builtin-sched.c 86.0 KB
Newer Older
I
Ingo Molnar 已提交
1
#include "builtin.h"
2
#include "perf.h"
I
Ingo Molnar 已提交
3 4

#include "util/util.h"
5
#include "util/evlist.h"
I
Ingo Molnar 已提交
6
#include "util/cache.h"
7
#include "util/evsel.h"
I
Ingo Molnar 已提交
8 9 10
#include "util/symbol.h"
#include "util/thread.h"
#include "util/header.h"
11
#include "util/session.h"
12
#include "util/tool.h"
13
#include "util/cloexec.h"
J
Jiri Olsa 已提交
14
#include "util/thread_map.h"
15
#include "util/color.h"
16
#include "util/stat.h"
17
#include "util/callchain.h"
18
#include "util/time-utils.h"
I
Ingo Molnar 已提交
19

20
#include <subcmd/parse-options.h>
21
#include "util/trace-event.h"
I
Ingo Molnar 已提交
22 23 24

#include "util/debug.h"

25
#include <linux/log2.h>
26
#include <sys/prctl.h>
27
#include <sys/resource.h>
I
Ingo Molnar 已提交
28

29 30 31
#include <semaphore.h>
#include <pthread.h>
#include <math.h>
32
#include <api/fs/fs.h>
33
#include <linux/time64.h>
34

35 36 37 38
#define PR_SET_NAME		15               /* Set process name */
#define MAX_CPUS		4096
#define COMM_LEN		20
#define SYM_LEN			129
39
#define MAX_PID			1024000
I
Ingo Molnar 已提交
40

41
struct sched_atom;
I
Ingo Molnar 已提交
42

43 44 45 46
struct task_desc {
	unsigned long		nr;
	unsigned long		pid;
	char			comm[COMM_LEN];
I
Ingo Molnar 已提交
47

48 49
	unsigned long		nr_events;
	unsigned long		curr_event;
50
	struct sched_atom	**atoms;
51 52 53

	pthread_t		thread;
	sem_t			sleep_sem;
I
Ingo Molnar 已提交
54

55 56 57 58 59 60 61 62 63 64
	sem_t			ready_for_work;
	sem_t			work_done_sem;

	u64			cpu_usage;
};

enum sched_event_type {
	SCHED_EVENT_RUN,
	SCHED_EVENT_SLEEP,
	SCHED_EVENT_WAKEUP,
65
	SCHED_EVENT_MIGRATION,
66 67
};

68
struct sched_atom {
69
	enum sched_event_type	type;
70
	int			specific_wait;
71 72 73 74 75 76 77
	u64			timestamp;
	u64			duration;
	unsigned long		nr;
	sem_t			*wait_sem;
	struct task_desc	*wakee;
};

78
#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/* task state bitmask, copied from include/linux/sched.h */
#define TASK_RUNNING		0
#define TASK_INTERRUPTIBLE	1
#define TASK_UNINTERRUPTIBLE	2
#define __TASK_STOPPED		4
#define __TASK_TRACED		8
/* in tsk->exit_state */
#define EXIT_DEAD		16
#define EXIT_ZOMBIE		32
#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
/* in tsk->state again */
#define TASK_DEAD		64
#define TASK_WAKEKILL		128
#define TASK_WAKING		256
#define TASK_PARKED		512

96 97 98 99 100 101 102 103 104 105
enum thread_state {
	THREAD_SLEEPING = 0,
	THREAD_WAIT_CPU,
	THREAD_SCHED_IN,
	THREAD_IGNORE
};

struct work_atom {
	struct list_head	list;
	enum thread_state	state;
106
	u64			sched_out_time;
107 108 109 110 111
	u64			wake_up_time;
	u64			sched_in_time;
	u64			runtime;
};

112 113
struct work_atoms {
	struct list_head	work_list;
114 115 116
	struct thread		*thread;
	struct rb_node		node;
	u64			max_lat;
117
	u64			max_lat_at;
118 119 120
	u64			total_lat;
	u64			nb_atoms;
	u64			total_runtime;
121
	int			num_merged;
122 123
};

124
typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
125

126
struct perf_sched;
127

128 129 130
struct trace_sched_handler {
	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
			    struct perf_sample *sample, struct machine *machine);
131

132 133
	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
			     struct perf_sample *sample, struct machine *machine);
134

135 136
	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
			    struct perf_sample *sample, struct machine *machine);
137

138 139 140
	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
			  struct machine *machine);
141 142

	int (*migrate_task_event)(struct perf_sched *sched,
143 144 145
				  struct perf_evsel *evsel,
				  struct perf_sample *sample,
				  struct machine *machine);
146 147
};

J
Jiri Olsa 已提交
148
#define COLOR_PIDS PERF_COLOR_BLUE
J
Jiri Olsa 已提交
149
#define COLOR_CPUS PERF_COLOR_BG_RED
J
Jiri Olsa 已提交
150

151 152 153 154
struct perf_sched_map {
	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
	int			*comp_cpus;
	bool			 comp;
J
Jiri Olsa 已提交
155 156
	struct thread_map	*color_pids;
	const char		*color_pids_str;
J
Jiri Olsa 已提交
157 158
	struct cpu_map		*color_cpus;
	const char		*color_cpus_str;
159 160
	struct cpu_map		*cpus;
	const char		*cpus_str;
161 162
};

163 164 165 166
struct perf_sched {
	struct perf_tool tool;
	const char	 *sort_order;
	unsigned long	 nr_tasks;
167
	struct task_desc **pid_to_task;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
	struct task_desc **tasks;
	const struct trace_sched_handler *tp_handler;
	pthread_mutex_t	 start_work_mutex;
	pthread_mutex_t	 work_done_wait_mutex;
	int		 profile_cpu;
/*
 * Track the current task - that way we can know whether there's any
 * weird events, such as a task being switched away that is not current.
 */
	int		 max_cpu;
	u32		 curr_pid[MAX_CPUS];
	struct thread	 *curr_thread[MAX_CPUS];
	char		 next_shortname1;
	char		 next_shortname2;
	unsigned int	 replay_repeat;
	unsigned long	 nr_run_events;
	unsigned long	 nr_sleep_events;
	unsigned long	 nr_wakeup_events;
	unsigned long	 nr_sleep_corrections;
	unsigned long	 nr_run_events_optimized;
	unsigned long	 targetless_wakeups;
	unsigned long	 multitarget_wakeups;
	unsigned long	 nr_runs;
	unsigned long	 nr_timestamps;
	unsigned long	 nr_unordered_timestamps;
	unsigned long	 nr_context_switch_bugs;
	unsigned long	 nr_events;
	unsigned long	 nr_lost_chunks;
	unsigned long	 nr_lost_events;
	u64		 run_measurement_overhead;
	u64		 sleep_measurement_overhead;
	u64		 start_time;
	u64		 cpu_usage;
	u64		 runavg_cpu_usage;
	u64		 parent_cpu_usage;
	u64		 runavg_parent_cpu_usage;
	u64		 sum_runtime;
	u64		 sum_fluct;
	u64		 run_avg;
	u64		 all_runtime;
	u64		 all_count;
	u64		 cpu_last_switched[MAX_CPUS];
210
	struct rb_root	 atom_root, sorted_atom_root, merged_atom_root;
211
	struct list_head sort_list, cmp_pid;
212
	bool force;
213
	bool skip_merge;
214
	struct perf_sched_map map;
215 216 217 218

	/* options for timehist command */
	bool		summary;
	bool		summary_only;
219
	bool		idle_hist;
220 221
	bool		show_callchain;
	unsigned int	max_stack;
222
	bool		show_cpu_visual;
223
	bool		show_wakeups;
224
	bool		show_next;
225
	bool		show_migrations;
226
	bool		show_state;
227
	u64		skipped_samples;
228 229
	const char	*time_str;
	struct perf_time_interval ptime;
230
	struct perf_time_interval hist_time;
231
};
232

233 234 235 236
/* per thread run time data */
struct thread_runtime {
	u64 last_time;      /* time of previous sched in/out event */
	u64 dt_run;         /* run time */
237 238 239
	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
240 241 242 243 244
	u64 dt_delay;       /* time between wakeup and sched-in */
	u64 ready_to_run;   /* time of wakeup */

	struct stats run_stats;
	u64 total_run_time;
245 246 247 248
	u64 total_sleep_time;
	u64 total_iowait_time;
	u64 total_preempt_time;
	u64 total_delay_time;
249

250
	int last_state;
251
	u64 migrations;
252 253 254 255 256 257 258 259
};

/* per event run time data */
struct evsel_runtime {
	u64 *last_time; /* time this event was last seen per cpu */
	u32 ncpu;       /* highest cpu slot allocated */
};

260 261 262 263 264 265 266 267 268
/* per cpu idle time data */
struct idle_thread_runtime {
	struct thread_runtime	tr;
	struct thread		*last_thread;
	struct rb_root		sorted_root;
	struct callchain_root	callchain;
	struct callchain_cursor	cursor;
};

269 270 271 272 273
/* track idle times per cpu */
static struct thread **idle_threads;
static int idle_max_cpu;
static char idle_comm[] = "<idle>";

274
static u64 get_nsecs(void)
I
Ingo Molnar 已提交
275 276 277 278 279
{
	struct timespec ts;

	clock_gettime(CLOCK_MONOTONIC, &ts);

280
	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
I
Ingo Molnar 已提交
281 282
}

283
static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
I
Ingo Molnar 已提交
284
{
285
	u64 T0 = get_nsecs(), T1;
I
Ingo Molnar 已提交
286 287 288

	do {
		T1 = get_nsecs();
289
	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
I
Ingo Molnar 已提交
290 291
}

292
static void sleep_nsecs(u64 nsecs)
I
Ingo Molnar 已提交
293 294 295 296 297 298 299 300 301
{
	struct timespec ts;

	ts.tv_nsec = nsecs % 999999999;
	ts.tv_sec = nsecs / 999999999;

	nanosleep(&ts, NULL);
}

302
static void calibrate_run_measurement_overhead(struct perf_sched *sched)
I
Ingo Molnar 已提交
303
{
304
	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
I
Ingo Molnar 已提交
305 306 307 308
	int i;

	for (i = 0; i < 10; i++) {
		T0 = get_nsecs();
309
		burn_nsecs(sched, 0);
I
Ingo Molnar 已提交
310 311 312 313
		T1 = get_nsecs();
		delta = T1-T0;
		min_delta = min(min_delta, delta);
	}
314
	sched->run_measurement_overhead = min_delta;
I
Ingo Molnar 已提交
315

316
	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
I
Ingo Molnar 已提交
317 318
}

319
static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
I
Ingo Molnar 已提交
320
{
321
	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
I
Ingo Molnar 已提交
322 323 324 325 326 327 328 329 330 331
	int i;

	for (i = 0; i < 10; i++) {
		T0 = get_nsecs();
		sleep_nsecs(10000);
		T1 = get_nsecs();
		delta = T1-T0;
		min_delta = min(min_delta, delta);
	}
	min_delta -= 10000;
332
	sched->sleep_measurement_overhead = min_delta;
I
Ingo Molnar 已提交
333

334
	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
I
Ingo Molnar 已提交
335 336
}

337
static struct sched_atom *
338
get_new_event(struct task_desc *task, u64 timestamp)
I
Ingo Molnar 已提交
339
{
340
	struct sched_atom *event = zalloc(sizeof(*event));
I
Ingo Molnar 已提交
341 342 343 344 345 346 347
	unsigned long idx = task->nr_events;
	size_t size;

	event->timestamp = timestamp;
	event->nr = idx;

	task->nr_events++;
348 349 350
	size = sizeof(struct sched_atom *) * task->nr_events;
	task->atoms = realloc(task->atoms, size);
	BUG_ON(!task->atoms);
I
Ingo Molnar 已提交
351

352
	task->atoms[idx] = event;
I
Ingo Molnar 已提交
353 354 355 356

	return event;
}

357
static struct sched_atom *last_event(struct task_desc *task)
I
Ingo Molnar 已提交
358 359 360 361
{
	if (!task->nr_events)
		return NULL;

362
	return task->atoms[task->nr_events - 1];
I
Ingo Molnar 已提交
363 364
}

365 366
static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
				u64 timestamp, u64 duration)
I
Ingo Molnar 已提交
367
{
368
	struct sched_atom *event, *curr_event = last_event(task);
I
Ingo Molnar 已提交
369 370

