);
2613 2614 2615
	printf("\n");
}

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
static void print_thread_waittime(struct thread *t,
				  struct thread_runtime *r)
{
	printf("%*s   %5d  %9" PRIu64 " ",
	       comm_width, timehist_get_commstr(t), t->ppid,
	       (u64) r->run_stats.n);

	print_sched_time(r->total_run_time, 8);
	print_sched_time(r->total_sleep_time, 6);
	printf(" ");
	print_sched_time(r->total_iowait_time, 6);
	printf(" ");
	print_sched_time(r->total_preempt_time, 6);
	printf(" ");
	print_sched_time(r->total_delay_time, 6);
	printf("\n");
}

2634
struct total_run_stats {
2635
	struct perf_sched *sched;
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
	u64  sched_count;
	u64  task_count;
	u64  total_run_time;
};

static int __show_thread_runtime(struct thread *t, void *priv)
{
	struct total_run_stats *stats = priv;
	struct thread_runtime *r;

	if (thread__is_filtered(t))
		return 0;

	r = thread__priv(t);
	if (r && r->run_stats.n) {
		stats->task_count++;
		stats->sched_count += r->run_stats.n;
		stats->total_run_time += r->total_run_time;
2654 2655 2656 2657 2658

		if (stats->sched->show_state)
			print_thread_waittime(t, r);
		else
			print_thread_runtime(t, r);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	}

	return 0;
}

static int show_thread_runtime(struct thread *t, void *priv)
{
	if (t->dead)
		return 0;

	return __show_thread_runtime(t, priv);
}

static int show_deadthread_runtime(struct thread *t, void *priv)
{
	if (!t->dead)
		return 0;

	return __show_thread_runtime(t, priv);
}

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
{
	const char *sep = " <- ";
	struct callchain_list *chain;
	size_t ret = 0;
	char bf[1024];
	bool first;

	if (node == NULL)
		return 0;

	ret = callchain__fprintf_folded(fp, node->parent);
	first = (ret == 0);

	list_for_each_entry(chain, &node->val, list) {
		if (chain->ip >= PERF_CONTEXT_MAX)
			continue;
		if (chain->ms.sym && chain->ms.sym->ignore)
			continue;
		ret += fprintf(fp, "%s%s", first ? "" : sep,
			       callchain_list__sym_name(chain, bf, sizeof(bf),
							false));
		first = false;
	}

	return ret;
}

static size_t timehist_print_idlehist_callchain(struct rb_root *root)
{
	size_t ret = 0;
	FILE *fp = stdout;
	struct callchain_node *chain;
	struct rb_node *rb_node = rb_first(root);

	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
	       graph_dotted_line);

	while (rb_node) {
		chain = rb_entry(rb_node, struct callchain_node, rb_node);
		rb_node = rb_next(rb_node);

		ret += fprintf(fp, "  ");
		print_sched_time(chain->hit, 12);
		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
		ret += fprintf(fp, " %8d  ", chain->count);
		ret += callchain__fprintf_folded(fp, chain);
		ret += fprintf(fp, "\n");
	}

	return ret;
}

2734 2735 2736 2737 2738 2739 2740 2741 2742
static void timehist_print_summary(struct perf_sched *sched,
				   struct perf_session *session)
{
	struct machine *m = &session->machines.host;
	struct total_run_stats totals;
	u64 task_count;
	struct thread *t;
	struct thread_runtime *r;
	int i;
2743
	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2744 2745

	memset(&totals, 0, sizeof(totals));
2746
	totals.sched = sched;
2747

2748 2749 2750 2751
	if (sched->idle_hist) {
		printf("\nIdle-time summary\n");
		printf("%*s  parent  sched-out  ", comm_width, "comm");
		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2752 2753 2754 2755
	} else if (sched->show_state) {
		printf("\nWait-time summary\n");
		printf("%*s  parent   sched-in  ", comm_width, "comm");
		printf("   run-time      sleep      iowait     preempt       delay\n");
2756 2757 2758 2759 2760
	} else {
		printf("\nRuntime summary\n");
		printf("%*s  parent   sched-in  ", comm_width, "comm");
		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
	}
2761
	printf("%*s            (count)  ", comm_width, "");
2762 2763
	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
	       sched->show_state ? "(msec)" : "%");
2764
	printf("%.117s\n", graph_dotted_line);
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776

	machine__for_each_thread(m, show_thread_runtime, &totals);
	task_count = totals.task_count;
	if (!task_count)
		printf("<no still running tasks>\n");

	printf("\nTerminated tasks:\n");
	machine__for_each_thread(m, show_deadthread_runtime, &totals);
	if (task_count == totals.task_count)
		printf("<no terminated tasks>\n");