	/*
371 372 373
	 * optimize an existing RUN event by merging this one
	 * to it:
	 */
I
Ingo Molnar 已提交
374
	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
375
		sched->nr_run_events_optimized++;
I
Ingo Molnar 已提交
376 377 378 379 380 381 382 383 384
		curr_event->duration += duration;
		return;
	}

	event = get_new_event(task, timestamp);

	event->type = SCHED_EVENT_RUN;
	event->duration = duration;

385
	sched->nr_run_events++;
I
Ingo Molnar 已提交
386 387
}

388 389
static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
				   u64 timestamp, struct task_desc *wakee)
I
Ingo Molnar 已提交
390
{
391
	struct sched_atom *event, *wakee_event;
I
Ingo Molnar 已提交
392 393 394 395 396 397 398

	event = get_new_event(task, timestamp);
	event->type = SCHED_EVENT_WAKEUP;
	event->wakee = wakee;

	wakee_event = last_event(wakee);
	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
399
		sched->targetless_wakeups++;
I
Ingo Molnar 已提交
400 401 402
		return;
	}
	if (wakee_event->wait_sem) {
403
		sched->multitarget_wakeups++;
I
Ingo Molnar 已提交
404 405 406
		return;
	}

407
	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
I
Ingo Molnar 已提交
408 409 410 411
	sem_init(wakee_event->wait_sem, 0, 0);
	wakee_event->specific_wait = 1;
	event->wait_sem = wakee_event->wait_sem;

412
	sched->nr_wakeup_events++;
I
Ingo Molnar 已提交
413 414
}

415 416
static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
				  u64 timestamp, u64 task_state __maybe_unused)
I
Ingo Molnar 已提交
417
{
418
	struct sched_atom *event = get_new_event(task, timestamp);
I
Ingo Molnar 已提交
419 420 421

	event->type = SCHED_EVENT_SLEEP;

422
	sched->nr_sleep_events++;
I
Ingo Molnar 已提交
423 424
}

425 426
static struct task_desc *register_pid(struct perf_sched *sched,
				      unsigned long pid, const char *comm)
I
Ingo Molnar 已提交
427 428
{
	struct task_desc *task;
429
	static int pid_max;
I
Ingo Molnar 已提交
430

431 432 433 434 435
	if (sched->pid_to_task == NULL) {
		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
			pid_max = MAX_PID;
		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
	}
436 437 438 439 440 441
	if (pid >= (unsigned long)pid_max) {
		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
			sizeof(struct task_desc *))) == NULL);
		while (pid >= (unsigned long)pid_max)
			sched->pid_to_task[pid_max++] = NULL;
	}
I
Ingo Molnar 已提交
442

443
	task = sched->pid_to_task[pid];
I
Ingo Molnar 已提交
444 445 446 447

	if (task)
		return task;

448
	task = zalloc(sizeof(*task));
I
Ingo Molnar 已提交
449
	task->pid = pid;
450
	task->nr = sched->nr_tasks;
I
Ingo Molnar 已提交
451 452 453 454 455
	strcpy(task->comm, comm);
	/*
	 * every task starts in sleeping state - this gets ignored
	 * if there's no wakeup pointing to this sleep state:
	 */
456
	add_sched_event_sleep(sched, task, 0, 0);
I
Ingo Molnar 已提交
457

458 459
	sched->pid_to_task[pid] = task;
	sched->nr_tasks++;
460
	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
461 462
	BUG_ON(!sched->tasks);
	sched->tasks[task->nr] = task;
I
Ingo Molnar 已提交
463

464
	if (verbose > 0)
465
		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
I
Ingo Molnar 已提交
466 467 468 469 470

	return task;
}


471
static void print_task_traces(struct perf_sched *sched)
I
Ingo Molnar 已提交
472 473 474 475
{
	struct task_desc *task;
	unsigned long i;

476 477
	for (i = 0; i < sched->nr_tasks; i++) {
		task = sched->tasks[i];
I
Ingo Molnar 已提交
478
		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
I
Ingo Molnar 已提交
479 480 481 482
			task->nr, task->comm, task->pid, task->nr_events);
	}
}

483
static void add_cross_task_wakeups(struct perf_sched *sched)
I
Ingo Molnar 已提交
484 485 486 487
{
	struct task_desc *task1, *task2;
	unsigned long i, j;

488 489
	for (i = 0; i < sched->nr_tasks; i++) {
		task1 = sched->tasks[i];
I
Ingo Molnar 已提交
490
		j = i + 1;
491
		if (j == sched->nr_tasks)
I
Ingo Molnar 已提交
492
			j = 0;
493 494
		task2 = sched->tasks[j];
		add_sched_event_wakeup(sched, task1, 0, task2);
I
Ingo Molnar 已提交
495 496 497
	}
}

498 499
static void perf_sched__process_event(struct perf_sched *sched,
				      struct sched_atom *atom)
I
Ingo Molnar 已提交
500 501 502
{
	int ret = 0;

503
	switch (atom->type) {
I
Ingo Molnar 已提交
504
		case SCHED_EVENT_RUN:
505
			burn_nsecs(sched, atom->duration);
I
Ingo Molnar 已提交
506 507
			break;
		case SCHED_EVENT_SLEEP:
508 509
			if (atom->wait_sem)
				ret = sem_wait(atom->wait_sem);
I
Ingo Molnar 已提交
510 511 512
			BUG_ON(ret);
			break;
		case SCHED_EVENT_WAKEUP:
513 514
			if (atom->wait_sem)
				ret = sem_post(atom->wait_sem);
I
Ingo Molnar 已提交
515 516
			BUG_ON(ret);
			break;
517 518
		case SCHED_EVENT_MIGRATION:
			break;
I
Ingo Molnar 已提交
519 520 521 522 523
		default:
			BUG_ON(1);
	}
}

524
static u64 get_cpu_usage_nsec_parent(void)
I
Ingo Molnar 已提交
525 526
{
	struct rusage ru;
527
	u64 sum;
I
Ingo Molnar 已提交
528 529 530 531 532
	int err;

	err = getrusage(RUSAGE_SELF, &ru);
	BUG_ON(err);

533 534
	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
I
Ingo Molnar 已提交
535 536 537 538

	return sum;
}

539
static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
I
Ingo Molnar 已提交
540
{
541
	struct perf_event_attr attr;
542
	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
543
	int fd;
544 545
	struct rlimit limit;
	bool need_privilege = false;
I
Ingo Molnar 已提交
546

547
	memset(&attr, 0, sizeof(attr));
I
Ingo Molnar 已提交
548

549 550
	attr.type = PERF_TYPE_SOFTWARE;
	attr.config = PERF_COUNT_SW_TASK_CLOCK;
I
Ingo Molnar 已提交
551

552
force_again:
553 554
	fd = sys_perf_event_open(&attr, 0, -1, -1,
				 perf_event_open_cloexec_flag());
555

556
	if (fd < 0) {
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
		if (errno == EMFILE) {
			if (sched->force) {
				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
				limit.rlim_cur += sched->nr_tasks - cur_task;
				if (limit.rlim_cur > limit.rlim_max) {
					limit.rlim_max = limit.rlim_cur;
					need_privilege = true;
				}
				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
					if (need_privilege && errno == EPERM)
						strcpy(info, "Need privilege\n");
				} else
					goto force_again;
			} else
				strcpy(info, "Have a try with -f option\n");
		}
573
		pr_err("Error: sys_perf_event_open() syscall returned "
574
		       "with %d (%s)\n%s", fd,
575
		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
576 577
		exit(EXIT_FAILURE);
	}
578 579 580 581 582 583 584 585 586 587 588 589
	return fd;
}

static u64 get_cpu_usage_nsec_self(int fd)
{
	u64 runtime;
	int ret;

	ret = read(fd, &runtime, sizeof(runtime));
	BUG_ON(ret != sizeof(runtime));

	return runtime;
I
Ingo Molnar 已提交
590 591
}

592 593 594
struct sched_thread_parms {
	struct task_desc  *task;
	struct perf_sched *sched;
595
	int fd;
596 597
};

I
Ingo Molnar 已提交
598 599
static void *thread_func(void *ctx)
{
600 601 602
	struct sched_thread_parms *parms = ctx;
	struct task_desc *this_task = parms->task;
	struct perf_sched *sched = parms->sched;
603
	u64 cpu_usage_0, cpu_usage_1;
I
Ingo Molnar 已提交
604 605
	unsigned long i, ret;
	char comm2[22];
606
	int fd = parms->fd;
I
Ingo Molnar 已提交
607

608
	zfree(&parms);
609

I
Ingo Molnar 已提交
610 611
	sprintf(comm2, ":%s", this_task->comm);
	prctl(PR_SET_NAME, comm2);
612 613
	if (fd < 0)
		return NULL;
I
Ingo Molnar 已提交
614 615 616
again:
	ret = sem_post(&this_task->ready_for_work);
	BUG_ON(ret);
617
	ret = pthread_mutex_lock(&sched->start_work_mutex);
I
Ingo Molnar 已提交
618
	BUG_ON(ret);
619
	ret = pthread_mutex_unlock(&sched->start_work_mutex);
I
Ingo Molnar 已提交
620 621
	BUG_ON(ret);

622
	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
I
Ingo Molnar 已提交
623 624 625

	for (i = 0; i < this_task->nr_events; i++) {
		this_task->curr_event = i;
626
		perf_sched__process_event(sched, this_task->atoms[i]);
I
Ingo Molnar 已提交
627 628
	}

629
	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
I
Ingo Molnar 已提交
630 631 632 633
	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
	ret = sem_post(&this_task->work_done_sem);
	BUG_ON(ret);

634
	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
I
Ingo Molnar 已提交
635
	BUG_ON(ret);
636
	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
I
Ingo Molnar 已提交
637 638 639 640 641
	BUG_ON(ret);

	goto again;
}

642
static void create_tasks(struct perf_sched *sched)
I
Ingo Molnar 已提交
643 644 645 646 647 648 649 650
{
	struct task_desc *task;
	pthread_attr_t attr;
	unsigned long i;
	int err;

	err = pthread_attr_init(&attr);
	BUG_ON(err);
651 652
	err = pthread_attr_setstacksize(&attr,
			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
I
Ingo Molnar 已提交
653
	BUG_ON(err);
654
	err = pthread_mutex_lock(&sched->start_work_mutex);
I
Ingo Molnar 已提交
655
	BUG_ON(err);
656
	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
I
Ingo Molnar 已提交
657
	BUG_ON(err);
658 659 660 661 662
	for (i = 0; i < sched->nr_tasks; i++) {
		struct sched_thread_parms *parms = malloc(sizeof(*parms));
		BUG_ON(parms == NULL);
		parms->task = task = sched->tasks[i];
		parms->sched = sched;
663
		parms->fd = self_open_counters(sched, i);
I
Ingo Molnar 已提交
664 665 666 667
		sem_init(&task->sleep_sem, 0, 0);
		sem_init(&task->ready_for_work, 0, 0);
		sem_init(&task->work_done_sem, 0, 0);
		task->curr_event = 0;
668
		err = pthread_create(&task->thread, &attr, thread_func, parms);
I
Ingo Molnar 已提交
669 670 671 672
		BUG_ON(err);
	}
}

673
static void wait_for_tasks(struct perf_sched *sched)
I
Ingo Molnar 已提交
674
{
675
	u64 cpu_usage_0, cpu_usage_1;
I
Ingo Molnar 已提交
676 677 678
	struct task_desc *task;
	unsigned long i, ret;

679 680 681
	sched->start_time = get_nsecs();
	sched->cpu_usage = 0;
	pthread_mutex_unlock(&sched->work_done_wait_mutex);
I
Ingo Molnar 已提交
682

683 684
	for (i = 0; i < sched->nr_tasks; i++) {
		task = sched->tasks[i];
I
Ingo Molnar 已提交
685 686 687 688
		ret = sem_wait(&task->ready_for_work);
		BUG_ON(ret);
		sem_init(&task->ready_for_work, 0, 0);
	}
689
	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
I
Ingo Molnar 已提交
690 691 692 693
	BUG_ON(ret);

	cpu_usage_0 = get_cpu_usage_nsec_parent();

694
	pthread_mutex_unlock(&sched->start_work_mutex);
I
Ingo Molnar 已提交
695

696 697
	for (i = 0; i < sched->nr_tasks; i++) {
		task = sched->tasks[i];
I
Ingo Molnar 已提交
698 699 700
		ret = sem_wait(&task->work_done_sem);
		BUG_ON(ret);
		sem_init(&task->work_done_sem, 0, 0);
701
		sched->cpu_usage += task->cpu_usage;
I
Ingo Molnar 已提交
702 703 704 705
		task->cpu_usage = 0;
	}

	cpu_usage_1 = get_cpu_usage_nsec_parent();
706 707
	if (!sched->runavg_cpu_usage)
		sched->runavg_cpu_usage = sched->cpu_usage;
708
	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
I
Ingo Molnar 已提交
709

710 711 712
	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
	if (!sched->runavg_parent_cpu_usage)
		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
713 714
	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
					 sched->parent_cpu_usage)/sched->replay_repeat;
I
Ingo Molnar 已提交
715

716
	ret = pthread_mutex_lock(&sched->start_work_mutex);
I
Ingo Molnar 已提交
717 718
	BUG_ON(ret);

719 720
	for (i = 0; i < sched->nr_tasks; i++) {
		task = sched->tasks[i];
I
Ingo Molnar 已提交
721 722 723 724 725
		sem_init(&task->sleep_sem, 0, 0);
		task->curr_event = 0;
	}
}

726
static void run_one_test(struct perf_sched *sched)
I
Ingo Molnar 已提交
727
{
K
Kyle McMartin 已提交
728
	u64 T0, T1, delta, avg_delta, fluct;
I
Ingo Molnar 已提交
729 730

	T0 = get_nsecs();
731
	wait_for_tasks(sched);
I
Ingo Molnar 已提交
732 733 734
	T1 = get_nsecs();

	delta = T1 - T0;
735 736
	sched->sum_runtime += delta;
	sched->nr_runs++;
I
Ingo Molnar 已提交
737

738
	avg_delta = sched->sum_runtime / sched->nr_runs;
I
Ingo Molnar 已提交
739 740 741 742
	if (delta < avg_delta)
		fluct = avg_delta - delta;
	else
		fluct = delta - avg_delta;
743 744 745
	sched->sum_fluct += fluct;
	if (!sched->run_avg)
		sched->run_avg = delta;
746
	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
I
Ingo Molnar 已提交
747

748
	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
I
Ingo Molnar 已提交
749

750
	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
I
Ingo Molnar 已提交
751

I
Ingo Molnar 已提交
752
	printf("cpu: %0.2f / %0.2f",
753
		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
I
Ingo Molnar 已提交
754 755 756

#if 0
	/*
757
	 * rusage statistics done by the parent, these are less
758
	 * accurate than the sched->sum_exec_runtime based statistics:
759
	 */
I
Ingo Molnar 已提交
760
	printf(" [%0.2f / %0.2f]",
761 762
		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
I
Ingo Molnar 已提交
763 764
#endif

I
Ingo Molnar 已提交
765
	printf("\n");
I
Ingo Molnar 已提交
766

767 768 769
	if (sched->nr_sleep_corrections)
		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
	sched->nr_sleep_corrections = 0;
I
Ingo Molnar 已提交
770 771
}

772
static void test_calibrations(struct perf_sched *sched)
I
Ingo Molnar 已提交
773
{
774
	u64 T0, T1;
I
Ingo Molnar 已提交
775 776

	T0 = get_nsecs();
777
	burn_nsecs(sched, NSEC_PER_MSEC);
I
Ingo Molnar 已提交
778 779
	T1 = get_nsecs();

780
	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
I
Ingo Molnar 已提交
781 782

	T0 = get_nsecs();
783
	sleep_nsecs(NSEC_PER_MSEC);
I
Ingo Molnar 已提交
784 785
	T1 = get_nsecs();

786
	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
I
Ingo Molnar 已提交
787 788
}

789
static int
790
replay_wakeup_event(struct perf_sched *sched,
791 792
		    struct perf_evsel *evsel, struct perf_sample *sample,
		    struct machine *machine __maybe_unused)
793
{
794 795
	const char *comm = perf_evsel__strval(evsel, sample, "comm");
	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
796
	struct task_desc *waker, *wakee;
797

798
	if (verbose > 0) {
799
		printf("sched_wakeup event %p\n", evsel);
800

801
		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
I
Ingo Molnar 已提交
802
	}
803

804
	waker = register_pid(sched, sample->tid, "<unknown>");
805
	wakee = register_pid(sched, pid, comm);
806

807
	add_sched_event_wakeup(sched, waker, sample->time, wakee);
808
	return 0;
I
Ingo Molnar 已提交
809 810
}

811 812 813 814
static int replay_switch_event(struct perf_sched *sched,
			       struct perf_evsel *evsel,
			       struct perf_sample *sample,
			       struct machine *machine __maybe_unused)
I
Ingo Molnar 已提交
815
{
816 817 818 819 820
	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
821
	struct task_desc *prev, __maybe_unused *next;
822 823
	u64 timestamp0, timestamp = sample->time;
	int cpu = sample->cpu;
824 825
	s64 delta;

826
	if (verbose > 0)
827
		printf("sched_switch event %p\n", evsel);
I
Ingo Molnar 已提交
828

829
	if (cpu >= MAX_CPUS || cpu < 0)
830
		return 0;
831

832
	timestamp0 = sched->cpu_last_switched[cpu];
833 834 835 836 837
	if (timestamp0)
		delta = timestamp - timestamp0;
	else
		delta = 0;

838
	if (delta < 0) {
839
		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
840 841
		return -1;
	}
842

843 844
	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
		 prev_comm, prev_pid, next_comm, next_pid, delta);
845

846 847
	prev = register_pid(sched, prev_pid, prev_comm);
	next = register_pid(sched, next_pid, next_comm);
848

849
	sched->cpu_last_switched[cpu] = timestamp;
850

851
	add_sched_event_run(sched, prev, timestamp, delta);
852
	add_sched_event_sleep(sched, prev, timestamp, prev_state);
853 854

	return 0;
855 856
}

857 858 859
static int replay_fork_event(struct perf_sched *sched,
			     union perf_event *event,
			     struct machine *machine)
860
{
861 862
	struct thread *child, *parent;

863 864 865 866
	child = machine__findnew_thread(machine, event->fork.pid,
					event->fork.tid);
	parent = machine__findnew_thread(machine, event->fork.ppid,
					 event->fork.ptid);
867 868 869 870

	if (child == NULL || parent == NULL) {
		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
				 child, parent);
871
		goto out_put;
872
	}
873

874
	if (verbose > 0) {
875
		printf("fork event\n");
876 877
		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
878
	}
879

880 881
	register_pid(sched, parent->tid, thread__comm_str(parent));
	register_pid(sched, child->tid, thread__comm_str(child));
882 883 884
out_put:
	thread__put(child);
	thread__put(parent);
885
	return 0;
886
}
887

888 889
struct sort_dimension {
	const char		*name;
890
	sort_fn_t		cmp;
891 892 893
	struct list_head	list;
};

894
static int
895
thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
896 897 898 899
{
	struct sort_dimension *sort;
	int ret = 0;

900 901
	BUG_ON(list_empty(list));

902 903 904 905 906 907 908 909 910
	list_for_each_entry(sort, list, list) {
		ret = sort->cmp(l, r);
		if (ret)
			return ret;
	}

	return ret;
}

911
static struct work_atoms *
912 913 914 915
thread_atoms_search(struct rb_root *root, struct thread *thread,
			 struct list_head *sort_list)
{
	struct rb_node *node = root->rb_node;
916
	struct work_atoms key = { .thread = thread };
917 918

	while (node) {
919
		struct work_atoms *atoms;
920 921
		int cmp;

922
		atoms = container_of(node, struct work_atoms, node);
923 924 925 926 927 928 929 930 931 932 933 934 935 936

		cmp = thread_lat_cmp(sort_list, &key, atoms);
		if (cmp > 0)
			node = node->rb_left;
		else if (cmp < 0)
			node = node->rb_right;
		else {
			BUG_ON(thread != atoms->thread);
			return atoms;
		}
	}
	return NULL;
}

937
static void
938
__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
939
			 struct list_head *sort_list)
940 941 942 943
{
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
944
		struct work_atoms *this;
945
		int cmp;
946

947
		this = container_of(*new, struct work_atoms, node);
948
		parent = *new;
949 950 951 952

		cmp = thread_lat_cmp(sort_list, data, this);

		if (cmp > 0)
953 954
			new = &((*new)->rb_left);
		else
955
			new = &((*new)->rb_right);
956 957 958 959 960 961
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);
}

962
static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
963
{
964
	struct work_atoms *atoms = zalloc(sizeof(*atoms));
965 966 967 968
	if (!atoms) {
		pr_err("No memory at %s\n", __func__);
		return -1;
	}
969

970
	atoms->thread = thread__get(thread);
971
	INIT_LIST_HEAD(&atoms->work_list);
972
	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
973
	return 0;
974 975
}

976
static char sched_out_state(u64 prev_state)
977 978 979
{
	const char *str = TASK_STATE_TO_CHAR_STR;

980
	return str[prev_state];
981 982
}

983
static int
984 985 986
add_sched_out_event(struct work_atoms *atoms,
		    char run_state,
		    u64 timestamp)
987
{
988
	struct work_atom *atom = zalloc(sizeof(*atom));
989 990 991 992
	if (!atom) {
		pr_err("Non memory at %s", __func__);
		return -1;
	}
993

994 995
	atom->sched_out_time = timestamp;

996
	if (run_state == 'R') {
997
		atom->state = THREAD_WAIT_CPU;
998
		atom->wake_up_time = atom->sched_out_time;
999 1000
	}

1001
	list_add_tail(&atom->list, &atoms->work_list);
1002
	return 0;
1003 1004 1005
}

static void
1006 1007
add_runtime_event(struct work_atoms *atoms, u64 delta,
		  u64 timestamp __maybe_unused)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
{
	struct work_atom *atom;

	BUG_ON(list_empty(&atoms->work_list));

	atom = list_entry(atoms->work_list.prev, struct work_atom, list);

	atom->runtime += delta;
	atoms->total_runtime += delta;
}

static void
add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1021
{
1022
	struct work_atom *atom;
1023
	u64 delta;
1024

1025
	if (list_empty(&atoms->work_list))
1026 1027
		return;

1028
	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1029

1030
	if (atom->state != THREAD_WAIT_CPU)
1031 1032
		return;

1033 1034
	if (timestamp < atom->wake_up_time) {
		atom->state = THREAD_IGNORE;
1035 1036 1037
		return;
	}

1038 1039
	atom->state = THREAD_SCHED_IN;
	atom->sched_in_time = timestamp;
1040

1041
	delta = atom->sched_in_time - atom->wake_up_time;
1042
	atoms->total_lat += delta;
1043
	if (delta > atoms->max_lat) {
1044
		atoms->max_lat = delta;
1045 1046
		atoms->max_lat_at = timestamp;
	}
1047
	atoms->nb_atoms++;
1048 1049
}

1050 1051 1052 1053
static int latency_switch_event(struct perf_sched *sched,
				struct perf_evsel *evsel,
				struct perf_sample *sample,
				struct machine *machine)
1054
{
1055 1056 1057
	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1058
	struct work_atoms *out_events, *in_events;
1059
	struct thread *sched_out, *sched_in;
1060
	u64 timestamp0, timestamp = sample->time;
1061
	int cpu = sample->cpu, err = -1;
I
Ingo Molnar 已提交
1062 1063
	s64 delta;

1064
	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
I
Ingo Molnar 已提交
1065

1066 1067
	timestamp0 = sched->cpu_last_switched[cpu];
	sched->cpu_last_switched[cpu] = timestamp;
I
Ingo Molnar 已提交
1068 1069 1070 1071 1072
	if (timestamp0)
		delta = timestamp - timestamp0;
	else
		delta = 0;

1073 1074 1075 1076
	if (delta < 0) {
		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
		return -1;
	}
1077

1078 1079
	sched_out = machine__findnew_thread(machine, -1, prev_pid);
	sched_in = machine__findnew_thread(machine, -1, next_pid);
1080 1081
	if (sched_out == NULL || sched_in == NULL)
		goto out_put;
1082

1083
	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1084
	if (!out_events) {
1085
		if (thread_atoms_insert(sched, sched_out))
1086
			goto out_put;
1087
		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1088 1089
		if (!out_events) {
			pr_err("out-event: Internal tree error");
1090
			goto out_put;
1091
		}
1092
	}
1093
	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1094
		return -1;
1095

1096
	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1097
	if (!in_events) {
1098
		if (thread_atoms_insert(sched, sched_in))
1099
			goto out_put;
1100
		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1101 1102
		if (!in_events) {
			pr_err("in-event: Internal tree error");
1103
			goto out_put;
1104
		}
1105 1106 1107 1108
		/*
		 * Take came in we have not heard about yet,
		 * add in an initial atom in runnable state:
		 */
1109
		if (add_sched_out_event(in_events, 'R', timestamp))
1110
			goto out_put;
1111
	}
1112
	add_sched_in_event(in_events, timestamp);
1113 1114 1115 1116 1117
	err = 0;
out_put:
	thread__put(sched_out);
	thread__put(sched_in);
	return err;
1118
}
1119