	/* CPU idle stats not tracked when samples were skipped */
2777
	if (sched->skipped_samples && !sched->idle_hist)
2778 2779 2780
		return;

	printf("\nIdle stats:\n");
2781
	for (i = 0; i < idle_max_cpu; ++i) {
2782 2783 2784 2785 2786 2787 2788 2789 2790
		t = idle_threads[i];
		if (!t)
			continue;

		r = thread__priv(t);
		if (r && r->run_stats.n) {
			totals.sched_count += r->run_stats.n;
			printf("    CPU %2d idle for ", i);
			print_sched_time(r->total_run_time, 6);
2791
			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2792 2793 2794 2795
		} else
			printf("    CPU %2d idle entire time window\n", i);
	}

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	if (sched->idle_hist && symbol_conf.use_callchain) {
		callchain_param.mode  = CHAIN_FOLDED;
		callchain_param.value = CCVAL_PERIOD;

		callchain_register_param(&callchain_param);

		printf("\nIdle stats by callchain:\n");
		for (i = 0; i < idle_max_cpu; ++i) {
			struct idle_thread_runtime *itr;

			t = idle_threads[i];
			if (!t)
				continue;

			itr = thread__priv(t);
			if (itr == NULL)
				continue;

			callchain_param.sort(&itr->sorted_root, &itr->callchain,
					     0, &callchain_param);

			printf("  CPU %2d:", i);
			print_sched_time(itr->tr.total_run_time, 6);
			printf(" msec\n");
			timehist_print_idlehist_callchain(&itr->sorted_root);
			printf("\n");
		}
	}

2825 2826
	printf("\n"
	       "    Total number of unique tasks: %" PRIu64 "\n"
2827
	       "Total number of context switches: %" PRIu64 "\n",
2828 2829
	       totals.task_count, totals.sched_count);

2830
	printf("           Total run time (msec): ");
2831 2832
	print_sched_time(totals.total_run_time, 2);
	printf("\n");
2833 2834 2835 2836

	printf("    Total scheduling time (msec): ");
	print_sched_time(hist_time, 2);
	printf(" (x %d)\n", sched->max_cpu);
2837 2838
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
typedef int (*sched_handler)(struct perf_tool *tool,
			  union perf_event *event,
			  struct perf_evsel *evsel,
			  struct perf_sample *sample,
			  struct machine *machine);

static int perf_timehist__process_sample(struct perf_tool *tool,
					 union perf_event *event,
					 struct perf_sample *sample,
					 struct perf_evsel *evsel,
					 struct machine *machine)
{
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
	int err = 0;
	int this_cpu = sample->cpu;

	if (this_cpu > sched->max_cpu)
		sched->max_cpu = this_cpu;

	if (evsel->handler != NULL) {
		sched_handler f = evsel->handler;

		err = f(tool, event, evsel, sample, machine);
	}

	return err;
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
static int timehist_check_attr(struct perf_sched *sched,
			       struct perf_evlist *evlist)
{
	struct perf_evsel *evsel;
	struct evsel_runtime *er;

	list_for_each_entry(evsel, &evlist->entries, node) {
		er = perf_evsel__get_runtime(evsel);
		if (er == NULL) {
			pr_err("Failed to allocate memory for evsel runtime data\n");
			return -1;
		}

		if (sched->show_callchain &&
		    !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
			pr_info("Samples do not have callchains.\n");
			sched->show_callchain = 0;
			symbol_conf.use_callchain = 0;
		}
	}

	return 0;
}

2891 2892 2893 2894 2895 2896 2897
static int perf_sched__timehist(struct perf_sched *sched)
{
	const struct perf_evsel_str_handler handlers[] = {
		{ "sched:sched_switch",       timehist_sched_switch_event, },
		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
	};
2898 2899 2900
	const struct perf_evsel_str_handler migrate_handlers[] = {
		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
	};
2901 2902 2903
	struct perf_data_file file = {
		.path = input_name,
		.mode = PERF_DATA_MODE_READ,
2904
		.force = sched->force,
2905 2906 2907
	};

	struct perf_session *session;
2908
	struct perf_evlist *evlist;
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	int err = -1;