1120 1121 1122 1123
static int latency_runtime_event(struct perf_sched *sched,
				 struct perf_evsel *evsel,
				 struct perf_sample *sample,
				 struct machine *machine)
1124
{
1125 1126
	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1127
	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1128
	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1129
	u64 timestamp = sample->time;
1130 1131 1132 1133
	int cpu = sample->cpu, err = -1;

	if (thread == NULL)
		return -1;
1134 1135 1136

	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
	if (!atoms) {
1137
		if (thread_atoms_insert(sched, thread))
1138
			goto out_put;
1139
		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1140
		if (!atoms) {
1141
			pr_err("in-event: Internal tree error");
1142
			goto out_put;
1143 1144
		}
		if (add_sched_out_event(atoms, 'R', timestamp))
1145
			goto out_put;
1146 1147
	}

1148
	add_runtime_event(atoms, runtime, timestamp);
1149 1150 1151 1152
	err = 0;
out_put:
	thread__put(thread);
	return err;
1153 1154
}

1155 1156 1157 1158
static int latency_wakeup_event(struct perf_sched *sched,
				struct perf_evsel *evsel,
				struct perf_sample *sample,
				struct machine *machine)
1159
{
1160
	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1161
	struct work_atoms *atoms;
1162
	struct work_atom *atom;
1163
	struct thread *wakee;
1164
	u64 timestamp = sample->time;
1165
	int err = -1;
1166

1167
	wakee = machine__findnew_thread(machine, -1, pid);
1168 1169
	if (wakee == NULL)
		return -1;
1170
	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1171
	if (!atoms) {
1172
		if (thread_atoms_insert(sched, wakee))
1173
			goto out_put;
1174
		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1175
		if (!atoms) {
1176
			pr_err("wakeup-event: Internal tree error");
1177
			goto out_put;
1178 1179
		}
		if (add_sched_out_event(atoms, 'S', timestamp))
1180
			goto out_put;
1181 1182
	}

1183
	BUG_ON(list_empty(&atoms->work_list));
1184

1185
	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1186

1187
	/*
1188 1189 1190 1191 1192 1193
	 * As we do not guarantee the wakeup event happens when
	 * task is out of run queue, also may happen when task is
	 * on run queue and wakeup only change ->state to TASK_RUNNING,
	 * then we should not set the ->wake_up_time when wake up a
	 * task which is on run queue.
	 *
1194 1195
	 * You WILL be missing events if you've recorded only
	 * one CPU, or are only looking at only one, so don't
1196
	 * skip in this case.
1197
	 */
1198
	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1199
		goto out_ok;
1200

1201
	sched->nr_timestamps++;
1202
	if (atom->sched_out_time > timestamp) {
1203
		sched->nr_unordered_timestamps++;
1204
		goto out_ok;
1205
	}
1206

1207 1208
	atom->state = THREAD_WAIT_CPU;
	atom->wake_up_time = timestamp;
1209 1210 1211 1212 1213
out_ok:
	err = 0;
out_put:
	thread__put(wakee);
	return err;
1214 1215
}

1216 1217 1218 1219
static int latency_migrate_task_event(struct perf_sched *sched,
				      struct perf_evsel *evsel,
				      struct perf_sample *sample,
				      struct machine *machine)
1220
{
1221
	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1222
	u64 timestamp = sample->time;
1223 1224 1225
	struct work_atoms *atoms;
	struct work_atom *atom;
	struct thread *migrant;
1226
	int err = -1;
1227 1228 1229 1230

	/*
	 * Only need to worry about migration when profiling one CPU.
	 */
1231
	if (sched->profile_cpu == -1)
1232
		return 0;
1233

1234
	migrant = machine__findnew_thread(machine, -1, pid);
1235 1236
	if (migrant == NULL)
		return -1;
1237
	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1238
	if (!atoms) {
1239
		if (thread_atoms_insert(sched, migrant))
1240
			goto out_put;
1241
		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1242
		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1243
		if (!atoms) {
1244
			pr_err("migration-event: Internal tree error");
1245
			goto out_put;
1246 1247
		}
		if (add_sched_out_event(atoms, 'R', timestamp))
1248
			goto out_put;
1249 1250 1251 1252 1253 1254 1255
	}

	BUG_ON(list_empty(&atoms->work_list));

	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;

1256
	sched->nr_timestamps++;
1257 1258

	if (atom->sched_out_time > timestamp)
1259
		sched->nr_unordered_timestamps++;
1260 1261 1262 1263
	err = 0;
out_put:
	thread__put(migrant);
	return err;
1264 1265
}

1266
static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1267 1268 1269
{
	int i;
	int ret;
1270
	u64 avg;
1271
	char max_lat_at[32];
1272

1273
	if (!work_list->nb_atoms)
1274
		return;
1275 1276 1277
	/*
	 * Ignore idle threads:
	 */
1278
	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1279
		return;
1280

1281 1282
	sched->all_runtime += work_list->total_runtime;
	sched->all_count   += work_list->nb_atoms;
1283

1284 1285 1286 1287
	if (work_list->num_merged > 1)
		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
	else
		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1288

M
mingo 已提交
1289
	for (i = 0; i < 24 - ret; i++)
1290 1291
		printf(" ");

1292
	avg = work_list->total_lat / work_list->nb_atoms;
1293
	timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1294

1295
	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1296 1297 1298
	      (double)work_list->total_runtime / NSEC_PER_MSEC,
		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
		 (double)work_list->max_lat / NSEC_PER_MSEC,
1299
		 max_lat_at);
1300 1301
}

1302
static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1303
{
1304 1305
	if (l->thread == r->thread)
		return 0;
1306
	if (l->thread->tid < r->thread->tid)
1307
		return -1;
1308
	if (l->thread->tid > r->thread->tid)
1309
		return 1;
1310
	return (int)(l->thread - r->thread);
1311 1312
}

1313
static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
{
	u64 avgl, avgr;

	if (!l->nb_atoms)
		return -1;

	if (!r->nb_atoms)
		return 1;

	avgl = l->total_lat / l->nb_atoms;
	avgr = r->total_lat / r->nb_atoms;

	if (avgl < avgr)
		return -1;
	if (avgl > avgr)
		return 1;

	return 0;
}

1334
static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1335 1336 1337 1338 1339 1340 1341 1342 1343
{
	if (l->max_lat < r->max_lat)
		return -1;
	if (l->max_lat > r->max_lat)
		return 1;

	return 0;
}

1344
static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1345 1346 1347 1348 1349 1350 1351 1352 1353
{
	if (l->nb_atoms < r->nb_atoms)
		return -1;
	if (l->nb_atoms > r->nb_atoms)
		return 1;

	return 0;
}

1354
static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1355 1356 1357 1358 1359 1360 1361 1362 1363
{
	if (l->total_runtime < r->total_runtime)
		return -1;
	if (l->total_runtime > r->total_runtime)
		return 1;

	return 0;
}

1364
static int sort_dimension__add(const char *tok, struct list_head *list)
1365
{
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	size_t i;
	static struct sort_dimension avg_sort_dimension = {
		.name = "avg",
		.cmp  = avg_cmp,
	};
	static struct sort_dimension max_sort_dimension = {
		.name = "max",
		.cmp  = max_cmp,
	};
	static struct sort_dimension pid_sort_dimension = {
		.name = "pid",
		.cmp  = pid_cmp,
	};
	static struct sort_dimension runtime_sort_dimension = {
		.name = "runtime",
		.cmp  = runtime_cmp,
	};
	static struct sort_dimension switch_sort_dimension = {
		.name = "switch",
		.cmp  = switch_cmp,
	};
	struct sort_dimension *available_sorts[] = {
		&pid_sort_dimension,
		&avg_sort_dimension,
		&max_sort_dimension,
		&switch_sort_dimension,
		&runtime_sort_dimension,
	};
1394

1395
	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		if (!strcmp(available_sorts[i]->name, tok)) {
			list_add_tail(&available_sorts[i]->list, list);

			return 0;
		}
	}

	return -1;
}

1406
static void perf_sched__sort_lat(struct perf_sched *sched)
1407 1408
{
	struct rb_node *node;
1409 1410
	struct rb_root *root = &sched->atom_root;
again:
1411
	for (;;) {
1412
		struct work_atoms *data;
1413
		node = rb_first(root);
1414 1415 1416
		if (!node)
			break;

1417
		rb_erase(node, root);
1418
		data = rb_entry(node, struct work_atoms, node);
1419
		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1420
	}
1421 1422 1423 1424
	if (root == &sched->atom_root) {
		root = &sched->merged_atom_root;
		goto again;
	}
1425 1426
}

1427
static int process_sched_wakeup_event(struct perf_tool *tool,
1428
				      struct perf_evsel *evsel,
1429
				      struct perf_sample *sample,
1430
				      struct machine *machine)
1431
{
1432
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1433

1434 1435
	if (sched->tp_handler->wakeup_event)
		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1436

1437
	return 0;
1438 1439
}

J
Jiri Olsa 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
union map_priv {
	void	*ptr;
	bool	 color;
};

static bool thread__has_color(struct thread *thread)
{
	union map_priv priv = {
		.ptr = thread__priv(thread),
	};

	return priv.color;
}

static struct thread*
map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
{
	struct thread *thread = machine__findnew_thread(machine, pid, tid);
	union map_priv priv = {
		.color = false,
	};

	if (!sched->map.color_pids || !thread || thread__priv(thread))
		return thread;

	if (thread_map__has(sched->map.color_pids, tid))
		priv.color = true;

	thread__set_priv(thread, priv.ptr);
	return thread;
}

1472 1473
static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
			    struct perf_sample *sample, struct machine *machine)
1474
{
1475 1476
	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
	struct thread *sched_in;
1477
	int new_shortname;
1478
	u64 timestamp0, timestamp = sample->time;
1479
	s64 delta;
1480 1481 1482
	int i, this_cpu = sample->cpu;
	int cpus_nr;
	bool new_cpu = false;
1483
	const char *color = PERF_COLOR_NORMAL;
1484
	char stimestamp[32];
1485 1486 1487

	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);

1488 1489
	if (this_cpu > sched->max_cpu)
		sched->max_cpu = this_cpu;
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499
	if (sched->map.comp) {
		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
			sched->map.comp_cpus[cpus_nr++] = this_cpu;
			new_cpu = true;
		}
	} else
		cpus_nr = sched->max_cpu;

1500 1501
	timestamp0 = sched->cpu_last_switched[this_cpu];
	sched->cpu_last_switched[this_cpu] = timestamp;
1502 1503 1504 1505 1506
	if (timestamp0)
		delta = timestamp - timestamp0;
	else
		delta = 0;

1507
	if (delta < 0) {
1508
		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1509 1510
		return -1;
	}
1511

J
Jiri Olsa 已提交
1512
	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1513 1514
	if (sched_in == NULL)
		return -1;
1515

1516
	sched->curr_thread[this_cpu] = thread__get(sched_in);
1517 1518 1519 1520 1521

	printf("  ");

	new_shortname = 0;
	if (!sched_in->shortname[0]) {
1522 1523 1524 1525 1526 1527 1528
		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
			/*
			 * Don't allocate a letter-number for swapper:0
			 * as a shortname. Instead, we use '.' for it.
			 */
			sched_in->shortname[0] = '.';
			sched_in->shortname[1] = ' ';
1529
		} else {
1530 1531 1532 1533 1534
			sched_in->shortname[0] = sched->next_shortname1;
			sched_in->shortname[1] = sched->next_shortname2;

			if (sched->next_shortname1 < 'Z') {
				sched->next_shortname1++;
1535
			} else {
1536 1537 1538 1539 1540
				sched->next_shortname1 = 'A';
				if (sched->next_shortname2 < '9')
					sched->next_shortname2++;
				else
					sched->next_shortname2 = '0';
1541 1542 1543 1544 1545
			}
		}
		new_shortname = 1;
	}

1546 1547
	for (i = 0; i < cpus_nr; i++) {
		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
J
Jiri Olsa 已提交
1548 1549
		struct thread *curr_thread = sched->curr_thread[cpu];
		const char *pid_color = color;
J
Jiri Olsa 已提交
1550
		const char *cpu_color = color;
J
Jiri Olsa 已提交
1551 1552 1553

		if (curr_thread && thread__has_color(curr_thread))
			pid_color = COLOR_PIDS;
1554

1555 1556 1557
		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
			continue;

J
Jiri Olsa 已提交
1558 1559 1560
		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
			cpu_color = COLOR_CPUS;

1561
		if (cpu != this_cpu)
1562
			color_fprintf(stdout, color, " ");
1563
		else
J
Jiri Olsa 已提交
1564
			color_fprintf(stdout, cpu_color, "*");
1565

1566
		if (sched->curr_thread[cpu])
J
Jiri Olsa 已提交
1567
			color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1568
		else
1569
			color_fprintf(stdout, color, "   ");
1570 1571
	}

1572 1573 1574
	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
		goto out;

1575 1576
	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1577
	if (new_shortname || (verbose > 0 && sched_in->tid)) {
J
Jiri Olsa 已提交
1578 1579 1580 1581 1582 1583
		const char *pid_color = color;

		if (thread__has_color(sched_in))
			pid_color = COLOR_PIDS;

		color_fprintf(stdout, pid_color, "%s => %s:%d",
1584
		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1585
	}
1586

1587
	if (sched->map.comp && new_cpu)
1588
		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1589

1590
out:
1591
	color_fprintf(stdout, color, "\n");
1592

1593 1594
	thread__put(sched_in);

1595
	return 0;
1596 1597
}

1598
static int process_sched_switch_event(struct perf_tool *tool,
1599
				      struct perf_evsel *evsel,
1600
				      struct perf_sample *sample,
1601
				      struct machine *machine)
1602
{
1603
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1604
	int this_cpu = sample->cpu, err = 0;
1605 1606
	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1607

1608
	if (sched->curr_pid[this_cpu] != (u32)-1) {
1609 1610 1611 1612
		/*
		 * Are we trying to switch away a PID that is
		 * not current?
		 */
1613
		if (sched->curr_pid[this_cpu] != prev_pid)
1614
			sched->nr_context_switch_bugs++;
1615 1616
	}

1617 1618
	if (sched->tp_handler->switch_event)
		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1619 1620

	sched->curr_pid[this_cpu] = next_pid;
1621
	return err;
1622 1623
}

1624
static int process_sched_runtime_event(struct perf_tool *tool,
1625
				       struct perf_evsel *evsel,
1626
				       struct perf_sample *sample,
1627
				       struct machine *machine)
1628
{
1629
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1630

1631 1632
	if (sched->tp_handler->runtime_event)
		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1633

1634
	return 0;
1635 1636
}

1637 1638 1639 1640
static int perf_sched__process_fork_event(struct perf_tool *tool,
					  union perf_event *event,
					  struct perf_sample *sample,
					  struct machine *machine)
1641
{
1642
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1643

1644 1645 1646 1647
	/* run the fork event through the perf machineruy */
	perf_event__process_fork(tool, event, sample, machine);

	/* and then run additional processing needed for this command */
1648
	if (sched->tp_handler->fork_event)
1649
		return sched->tp_handler->fork_event(sched, event, machine);
1650

1651
	return 0;
1652 1653
}

1654
static int process_sched_migrate_task_event(struct perf_tool *tool,
1655
					    struct perf_evsel *evsel,
1656
					    struct perf_sample *sample,
1657
					    struct machine *machine)
1658
{
1659
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1660

1661 1662
	if (sched->tp_handler->migrate_task_event)
		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1663

1664
	return 0;
1665 1666
}

1667
typedef int (*tracepoint_handler)(struct perf_tool *tool,
1668
				  struct perf_evsel *evsel,
1669
				  struct perf_sample *sample,
1670
				  struct machine *machine);
I
Ingo Molnar 已提交
1671

1672 1673
static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
						 union perf_event *event __maybe_unused,
1674 1675 1676
						 struct perf_sample *sample,
						 struct perf_evsel *evsel,
						 struct machine *machine)
I
Ingo Molnar 已提交
1677
{
1678
	int err = 0;
I
Ingo Molnar 已提交
1679

1680 1681
	if (evsel->handler != NULL) {
		tracepoint_handler f = evsel->handler;
1682
		err = f(tool, evsel, sample, machine);
1683
	}
I
Ingo Molnar 已提交
1684

1685
	return err;
I
Ingo Molnar 已提交
1686 1687
}

1688
static int perf_sched__read_events(struct perf_sched *sched)
I
Ingo Molnar 已提交
1689
{
1690 1691 1692 1693 1694 1695 1696
	const struct perf_evsel_str_handler handlers[] = {
		{ "sched:sched_switch",	      process_sched_switch_event, },
		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
	};
1697
	struct perf_session *session;
1698 1699 1700
	struct perf_data_file file = {
		.path = input_name,
		.mode = PERF_DATA_MODE_READ,
1701
		.force = sched->force,
1702
	};
1703
	int rc = -1;
1704

1705
	session = perf_session__new(&file, false, &sched->tool);
1706 1707 1708 1709
	if (session == NULL) {
		pr_debug("No Memory for session\n");
		return -1;
	}
1710

1711
	symbol__init(&session->header.env);
1712

1713 1714
	if (perf_session__set_tracepoints_handlers(session, handlers))
		goto out_delete;
1715

1716
	if (perf_session__has_traces(session, "record -R")) {
1717
		int err = perf_session__process_events(session);
1718 1719 1720 1721
		if (err) {
			pr_err("Failed to process events, error %d", err);
			goto out_delete;
		}
1722

1723 1724 1725
		sched->nr_events      = session->evlist->stats.nr_events[0];
		sched->nr_lost_events = session->evlist->stats.total_lost;
		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1726
	}
1727

1728
	rc = 0;
1729 1730
out_delete:
	perf_session__delete(session);
1731
	return rc;
I
Ingo Molnar 已提交
1732 1733
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
/*
 * scheduling times are printed as msec.usec
 */
static inline void print_sched_time(unsigned long long nsecs, int width)
{
	unsigned long msecs;
	unsigned long usecs;

	msecs  = nsecs / NSEC_PER_MSEC;
	nsecs -= msecs * NSEC_PER_MSEC;
	usecs  = nsecs / NSEC_PER_USEC;
	printf("%*lu.%03lu ", width, msecs, usecs);
}

/*
 * returns runtime data for event, allocating memory for it the
 * first time it is used.
 */
static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
{
	struct evsel_runtime *r = evsel->priv;

	if (r == NULL) {
		r = zalloc(sizeof(struct evsel_runtime));
		evsel->priv = r;
	}

	return r;
}

/*
 * save last time event was seen per cpu
 */
static void perf_evsel__save_time(struct perf_evsel *evsel,
				  u64 timestamp, u32 cpu)
{
	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);

	if (r == NULL)
		return;

	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
		int i, n = __roundup_pow_of_two(cpu+1);
		void *p = r->last_time;

		p = realloc(r->last_time, n * sizeof(u64));
		if (!p)
			return;

		r->last_time = p;
		for (i = r->ncpu; i < n; ++i)
			r->last_time[i] = (u64) 0;

		r->ncpu = n;
	}

	r->last_time[cpu] = timestamp;
}

/* returns last time this event was seen on the given cpu */
static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
{
	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);

	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
		return 0;

	return r->last_time[cpu];
}

1804
static int comm_width = 30;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828

static char *timehist_get_commstr(struct thread *thread)
{
	static char str[32];
	const char *comm = thread__comm_str(thread);
	pid_t tid = thread->tid;
	pid_t pid = thread->pid_;
	int n;

	if (pid == 0)
		n = scnprintf(str, sizeof(str), "%s", comm);

	else if (tid != pid)
		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);

	else
		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);

	if (n > comm_width)
		comm_width = n;

	return str;
}

1829
static void timehist_header(struct perf_sched *sched)
1830
{
1831 1832 1833
	u32 ncpus = sched->max_cpu + 1;
	u32 i, j;

1834 1835
	printf("%15s %6s ", "time", "cpu");

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	if (sched->show_cpu_visual) {
		printf(" ");
		for (i = 0, j = 0; i < ncpus; ++i) {
			printf("%x", j++);
			if (j > 15)
				j = 0;
		}
		printf(" ");
	}

1846
	printf(" %-*s  %9s  %9s  %9s", comm_width,
1847 1848
		"task name", "wait time", "sch delay", "run time");

1849 1850 1851
	if (sched->show_state)
		printf("  %s", "state");

1852 1853 1854 1855 1856 1857 1858
	printf("\n");

	/*
	 * units row
	 */
	printf("%15s %-6s ", "", "");

1859 1860 1861
	if (sched->show_cpu_visual)
		printf(" %*s ", ncpus, "");

1862
	printf(" %-*s  %9s  %9s  %9s", comm_width,
1863
	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1864

1865 1866 1867 1868 1869
	if (sched->show_state)
		printf("  %5s", "");

	printf("\n");

1870 1871 1872 1873 1874
	/*
	 * separator
	 */
	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);

1875 1876 1877
	if (sched->show_cpu_visual)
		printf(" %.*s ", ncpus, graph_dotted_line);

1878
	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1879 1880 1881
		graph_dotted_line, graph_dotted_line, graph_dotted_line,
		graph_dotted_line);

1882 1883 1884
	if (sched->show_state)
		printf("  %.5s", graph_dotted_line);

1885 1886 1887
	printf("\n");
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
static char task_state_char(struct thread *thread, int state)
{
	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
	unsigned bit = state ? ffs(state) : 0;

	/* 'I' for idle */
	if (thread->tid == 0)
		return 'I';

	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
}

1900
static void timehist_print_sample(struct perf_sched *sched,
1901
				  struct perf_evsel *evsel,
1902
				  struct perf_sample *sample,
1903
				  struct addr_location *al,
1904
				  struct thread *thread,
1905
				  u64 t, int state)
1906 1907
{
	struct thread_runtime *tr = thread__priv(thread);
1908 1909
	const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1910
	u32 max_cpus = sched->max_cpu + 1;
1911
	char tstr[64];
1912
	char nstr[30];
1913
	u64 wait_time;
1914

1915
	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1916 1917
	printf("%15s [%04d] ", tstr, sample->cpu);

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	if (sched->show_cpu_visual) {
		u32 i;
		char c;

		printf(" ");
		for (i = 0; i < max_cpus; ++i) {
			/* flag idle times with 'i'; others are sched events */
			if (i == sample->cpu)
				c = (thread->tid == 0) ? 'i' : 's';
			else
				c = ' ';
			printf("%c", c);
		}
		printf(" ");
	}

1934 1935
	printf(" %-*s ", comm_width, timehist_get_commstr(thread));

1936 1937 1938
	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
	print_sched_time(wait_time, 6);

1939 1940
	print_sched_time(tr->dt_delay, 6);
	print_sched_time(tr->dt_run, 6);
1941

1942 1943 1944
	if (sched->show_state)
		printf(" %5c ", task_state_char(thread, state));

1945 1946 1947 1948 1949 1950
	if (sched->show_next) {
		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
		printf(" %-*s", comm_width, nstr);
	}

	if (sched->show_wakeups && !sched->show_next)
1951 1952
		printf("  %-*s", comm_width, "");

1953 1954 1955 1956 1957 1958 1959 1960
	if (thread->tid == 0)
		goto out;

	if (sched->show_callchain)
		printf("  ");

	sample__fprintf_sym(sample, al, 0,
			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1961 1962
			    EVSEL__PRINT_CALLCHAIN_ARROW |
			    EVSEL__PRINT_SKIP_IGNORED,
1963 1964 1965
			    &callchain_cursor, stdout);

out:
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	printf("\n");
}

/*
 * Explanation of delta-time stats:
 *
 *            t = time of current schedule out event
 *        tprev = time of previous sched out event
 *                also time of schedule-in event for current task
 *    last_time = time of last sched change event for current task
 *                (i.e, time process was last scheduled out)
 * ready_to_run = time of wakeup for current task
 *
 * -----|------------|------------|------------|------
 *    last         ready        tprev          t
 *    time         to run
 *
 *      |-------- dt_wait --------|
 *                   |- dt_delay -|-- dt_run --|
 *
 *   dt_run = run time of current task
 *  dt_wait = time between last schedule out event for task and tprev
 *            represents time spent off the cpu
 * dt_delay = time between wakeup and schedule-in of task
 */

static void timehist_update_runtime_stats(struct thread_runtime *r,
					 u64 t, u64 tprev)
{
	r->dt_delay   = 0;
1996 1997 1998
	r->dt_sleep   = 0;
	r->dt_iowait  = 0;
	r->dt_preempt = 0;
1999
	r->dt_run     = 0;
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	if (tprev) {
		r->dt_run = t - tprev;
		if (r->ready_to_run) {
			if (r->ready_to_run > tprev)
				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
			else
				r->dt_delay = tprev - r->ready_to_run;
		}

		if (r->last_time > tprev)
			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
		else if (r->last_time) {
			u64 dt_wait = tprev - r->last_time;

			if (r->last_state == TASK_RUNNING)
				r->dt_preempt = dt_wait;
			else if (r->last_state == TASK_UNINTERRUPTIBLE)
				r->dt_iowait = dt_wait;
			else
				r->dt_sleep = dt_wait;
		}
2022 2023 2024
	}

	update_stats(&r->run_stats, r->dt_run);
2025 2026 2027 2028 2029 2030

	r->total_run_time     += r->dt_run;
	r->total_delay_time   += r->dt_delay;
	r->total_sleep_time   += r->dt_sleep;
	r->total_iowait_time  += r->dt_iowait;
	r->total_preempt_time += r->dt_preempt;
2031 2032
}