	/*
	 * event handlers for timehist option
	 */
	sched->tool.sample	 = perf_timehist__process_sample;
	sched->tool.mmap	 = perf_event__process_mmap;
	sched->tool.comm	 = perf_event__process_comm;
	sched->tool.exit	 = perf_event__process_exit;
	sched->tool.fork	 = perf_event__process_fork;
	sched->tool.lost	 = process_lost;
	sched->tool.attr	 = perf_event__process_attr;
	sched->tool.tracing_data = perf_event__process_tracing_data;
	sched->tool.build_id	 = perf_event__process_build_id;

	sched->tool.ordered_events = true;
	sched->tool.ordering_requires_timestamps = true;

2927 2928
	symbol_conf.use_callchain = sched->show_callchain;

2929 2930 2931 2932
	session = perf_session__new(&file, false, &sched->tool);
	if (session == NULL)
		return -ENOMEM;

2933 2934
	evlist = session->evlist;

2935 2936
	symbol__init(&session->header.env);

2937 2938 2939 2940 2941
	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
		pr_err("Invalid time string\n");
		return -EINVAL;
	}

2942 2943 2944
	if (timehist_check_attr(sched, evlist) != 0)
		goto out;

2945 2946 2947 2948 2949 2950
	setup_pager();

	/* setup per-evsel handlers */
	if (perf_session__set_tracepoints_handlers(session, handlers))
		goto out;

2951 2952 2953 2954
	/* sched_switch event at a minimum needs to exist */
	if (!perf_evlist__find_tracepoint_by_name(session->evlist,
						  "sched:sched_switch")) {
		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2955
		goto out;
2956
	}
2957

2958 2959 2960 2961
	if (sched->show_migrations &&
	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
		goto out;

2962 2963 2964 2965 2966 2967 2968
	/* pre-allocate struct for per-CPU idle stats */
	sched->max_cpu = session->header.env.nr_cpus_online;
	if (sched->max_cpu == 0)
		sched->max_cpu = 4;
	if (init_idle_threads(sched->max_cpu))
		goto out;

2969 2970 2971 2972 2973
	/* summary_only implies summary option, but don't overwrite summary if set */
	if (sched->summary_only)
		sched->summary = sched->summary_only;

	if (!sched->summary_only)
2974
		timehist_header(sched);
2975 2976 2977 2978 2979 2980 2981

	err = perf_session__process_events(session);
	if (err) {
		pr_err("Failed to process events, error %d", err);
		goto out;
	}

2982 2983 2984 2985 2986 2987 2988
	sched->nr_events      = evlist->stats.nr_events[0];
	sched->nr_lost_events = evlist->stats.total_lost;
	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];

	if (sched->summary)
		timehist_print_summary(sched, session);

2989 2990 2991 2992 2993 2994 2995 2996
out:
	free_idle_threads();
	perf_session__delete(session);

	return err;
}


2997
static void print_bad_events(struct perf_sched *sched)
2998
{
2999
	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3000
		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3001 3002
			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
			sched->nr_unordered_timestamps, sched->nr_timestamps);
3003
	}
3004
	if (sched->nr_lost_events && sched->nr_events) {
3005
		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3006 3007
			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3008
	}
3009
	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3010
		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3011 3012 3013
			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
			sched->nr_context_switch_bugs, sched->nr_timestamps);
		if (sched->nr_lost_events)
3014 3015 3016 3017 3018
			printf(" (due to lost events?)");
		printf("\n");
	}
}

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
{
	struct rb_node **new = &(root->rb_node), *parent = NULL;
	struct work_atoms *this;
	const char *comm = thread__comm_str(data->thread), *this_comm;

	while (*new) {
		int cmp;

		this = container_of(*new, struct work_atoms, node);
		parent = *new;

		this_comm = thread__comm_str(this->thread);
		cmp = strcmp(comm, this_comm);
		if (cmp > 0) {
			new = &((*new)->rb_left);
		} else if (cmp < 0) {
			new = &((*new)->rb_right);
		} else {
			this->num_merged++;
			this->total_runtime += data->total_runtime;
			this->nb_atoms += data->nb_atoms;
			this->total_lat += data->total_lat;
			list_splice(&data->work_list, &this->work_list);
			if (this->max_lat < data->max_lat) {
				this->max_lat = data->max_lat;
				this->max_lat_at = data->max_lat_at;
			}
			zfree(&data);
			return;
		}
	}

	data->num_merged++;
	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);
}

static void perf_sched__merge_lat(struct perf_sched *sched)
{
	struct work_atoms *data;
	struct rb_node *node;

	if (sched->skip_merge)
		return;

	while ((node = rb_first(&sched->atom_root))) {
		rb_erase(node, &sched->atom_root);
		data = rb_entry(node, struct work_atoms, node);
		__merge_work_atoms(&sched->merged_atom_root, data);
	}
}