2033 2034
static bool is_idle_sample(struct perf_sample *sample,
			   struct perf_evsel *evsel)
2035 2036
{
	/* pid 0 == swapper == idle task */
2037 2038
	if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
		return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2039

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	return sample->pid == 0;
}

static void save_task_callchain(struct perf_sched *sched,
				struct perf_sample *sample,
				struct perf_evsel *evsel,
				struct machine *machine)
{
	struct callchain_cursor *cursor = &callchain_cursor;
	struct thread *thread;
2050 2051 2052 2053 2054

	/* want main thread for process - has maps */
	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
	if (thread == NULL) {
		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2055
		return;
2056 2057 2058
	}

	if (!symbol_conf.use_callchain || sample->callchain == NULL)
2059
		return;
2060 2061

	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2062
				      NULL, NULL, sched->max_stack + 2) != 0) {
2063
		if (verbose > 0)
2064 2065
			error("Failed to resolve callchain. Skipping\n");

2066
		return;
2067
	}
2068

2069
	callchain_cursor_commit(cursor);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

	while (true) {
		struct callchain_cursor_node *node;
		struct symbol *sym;

		node = callchain_cursor_current(cursor);
		if (node == NULL)
			break;

		sym = node->sym;
2080
		if (sym) {
2081 2082 2083 2084 2085 2086 2087 2088
			if (!strcmp(sym->name, "schedule") ||
			    !strcmp(sym->name, "__schedule") ||
			    !strcmp(sym->name, "preempt_schedule"))
				sym->ignore = 1;
		}

		callchain_cursor_advance(cursor);
	}
2089 2090
}

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
static int init_idle_thread(struct thread *thread)
{
	struct idle_thread_runtime *itr;

	thread__set_comm(thread, idle_comm, 0);

	itr = zalloc(sizeof(*itr));
	if (itr == NULL)
		return -ENOMEM;

	init_stats(&itr->tr.run_stats);
	callchain_init(&itr->callchain);
	callchain_cursor_reset(&itr->cursor);
	thread__set_priv(thread, itr);

	return 0;
}

2109 2110 2111 2112 2113 2114
/*
 * Track idle stats per cpu by maintaining a local thread
 * struct for the idle task on each cpu.
 */
static int init_idle_threads(int ncpu)
{
2115
	int i, ret;
2116 2117 2118 2119 2120

	idle_threads = zalloc(ncpu * sizeof(struct thread *));
	if (!idle_threads)
		return -ENOMEM;

2121
	idle_max_cpu = ncpu;
2122 2123 2124 2125 2126 2127 2128

	/* allocate the actual thread struct if needed */
	for (i = 0; i < ncpu; ++i) {
		idle_threads[i] = thread__new(0, 0);
		if (idle_threads[i] == NULL)
			return -ENOMEM;

2129 2130 2131
		ret = init_idle_thread(idle_threads[i]);
		if (ret < 0)
			return ret;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	}

	return 0;
}

static void free_idle_threads(void)
{
	int i;

	if (idle_threads == NULL)
		return;

2144
	for (i = 0; i < idle_max_cpu; ++i) {
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
		if ((idle_threads[i]))
			thread__delete(idle_threads[i]);
	}

	free(idle_threads);
}

static struct thread *get_idle_thread(int cpu)
{
	/*
	 * expand/allocate array of pointers to local thread
	 * structs if needed
	 */
	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
		int i, j = __roundup_pow_of_two(cpu+1);
		void *p;

		p = realloc(idle_threads, j * sizeof(struct thread *));
		if (!p)
			return NULL;

		idle_threads = (struct thread **) p;
2167
		for (i = idle_max_cpu; i < j; ++i)
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
			idle_threads[i] = NULL;

		idle_max_cpu = j;
	}

	/* allocate a new thread struct if needed */
	if (idle_threads[cpu] == NULL) {
		idle_threads[cpu] = thread__new(0, 0);

		if (idle_threads[cpu]) {
2178 2179
			if (init_idle_thread(idle_threads[cpu]) < 0)
				return NULL;
2180 2181 2182 2183 2184 2185
		}
	}

	return idle_threads[cpu];
}

2186 2187 2188 2189 2190 2191 2192 2193 2194
static void save_idle_callchain(struct idle_thread_runtime *itr,
				struct perf_sample *sample)
{
	if (!symbol_conf.use_callchain || sample->callchain == NULL)
		return;

	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
/*
 * handle runtime stats saved per thread
 */
static struct thread_runtime *thread__init_runtime(struct thread *thread)
{
	struct thread_runtime *r;

	r = zalloc(sizeof(struct thread_runtime));
	if (!r)
		return NULL;

	init_stats(&r->run_stats);
	thread__set_priv(thread, r);

	return r;
}

static struct thread_runtime *thread__get_runtime(struct thread *thread)
{
	struct thread_runtime *tr;

	tr = thread__priv(thread);
	if (tr == NULL) {
		tr = thread__init_runtime(thread);
		if (tr == NULL)
			pr_debug("Failed to malloc memory for runtime data.\n");
	}

	return tr;
}

2226 2227
static struct thread *timehist_get_thread(struct perf_sched *sched,
					  struct perf_sample *sample,
2228 2229 2230 2231 2232
					  struct machine *machine,
					  struct perf_evsel *evsel)
{
	struct thread *thread;

2233
	if (is_idle_sample(sample, evsel)) {
2234 2235 2236 2237 2238
		thread = get_idle_thread(sample->cpu);
		if (thread == NULL)
			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);

	} else {
2239 2240 2241
		/* there were samples with tid 0 but non-zero pid */
		thread = machine__findnew_thread(machine, sample->pid,
						 sample->tid ?: sample->pid);
2242 2243 2244 2245
		if (thread == NULL) {
			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
				 sample->tid);
		}
2246 2247

		save_task_callchain(sched, sample, evsel, machine);
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
		if (sched->idle_hist) {
			struct thread *idle;
			struct idle_thread_runtime *itr;

			idle = get_idle_thread(sample->cpu);
			if (idle == NULL) {
				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
				return NULL;
			}

			itr = thread__priv(idle);
			if (itr == NULL)
				return NULL;

			itr->last_thread = thread;

			/* copy task callchain when entering to idle */
			if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
				save_idle_callchain(itr, sample);
		}
2268 2269 2270 2271 2272
	}

	return thread;
}

2273
static bool timehist_skip_sample(struct perf_sched *sched,
2274 2275 2276
				 struct thread *thread,
				 struct perf_evsel *evsel,
				 struct perf_sample *sample)
2277 2278 2279
{
	bool rc = false;

2280
	if (thread__is_filtered(thread)) {
2281
		rc = true;
2282 2283
		sched->skipped_samples++;
	}
2284

2285 2286 2287 2288 2289 2290 2291 2292
	if (sched->idle_hist) {
		if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
			rc = true;
		else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
			 perf_evsel__intval(evsel, sample, "next_pid") != 0)
			rc = true;
	}

2293 2294 2295
	return rc;
}

2296
static void timehist_print_wakeup_event(struct perf_sched *sched,
2297
					struct perf_evsel *evsel,
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
					struct perf_sample *sample,
					struct machine *machine,
					struct thread *awakened)
{
	struct thread *thread;
	char tstr[64];

	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
	if (thread == NULL)
		return;

	/* show wakeup unless both awakee and awaker are filtered */
2310 2311
	if (timehist_skip_sample(sched, thread, evsel, sample) &&
	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2312 2313 2314 2315 2316
		return;
	}

	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
	printf("%15s [%04d] ", tstr, sample->cpu);
2317 2318
	if (sched->show_cpu_visual)
		printf(" %*s ", sched->max_cpu + 1, "");
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

	printf(" %-*s ", comm_width, timehist_get_commstr(thread));

	/* dt spacer */
	printf("  %9s  %9s  %9s ", "", "", "");

	printf("awakened: %s", timehist_get_commstr(awakened));

	printf("\n");
}

static int timehist_sched_wakeup_event(struct perf_tool *tool,
2331 2332 2333 2334 2335
				       union perf_event *event __maybe_unused,
				       struct perf_evsel *evsel,
				       struct perf_sample *sample,
				       struct machine *machine)
{
2336
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	struct thread *thread;
	struct thread_runtime *tr = NULL;
	/* want pid of awakened task not pid in sample */
	const u32 pid = perf_evsel__intval(evsel, sample, "pid");

	thread = machine__findnew_thread(machine, 0, pid);
	if (thread == NULL)
		return -1;

	tr = thread__get_runtime(thread);
	if (tr == NULL)
		return -1;

	if (tr->ready_to_run == 0)
		tr->ready_to_run = sample->time;

2353
	/* show wakeups if requested */
2354 2355
	if (sched->show_wakeups &&
	    !perf_time__skip_sample(&sched->ptime, sample->time))
2356
		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2357

2358 2359 2360
	return 0;
}

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
static void timehist_print_migration_event(struct perf_sched *sched,
					struct perf_evsel *evsel,
					struct perf_sample *sample,
					struct machine *machine,
					struct thread *migrated)
{
	struct thread *thread;
	char tstr[64];
	u32 max_cpus = sched->max_cpu + 1;
	u32 ocpu, dcpu;

	if (sched->summary_only)
		return;

	max_cpus = sched->max_cpu + 1;
	ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
	dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");

	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
	if (thread == NULL)
		return;

2383 2384
	if (timehist_skip_sample(sched, thread, evsel, sample) &&
	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
		return;
	}

	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
	printf("%15s [%04d] ", tstr, sample->cpu);

	if (sched->show_cpu_visual) {
		u32 i;
		char c;

		printf("  ");
		for (i = 0; i < max_cpus; ++i) {
			c = (i == sample->cpu) ? 'm' : ' ';
			printf("%c", c);
		}
		printf("  ");
	}

	printf(" %-*s ", comm_width, timehist_get_commstr(thread));

	/* dt spacer */
	printf("  %9s  %9s  %9s ", "", "", "");

	printf("migrated: %s", timehist_get_commstr(migrated));
	printf(" cpu %d => %d", ocpu, dcpu);

	printf("\n");
}

static int timehist_migrate_task_event(struct perf_tool *tool,
				       union perf_event *event __maybe_unused,
				       struct perf_evsel *evsel,
				       struct perf_sample *sample,
				       struct machine *machine)
{
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
	struct thread *thread;
	struct thread_runtime *tr = NULL;
	/* want pid of migrated task not pid in sample */
	const u32 pid = perf_evsel__intval(evsel, sample, "pid");

	thread = machine__findnew_thread(machine, 0, pid);
	if (thread == NULL)
		return -1;

	tr = thread__get_runtime(thread);
	if (tr == NULL)
		return -1;

	tr->migrations++;

	/* show migrations if requested */
	timehist_print_migration_event(sched, evsel, sample, machine, thread);

	return 0;
}

2442
static int timehist_sched_change_event(struct perf_tool *tool,
2443 2444 2445 2446 2447
				       union perf_event *event,
				       struct perf_evsel *evsel,
				       struct perf_sample *sample,
				       struct machine *machine)
{
2448
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2449
	struct perf_time_interval *ptime = &sched->ptime;
2450 2451 2452
	struct addr_location al;
	struct thread *thread;
	struct thread_runtime *tr = NULL;
2453
	u64 tprev, t = sample->time;
2454
	int rc = 0;
2455 2456
	int state = perf_evsel__intval(evsel, sample, "prev_state");

2457 2458 2459 2460 2461 2462 2463 2464

	if (machine__resolve(machine, &al, sample) < 0) {
		pr_err("problem processing %d event. skipping it\n",
		       event->header.type);
		rc = -1;
		goto out;
	}

2465
	thread = timehist_get_thread(sched, sample, machine, evsel);
2466 2467 2468 2469 2470
	if (thread == NULL) {
		rc = -1;
		goto out;
	}

2471
	if (timehist_skip_sample(sched, thread, evsel, sample))
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
		goto out;

	tr = thread__get_runtime(thread);
	if (tr == NULL) {
		rc = -1;
		goto out;
	}

	tprev = perf_evsel__get_time(evsel, sample->cpu);

2482 2483 2484 2485 2486 2487 2488 2489
	/*
	 * If start time given:
	 * - sample time is under window user cares about - skip sample
	 * - tprev is under window user cares about  - reset to start of window
	 */
	if (ptime->start && ptime->start > t)
		goto out;

2490
	if (tprev && ptime->start > tprev)
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
		tprev = ptime->start;

	/*
	 * If end time given:
	 * - previous sched event is out of window - we are done
	 * - sample time is beyond window user cares about - reset it
	 *   to close out stats for time window interest
	 */
	if (ptime->end) {
		if (tprev > ptime->end)
			goto out;

		if (t > ptime->end)
			t = ptime->end;
	}

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	if (!sched->idle_hist || thread->tid == 0) {
		timehist_update_runtime_stats(tr, t, tprev);

		if (sched->idle_hist) {
			struct idle_thread_runtime *itr = (void *)tr;
			struct thread_runtime *last_tr;

			BUG_ON(thread->tid != 0);

			if (itr->last_thread == NULL)
				goto out;

			/* add current idle time as last thread's runtime */
			last_tr = thread__get_runtime(itr->last_thread);
			if (last_tr == NULL)
				goto out;

			timehist_update_runtime_stats(last_tr, t, tprev);
			/*
			 * remove delta time of last thread as it's not updated
			 * and otherwise it will show an invalid value next
			 * time.  we only care total run time and run stat.
			 */
			last_tr->dt_run = 0;
			last_tr->dt_delay = 0;
2532 2533 2534
			last_tr->dt_sleep = 0;
			last_tr->dt_iowait = 0;
			last_tr->dt_preempt = 0;
2535

2536 2537 2538
			if (itr->cursor.nr)
				callchain_append(&itr->callchain, &itr->cursor, t - tprev);

2539 2540 2541
			itr->last_thread = NULL;
		}
	}
2542

2543
	if (!sched->summary_only)
2544
		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2545 2546

out:
2547 2548 2549 2550 2551
	if (sched->hist_time.start == 0 && t >= ptime->start)
		sched->hist_time.start = t;
	if (ptime->end == 0 || t <= ptime->end)
		sched->hist_time.end = t;

2552 2553 2554 2555
	if (tr) {
		/* time of this sched_switch event becomes last time task seen */
		tr->last_time = sample->time;

2556
		/* last state is used to determine where to account wait time */
2557
		tr->last_state = state;
2558

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
		/* sched out event for task so reset ready to run time */
		tr->ready_to_run = 0;
	}

	perf_evsel__save_time(evsel, sample->time, sample->cpu);

	return rc;
}

static int timehist_sched_switch_event(struct perf_tool *tool,
			     union perf_event *event,
			     struct perf_evsel *evsel,
			     struct perf_sample *sample,
			     struct machine *machine __maybe_unused)
{
	return timehist_sched_change_event(tool, event, evsel, sample, machine);
}

static int process_lost(struct perf_tool *tool __maybe_unused,
			union perf_event *event,
			struct perf_sample *sample,
			struct machine *machine __maybe_unused)
{
	char tstr[64];

	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
	printf("%15s ", tstr);
	printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);

	return 0;
}


2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
static void print_thread_runtime(struct thread *t,
				 struct thread_runtime *r)
{
	double mean = avg_stats(&r->run_stats);
	float stddev;

	printf("%*s   %5d  %9" PRIu64 " ",
	       comm_width, timehist_get_commstr(t), t->ppid,
	       (u64) r->run_stats.n);

	print_sched_time(r->total_run_time, 8);
	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
	print_sched_time(r->run_stats.min, 6);
	printf(" ");
	print_sched_time((u64) mean, 6);
	printf(" ");
	print_sched_time(r->run_stats.max, 6);
	printf("  ");
	printf("%5.2f", stddev);
2611
	printf("   %5" PRIu64, r->migrations);
2612 2613 2614
	printf("\n");
}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
static void print_thread_waittime(struct thread *t,
				  struct thread_runtime *r)
{
	printf("%*s   %5d  %9" PRIu64 " ",
	       comm_width, timehist_get_commstr(t), t->ppid,
	       (u64) r->run_stats.n);

	print_sched_time(r->total_run_time, 8);
	print_sched_time(r->total_sleep_time, 6);
	printf(" ");
	print_sched_time(r->total_iowait_time, 6);
	printf(" ");
	print_sched_time(r->total_preempt_time, 6);
	printf(" ");
	print_sched_time(r->total_delay_time, 6);
	printf("\n");
}

2633
struct total_run_stats {
2634
	struct perf_sched *sched;
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	u64  sched_count;
	u64  task_count;
	u64  total_run_time;
};

static int __show_thread_runtime(struct thread *t, void *priv)
{
	struct total_run_stats *stats = priv;
	struct thread_runtime *r;

	if (thread__is_filtered(t))
		return 0;

	r = thread__priv(t);
	if (r && r->run_stats.n) {
		stats->task_count++;
		stats->sched_count += r->run_stats.n;
		stats->total_run_time += r->total_run_time;
2653 2654 2655 2656 2657

		if (stats->sched->show_state)
			print_thread_waittime(t, r);
		else
			print_thread_runtime(t, r);
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	}

	return 0;
}

static int show_thread_runtime(struct thread *t, void *priv)
{
	if (t->dead)
		return 0;

	return __show_thread_runtime(t, priv);
}

static int show_deadthread_runtime(struct thread *t, void *priv)
{
	if (!t->dead)
		return 0;

	return __show_thread_runtime(t, priv);
}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
{
	const char *sep = " <- ";
	struct callchain_list *chain;
	size_t ret = 0;
	char bf[1024];
	bool first;

	if (node == NULL)
		return 0;

	ret = callchain__fprintf_folded(fp, node->parent);
	first = (ret == 0);

	list_for_each_entry(chain, &node->val, list) {
		if (chain->ip >= PERF_CONTEXT_MAX)
			continue;
		if (chain->ms.sym && chain->ms.sym->ignore)
			continue;
		ret += fprintf(fp, "%s%s", first ? "" : sep,
			       callchain_list__sym_name(chain, bf, sizeof(bf),
							false));
		first = false;
	}

	return ret;
}

static size_t timehist_print_idlehist_callchain(struct rb_root *root)
{
	size_t ret = 0;
	FILE *fp = stdout;
	struct callchain_node *chain;
	struct rb_node *rb_node = rb_first(root);

	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
	       graph_dotted_line);

	while (rb_node) {
		chain = rb_entry(rb_node, struct callchain_node, rb_node);
		rb_node = rb_next(rb_node);

		ret += fprintf(fp, "  ");
		print_sched_time(chain->hit, 12);
		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
		ret += fprintf(fp, " %8d  ", chain->count);
		ret += callchain__fprintf_folded(fp, chain);
		ret += fprintf(fp, "\n");
	}

	return ret;
}

2733 2734 2735 2736 2737 2738 2739 2740 2741
static void timehist_print_summary(struct perf_sched *sched,
				   struct perf_session *session)
{
	struct machine *m = &session->machines.host;
	struct total_run_stats totals;
	u64 task_count;
	struct thread *t;
	struct thread_runtime *r;
	int i;
2742
	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2743 2744

	memset(&totals, 0, sizeof(totals));
2745
	totals.sched = sched;
2746

2747 2748 2749 2750
	if (sched->idle_hist) {
		printf("\nIdle-time summary\n");
		printf("%*s  parent  sched-out  ", comm_width, "comm");
		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2751 2752 2753 2754
	} else if (sched->show_state) {
		printf("\nWait-time summary\n");
		printf("%*s  parent   sched-in  ", comm_width, "comm");
		printf("   run-time      sleep      iowait     preempt       delay\n");
2755 2756 2757 2758 2759
	} else {
		printf("\nRuntime summary\n");
		printf("%*s  parent   sched-in  ", comm_width, "comm");
		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
	}
2760
	printf("%*s            (count)  ", comm_width, "");
2761 2762
	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
	       sched->show_state ? "(msec)" : "%");
2763
	printf("%.117s\n", graph_dotted_line);
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

	machine__for_each_thread(m, show_thread_runtime, &totals);
	task_count = totals.task_count;
	if (!task_count)
		printf("<no still running tasks>\n");

	printf("\nTerminated tasks:\n");
	machine__for_each_thread(m, show_deadthread_runtime, &totals);
	if (task_count == totals.task_count)
		printf("<no terminated tasks>\n");

	/* CPU idle stats not tracked when samples were skipped */
2776
	if (sched->skipped_samples && !sched->idle_hist)
2777 2778 2779
		return;

	printf("\nIdle stats:\n");
2780
	for (i = 0; i < idle_max_cpu; ++i) {
2781 2782 2783 2784 2785 2786 2787 2788 2789
		t = idle_threads[i];
		if (!t)
			continue;

		r = thread__priv(t);
		if (r && r->run_stats.n) {
			totals.sched_count += r->run_stats.n;
			printf("    CPU %2d idle for ", i);
			print_sched_time(r->total_run_time, 6);
2790
			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2791 2792 2793 2794
		} else
			printf("    CPU %2d idle entire time window\n", i);
	}

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	if (sched->idle_hist && symbol_conf.use_callchain) {
		callchain_param.mode  = CHAIN_FOLDED;
		callchain_param.value = CCVAL_PERIOD;

		callchain_register_param(&callchain_param);

		printf("\nIdle stats by callchain:\n");
		for (i = 0; i < idle_max_cpu; ++i) {
			struct idle_thread_runtime *itr;

			t = idle_threads[i];
			if (!t)
				continue;

			itr = thread__priv(t);
			if (itr == NULL)
				continue;

			callchain_param.sort(&itr->sorted_root, &itr->callchain,
					     0, &callchain_param);

			printf("  CPU %2d:", i);
			print_sched_time(itr->tr.total_run_time, 6);
			printf(" msec\n");
			timehist_print_idlehist_callchain(&itr->sorted_root);
			printf("\n");
		}
	}

2824 2825
	printf("\n"
	       "    Total number of unique tasks: %" PRIu64 "\n"
2826
	       "Total number of context switches: %" PRIu64 "\n",
2827 2828
	       totals.task_count, totals.sched_count);

2829
	printf("           Total run time (msec): ");
2830 2831
	print_sched_time(totals.total_run_time, 2);
	printf("\n");
2832 2833 2834 2835

	printf("    Total scheduling time (msec): ");
	print_sched_time(hist_time, 2);
	printf(" (x %d)\n", sched->max_cpu);
2836 2837
}

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
typedef int (*sched_handler)(struct perf_tool *tool,
			  union perf_event *event,
			  struct perf_evsel *evsel,
			  struct perf_sample *sample,
			  struct machine *machine);

static int perf_timehist__process_sample(struct perf_tool *tool,
					 union perf_event *event,
					 struct perf_sample *sample,
					 struct perf_evsel *evsel,
					 struct machine *machine)
{
	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
	int err = 0;
	int this_cpu = sample->cpu;

	if (this_cpu > sched->max_cpu)
		sched->max_cpu = this_cpu;

	if (evsel->handler != NULL) {
		sched_handler f = evsel->handler;

		err = f(tool, event, evsel, sample, machine);
	}

	return err;
}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
static int timehist_check_attr(struct perf_sched *sched,
			       struct perf_evlist *evlist)
{
	struct perf_evsel *evsel;
	struct evsel_runtime *er;

	list_for_each_entry(evsel, &evlist->entries, node) {
		er = perf_evsel__get_runtime(evsel);
		if (er == NULL) {
			pr_err("Failed to allocate memory for evsel runtime data\n");
			return -1;
		}

		if (sched->show_callchain &&
		    !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
			pr_info("Samples do not have callchains.\n");
			sched->show_callchain = 0;
			symbol_conf.use_callchain = 0;
		}
	}

	return 0;
}

2890 2891 2892 2893 2894 2895 2896
static int perf_sched__timehist(struct perf_sched *sched)
{
	const struct perf_evsel_str_handler handlers[] = {
		{ "sched:sched_switch",       timehist_sched_switch_event, },
		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
	};
2897 2898 2899
	const struct perf_evsel_str_handler migrate_handlers[] = {
		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
	};
2900 2901 2902
	struct perf_data_file file = {
		.path = input_name,
		.mode = PERF_DATA_MODE_READ,
2903
		.force = sched->force,
2904 2905 2906
	};

	struct perf_session *session;
2907
	struct perf_evlist *evlist;
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	int err = -1;