3072
static int perf_sched__lat(struct perf_sched *sched)
3073 3074 3075 3076
{
	struct rb_node *next;

	setup_pager();
3077

3078
	if (perf_sched__read_events(sched))
3079
		return -1;
3080

3081
	perf_sched__merge_lat(sched);
3082
	perf_sched__sort_lat(sched);
3083

3084 3085 3086
	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3087

3088
	next = rb_first(&sched->sorted_atom_root);
3089 3090 3091 3092 3093

	while (next) {
		struct work_atoms *work_list;

		work_list = rb_entry(next, struct work_atoms, node);
3094
		output_lat_thread(sched, work_list);
3095
		next = rb_next(next);
3096
		thread__zput(work_list->thread);
3097 3098
	}

3099
	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3100
	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3101
		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3102 3103 3104

	printf(" ---------------------------------------------------\n");

3105
	print_bad_events(sched);
3106 3107
	printf("\n");

3108
	return 0;
3109 3110
}

3111 3112
static int setup_map_cpus(struct perf_sched *sched)
{
3113 3114
	struct cpu_map *map;

3115 3116 3117 3118
	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);

	if (sched->map.comp) {
		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
J
Jiri Olsa 已提交
3119 3120
		if (!sched->map.comp_cpus)
			return -1;
3121 3122
	}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	if (!sched->map.cpus_str)
		return 0;

	map = cpu_map__new(sched->map.cpus_str);
	if (!map) {
		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
		return -1;
	}

	sched->map.cpus = map;
3133 3134 3135
	return 0;
}

J
Jiri Olsa 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
static int setup_color_pids(struct perf_sched *sched)
{
	struct thread_map *map;

	if (!sched->map.color_pids_str)
		return 0;

	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
	if (!map) {
		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
		return -1;
	}

	sched->map.color_pids = map;
	return 0;
}

J
Jiri Olsa 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
static int setup_color_cpus(struct perf_sched *sched)
{
	struct cpu_map *map;

	if (!sched->map.color_cpus_str)
		return 0;

	map = cpu_map__new(sched->map.color_cpus_str);
	if (!map) {
		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
		return -1;
	}

	sched->map.color_cpus = map;
	return 0;
}

3170
static int perf_sched__map(struct perf_sched *sched)
3171
{
3172 3173
	if (setup_map_cpus(sched))
		return -1;
3174

J
Jiri Olsa 已提交
3175 3176 3177
	if (setup_color_pids(sched))
		return -1;

J
Jiri Olsa 已提交
3178 3179 3180
	if (setup_color_cpus(sched))
		return -1;

3181
	setup_pager();
3182
	if (perf_sched__read_events(sched))
3183
		return -1;
3184
	print_bad_events(sched);
3185
	return 0;
3186 3187
}

3188
static int perf_sched__replay(struct perf_sched *sched)
3189 3190 3191
{
	unsigned long i;

3192 3193
	calibrate_run_measurement_overhead(sched);
	calibrate_sleep_measurement_overhead(sched);
3194

3195
	test_calibrations(sched);
3196

3197
	if (perf_sched__read_events(sched))
3198
		return -1;
3199

3200 3201 3202
	printf("nr_run_events:        %ld\n", sched->nr_run_events);
	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3203

3204 3205 3206 3207 3208
	if (sched->targetless_wakeups)
		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
	if (sched->multitarget_wakeups)
		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
	if (sched->nr_run_events_optimized)
3209
		printf("run atoms optimized: %ld\n",
3210
			sched->nr_run_events_optimized);
3211

3212 3213
	print_task_traces(sched);
	add_cross_task_wakeups(sched);
3214

3215
	create_tasks(sched);
3216
	printf("------------------------------------------------------------\n");
3217 3218
	for (i = 0; i < sched->replay_repeat; i++)
		run_one_test(sched);
3219 3220

	return 0;
3221 3222
}

3223 3224
static void setup_sorting(struct perf_sched *sched, const struct option *options,
			  const char * const usage_msg[])
3225
{
3226
	char *tmp, *tok, *str = strdup(sched->sort_order);
3227 3228 3229

	for (tok = strtok_r(str, ", ", &tmp);
			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3230
		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3231 3232
			usage_with_options_msg(usage_msg, options,
					"Unknown --sort key: `%s'", tok);
3233 3234 3235 3236 3237
		}
	}

	free(str);

3238
	sort_dimension__add("pid", &sched->cmp_pid);
3239 3240
}

3241 3242 3243 3244
static int __cmd_record(int argc, const char **argv)
{
	unsigned int rec_argc, i, j;
	const char **rec_argv;
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	const char * const record_args[] = {
		"record",
		"-a",
		"-R",
		"-m", "1024",
		"-c", "1",
		"-e", "sched:sched_switch",
		"-e", "sched:sched_stat_wait",
		"-e", "sched:sched_stat_sleep",
		"-e", "sched:sched_stat_iowait",
		"-e", "sched:sched_stat_runtime",
		"-e", "sched:sched_process_fork",
		"-e", "sched:sched_wakeup",
3258
		"-e", "sched:sched_wakeup_new",
3259 3260
		"-e", "sched:sched_migrate_task",
	};
3261 3262 3263 3264

	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
	rec_argv = calloc(rec_argc + 1, sizeof(char *));

3265
	if (rec_argv == NULL)
3266 3267
		return -ENOMEM;

3268 3269 3270 3271 3272 3273 3274 3275
	for (i = 0; i < ARRAY_SIZE(record_args); i++)
		rec_argv[i] = strdup(record_args[i]);

	for (j = 1; j < (unsigned int)argc; j++, i++)
		rec_argv[i] = argv[j];

	BUG_ON(i != rec_argc);

3276
	return cmd_record(i, rec_argv);
3277 3278
}

3279
int cmd_sched(int argc, const char **argv)
I
Ingo Molnar 已提交
3280
{
3281 3282 3283 3284 3285
	const char default_sort_order[] = "avg, max, switch, runtime";
	struct perf_sched sched = {
		.tool = {
			.sample		 = perf_sched__process_tracepoint_sample,
			.comm		 = perf_event__process_comm,
3286
			.namespaces	 = perf_event__process_namespaces,
3287 3288
			.lost		 = perf_event__process_lost,
			.fork		 = perf_sched__process_fork_event,
3289
			.ordered_events = true,
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
		},
		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
		.sort_order	      = default_sort_order,
		.replay_repeat	      = 10,
		.profile_cpu	      = -1,
		.next_shortname1      = 'A',
		.next_shortname2      = '0',
3300
		.skip_merge           = 0,
3301 3302
		.show_callchain	      = 1,
		.max_stack            = 5,
3303
	};
3304 3305 3306 3307 3308 3309 3310
	const struct option sched_options[] = {
	OPT_STRING('i', "input", &input_name, "file",
		    "input file name"),
	OPT_INCR('v', "verbose", &verbose,
		    "be more verbose (show symbol address, etc)"),
	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
		    "dump raw trace in ASCII"),
3311
	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3312 3313
	OPT_END()
	};
3314 3315 3316 3317 3318
	const struct option latency_options[] = {
	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
		   "sort by key(s): runtime, switch, avg, max"),
	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
		    "CPU to profile on"),
3319 3320
	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
		    "latency stats per pid instead of per comm"),
3321
	OPT_PARENT(sched_options)
3322 3323 3324 3325
	};
	const struct option replay_options[] = {
	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
		     "repeat the workload replay N times (-1: infinite)"),
3326
	OPT_PARENT(sched_options)
3327
	};
3328 3329 3330
	const struct option map_options[] = {
	OPT_BOOLEAN(0, "compact", &sched.map.comp,
		    "map output in compact mode"),
J
Jiri Olsa 已提交
3331 3332
	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
		   "highlight given pids in map"),
J
Jiri Olsa 已提交
3333 3334
	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
                    "highlight given CPUs in map"),
3335 3336
	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
                    "display given CPUs in map"),
3337
	OPT_PARENT(sched_options)
3338
	};
3339 3340 3341 3342 3343
	const struct option timehist_options[] = {
	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
		   "file", "vmlinux pathname"),
	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
		   "file", "kallsyms pathname"),
3344 3345 3346 3347
	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
		    "Display call chains if present (default on)"),
	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
		   "Maximum number of functions to display backtrace."),
3348 3349
	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
		    "Look for files with symbols relative to this directory"),
3350 3351 3352 3353
	OPT_BOOLEAN('s', "summary", &sched.summary_only,
		    "Show only syscall summary with statistics"),
	OPT_BOOLEAN('S', "with-summary", &sched.summary,
		    "Show all syscalls and summary with statistics"),
3354
	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3355
	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3356
	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3357
	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3358
	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3359 3360
	OPT_STRING(0, "time", &sched.time_str, "str",
		   "Time span for analysis (start,stop)"),
3361
	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3362 3363 3364
	OPT_PARENT(sched_options)
	};

3365 3366 3367 3368 3369 3370 3371 3372
	const char * const latency_usage[] = {
		"perf sched latency [<options>]",
		NULL
	};
	const char * const replay_usage[] = {
		"perf sched replay [<options>]",
		NULL
	};
3373 3374 3375 3376
	const char * const map_usage[] = {
		"perf sched map [<options>]",
		NULL
	};
3377 3378 3379 3380
	const char * const timehist_usage[] = {
		"perf sched timehist [<options>]",
		NULL
	};
3381
	const char *const sched_subcommands[] = { "record", "latency", "map",
3382 3383
						  "replay", "script",
						  "timehist", NULL };
3384 3385
	const char *sched_usage[] = {
		NULL,
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
		NULL
	};
	struct trace_sched_handler lat_ops  = {
		.wakeup_event	    = latency_wakeup_event,
		.switch_event	    = latency_switch_event,
		.runtime_event	    = latency_runtime_event,
		.migrate_task_event = latency_migrate_task_event,
	};
	struct trace_sched_handler map_ops  = {
		.switch_event	    = map_switch_event,
	};
	struct trace_sched_handler replay_ops  = {
		.wakeup_event	    = replay_wakeup_event,
		.switch_event	    = replay_switch_event,
		.fork_event	    = replay_fork_event,
	};
A
Adrian Hunter 已提交
3402 3403 3404 3405
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
		sched.curr_pid[i] = -1;
3406

3407 3408
	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3409 3410
	if (!argc)
		usage_with_options(sched_usage, sched_options);
I
Ingo Molnar 已提交
3411

3412
	/*
3413
	 * Aliased to 'perf script' for now:
3414
	 */
3415
	if (!strcmp(argv[0], "script"))
3416
		return cmd_script(argc, argv);
3417

3418 3419 3420
	if (!strncmp(argv[0], "rec", 3)) {
		return __cmd_record(argc, argv);
	} else if (!strncmp(argv[0], "lat", 3)) {
3421
		sched.tp_handler = &lat_ops;
3422 3423 3424 3425 3426
		if (argc > 1) {
			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
			if (argc)
				usage_with_options(latency_usage, latency_options);
		}
3427 3428
		setup_sorting(&sched, latency_options, latency_usage);
		return perf_sched__lat(&sched);
3429
	} else if (!strcmp(argv[0], "map")) {
3430
		if (argc) {
J
Jiri Olsa 已提交
3431
			argc = parse_options(argc, argv, map_options, map_usage, 0);
3432 3433 3434
			if (argc)
				usage_with_options(map_usage, map_options);
		}
3435 3436 3437
		sched.tp_handler = &map_ops;
		setup_sorting(&sched, latency_options, latency_usage);
		return perf_sched__map(&sched);
3438
	} else if (!strncmp(argv[0], "rep", 3)) {
3439
		sched.tp_handler = &replay_ops;
3440 3441 3442 3443 3444
		if (argc) {
			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
			if (argc)
				usage_with_options(replay_usage, replay_options);
		}
3445
		return perf_sched__replay(&sched);
3446 3447 3448 3449 3450 3451 3452
	} else if (!strcmp(argv[0], "timehist")) {
		if (argc) {
			argc = parse_options(argc, argv, timehist_options,
					     timehist_usage, 0);
			if (argc)
				usage_with_options(timehist_usage, timehist_options);
		}
3453 3454 3455
		if ((sched.show_wakeups || sched.show_next) &&
		    sched.summary_only) {
			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3456
			parse_options_usage(timehist_usage, timehist_options, "s", true);
3457 3458 3459 3460
			if (sched.show_wakeups)
				parse_options_usage(NULL, timehist_options, "w", true);
			if (sched.show_next)
				parse_options_usage(NULL, timehist_options, "n", true);
3461 3462 3463
			return -EINVAL;
		}

3464
		return perf_sched__timehist(&sched);
3465 3466 3467 3468
	} else {
		usage_with_options(sched_usage, sched_options);
	}

I
Ingo Molnar 已提交
3469
	return 0;
I
Ingo Molnar 已提交
3470
}