	/*
	 * event handlers for timehist option
	 */
	sched->tool.sample	 = perf_timehist__process_sample;
	sched->tool.mmap	 = perf_event__process_mmap;
	sched->tool.comm	 = perf_event__process_comm;
	sched->tool.exit	 = perf_event__process_exit;
	sched->tool.fork	 = perf_event__process_fork;
	sched->tool.lost	 = process_lost;
	sched->tool.attr	 = perf_event__process_attr;
	sched->tool.tracing_data = perf_event__process_tracing_data;
	sched->tool.build_id	 = perf_event__process_build_id;

	sched->tool.ordered_events = true;
	sched->tool.ordering_requires_timestamps = true;

2926 2927
	symbol_conf.use_callchain = sched->show_callchain;

2928 2929 2930 2931
	session = perf_session__new(&file, false, &sched->tool);
	if (session == NULL)
		return -ENOMEM;

2932 2933
	evlist = session->evlist;

2934 2935
	symbol__init(&session->header.env);

2936 2937 2938 2939 2940
	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
		pr_err("Invalid time string\n");
		return -EINVAL;
	}

2941 2942 2943
	if (timehist_check_attr(sched, evlist) != 0)
		goto out;

2944 2945 2946 2947 2948 2949
	setup_pager();

	/* setup per-evsel handlers */
	if (perf_session__set_tracepoints_handlers(session, handlers))
		goto out;

2950 2951 2952 2953
	/* sched_switch event at a minimum needs to exist */
	if (!perf_evlist__find_tracepoint_by_name(session->evlist,
						  "sched:sched_switch")) {
		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2954
		goto out;
2955
	}
2956

2957 2958 2959 2960
	if (sched->show_migrations &&
	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
		goto out;

2961 2962 2963 2964 2965 2966 2967
	/* pre-allocate struct for per-CPU idle stats */
	sched->max_cpu = session->header.env.nr_cpus_online;
	if (sched->max_cpu == 0)
		sched->max_cpu = 4;
	if (init_idle_threads(sched->max_cpu))
		goto out;

2968 2969 2970 2971 2972
	/* summary_only implies summary option, but don't overwrite summary if set */
	if (sched->summary_only)
		sched->summary = sched->summary_only;

	if (!sched->summary_only)
2973
		timehist_header(sched);
2974 2975 2976 2977 2978 2979 2980

	err = perf_session__process_events(session);
	if (err) {
		pr_err("Failed to process events, error %d", err);
		goto out;
	}

2981 2982 2983 2984 2985 2986 2987
	sched->nr_events      = evlist->stats.nr_events[0];
	sched->nr_lost_events = evlist->stats.total_lost;
	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];

	if (sched->summary)
		timehist_print_summary(sched, session);

2988 2989 2990 2991 2992 2993 2994 2995
out:
	free_idle_threads();
	perf_session__delete(session);

	return err;
}


2996
static void print_bad_events(struct perf_sched *sched)
2997
{
2998
	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
2999
		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3000 3001
			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
			sched->nr_unordered_timestamps, sched->nr_timestamps);
3002
	}
3003
	if (sched->nr_lost_events && sched->nr_events) {
3004
		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3005 3006
			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3007
	}
3008
	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3009
		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3010 3011 3012
			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
			sched->nr_context_switch_bugs, sched->nr_timestamps);
		if (sched->nr_lost_events)
3013 3014 3015 3016 3017
			printf(" (due to lost events?)");
		printf("\n");
	}
}

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
{
	struct rb_node **new = &(root->rb_node), *parent = NULL;
	struct work_atoms *this;
	const char *comm = thread__comm_str(data->thread), *this_comm;

	while (*new) {
		int cmp;

		this = container_of(*new, struct work_atoms, node);
		parent = *new;

		this_comm = thread__comm_str(this->thread);
		cmp = strcmp(comm, this_comm);
		if (cmp > 0) {
			new = &((*new)->rb_left);
		} else if (cmp < 0) {
			new = &((*new)->rb_right);
		} else {
			this->num_merged++;
			this->total_runtime += data->total_runtime;
			this->nb_atoms += data->nb_atoms;
			this->total_lat += data->total_lat;
			list_splice(&data->work_list, &this->work_list);
			if (this->max_lat < data->max_lat) {
				this->max_lat = data->max_lat;
				this->max_lat_at = data->max_lat_at;
			}
			zfree(&data);
			return;
		}
	}

	data->num_merged++;
	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);
}

static void perf_sched__merge_lat(struct perf_sched *sched)
{
	struct work_atoms *data;
	struct rb_node *node;

	if (sched->skip_merge)
		return;

	while ((node = rb_first(&sched->atom_root))) {
		rb_erase(node, &sched->atom_root);
		data = rb_entry(node, struct work_atoms, node);
		__merge_work_atoms(&sched->merged_atom_root, data);
	}
}

3071
static int perf_sched__lat(struct perf_sched *sched)
3072 3073 3074 3075
{
	struct rb_node *next;

	setup_pager();
3076

3077
	if (perf_sched__read_events(sched))
3078
		return -1;
3079

3080
	perf_sched__merge_lat(sched);
3081
	perf_sched__sort_lat(sched);
3082

3083 3084 3085
	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3086

3087
	next = rb_first(&sched->sorted_atom_root);
3088 3089 3090 3091 3092

	while (next) {
		struct work_atoms *work_list;

		work_list = rb_entry(next, struct work_atoms, node);
3093
		output_lat_thread(sched, work_list);
3094
		next = rb_next(next);
3095
		thread__zput(work_list->thread);
3096 3097
	}

3098
	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3099
	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3100
		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3101 3102 3103

	printf(" ---------------------------------------------------\n");

3104
	print_bad_events(sched);
3105 3106
	printf("\n");

3107
	return 0;
3108 3109
}

3110 3111
static int setup_map_cpus(struct perf_sched *sched)
{
3112 3113
	struct cpu_map *map;

3114 3115 3116 3117
	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);

	if (sched->map.comp) {
		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
J
Jiri Olsa 已提交
3118 3119
		if (!sched->map.comp_cpus)
			return -1;
3120 3121
	}

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	if (!sched->map.cpus_str)
		return 0;

	map = cpu_map__new(sched->map.cpus_str);
	if (!map) {
		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
		return -1;
	}

	sched->map.cpus = map;
3132 3133 3134
	return 0;
}

J
Jiri Olsa 已提交
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
static int setup_color_pids(struct perf_sched *sched)
{
	struct thread_map *map;

	if (!sched->map.color_pids_str)
		return 0;

	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
	if (!map) {
		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
		return -1;
	}

	sched->map.color_pids = map;
	return 0;
}

J
Jiri Olsa 已提交
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
static int setup_color_cpus(struct perf_sched *sched)
{
	struct cpu_map *map;

	if (!sched->map.color_cpus_str)
		return 0;

	map = cpu_map__new(sched->map.color_cpus_str);
	if (!map) {
		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
		return -1;
	}

	sched->map.color_cpus = map;
	return 0;
}

3169
static int perf_sched__map(struct perf_sched *sched)
3170
{
3171 3172
	if (setup_map_cpus(sched))
		return -1;
3173

J
Jiri Olsa 已提交
3174 3175 3176
	if (setup_color_pids(sched))
		return -1;

J
Jiri Olsa 已提交
3177 3178 3179
	if (setup_color_cpus(sched))
		return -1;

3180
	setup_pager();
3181
	if (perf_sched__read_events(sched))
3182
		return -1;
3183
	print_bad_events(sched);
3184
	return 0;
3185 3186
}

3187
static int perf_sched__replay(struct perf_sched *sched)
3188 3189 3190
{
	unsigned long i;

3191 3192
	calibrate_run_measurement_overhead(sched);
	calibrate_sleep_measurement_overhead(sched);
3193

3194
	test_calibrations(sched);
3195

3196
	if (perf_sched__read_events(sched))
3197
		return -1;
3198

3199 3200 3201
	printf("nr_run_events:        %ld\n", sched->nr_run_events);
	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3202

3203 3204 3205 3206 3207
	if (sched->targetless_wakeups)
		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
	if (sched->multitarget_wakeups)
		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
	if (sched->nr_run_events_optimized)
3208
		printf("run atoms optimized: %ld\n",
3209
			sched->nr_run_events_optimized);
3210

3211 3212
	print_task_traces(sched);
	add_cross_task_wakeups(sched);
3213

3214
	create_tasks(sched);
3215
	printf("------------------------------------------------------------\n");
3216 3217
	for (i = 0; i < sched->replay_repeat; i++)
		run_one_test(sched);
3218 3219

	return 0;
3220 3221
}

3222 3223
static void setup_sorting(struct perf_sched *sched, const struct option *options,
			  const char * const usage_msg[])
3224
{
3225
	char *tmp, *tok, *str = strdup(sched->sort_order);
3226 3227 3228

	for (tok = strtok_r(str, ", ", &tmp);
			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3229
		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3230 3231
			usage_with_options_msg(usage_msg, options,
					"Unknown --sort key: `%s'", tok);
3232 3233 3234 3235 3236
		}
	}

	free(str);

3237
	sort_dimension__add("pid", &sched->cmp_pid);
3238 3239
}

3240 3241 3242 3243
static int __cmd_record(int argc, const char **argv)
{
	unsigned int rec_argc, i, j;
	const char **rec_argv;
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	const char * const record_args[] = {
		"record",
		"-a",
		"-R",
		"-m", "1024",
		"-c", "1",
		"-e", "sched:sched_switch",
		"-e", "sched:sched_stat_wait",
		"-e", "sched:sched_stat_sleep",
		"-e", "sched:sched_stat_iowait",
		"-e", "sched:sched_stat_runtime",
		"-e", "sched:sched_process_fork",
		"-e", "sched:sched_wakeup",
3257
		"-e", "sched:sched_wakeup_new",
3258 3259
		"-e", "sched:sched_migrate_task",
	};
3260 3261 3262 3263

	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
	rec_argv = calloc(rec_argc + 1, sizeof(char *));

3264
	if (rec_argv == NULL)
3265 3266
		return -ENOMEM;

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	for (i = 0; i < ARRAY_SIZE(record_args); i++)
		rec_argv[i] = strdup(record_args[i]);

	for (j = 1; j < (unsigned int)argc; j++, i++)
		rec_argv[i] = argv[j];

	BUG_ON(i != rec_argc);

	return cmd_record(i, rec_argv, NULL);
}

3278
int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
I
Ingo Molnar 已提交
3279
{
3280 3281 3282 3283 3284
	const char default_sort_order[] = "avg, max, switch, runtime";
	struct perf_sched sched = {
		.tool = {
			.sample		 = perf_sched__process_tracepoint_sample,
			.comm		 = perf_event__process_comm,
3285
			.namespaces	 = perf_event__process_namespaces,
3286 3287
			.lost		 = perf_event__process_lost,
			.fork		 = perf_sched__process_fork_event,
3288
			.ordered_events = true,
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
		},
		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
		.sort_order	      = default_sort_order,
		.replay_repeat	      = 10,
		.profile_cpu	      = -1,
		.next_shortname1      = 'A',
		.next_shortname2      = '0',
3299
		.skip_merge           = 0,
3300 3301
		.show_callchain	      = 1,
		.max_stack            = 5,
3302
	};
3303 3304 3305 3306 3307 3308 3309
	const struct option sched_options[] = {
	OPT_STRING('i', "input", &input_name, "file",
		    "input file name"),
	OPT_INCR('v', "verbose", &verbose,
		    "be more verbose (show symbol address, etc)"),
	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
		    "dump raw trace in ASCII"),
3310
	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3311 3312
	OPT_END()
	};
3313 3314 3315 3316 3317
	const struct option latency_options[] = {
	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
		   "sort by key(s): runtime, switch, avg, max"),
	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
		    "CPU to profile on"),
3318 3319
	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
		    "latency stats per pid instead of per comm"),
3320
	OPT_PARENT(sched_options)
3321 3322 3323 3324
	};
	const struct option replay_options[] = {
	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
		     "repeat the workload replay N times (-1: infinite)"),
3325
	OPT_PARENT(sched_options)
3326
	};
3327 3328 3329
	const struct option map_options[] = {
	OPT_BOOLEAN(0, "compact", &sched.map.comp,
		    "map output in compact mode"),
J
Jiri Olsa 已提交
3330 3331
	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
		   "highlight given pids in map"),
J
Jiri Olsa 已提交
3332 3333
	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
                    "highlight given CPUs in map"),
3334 3335
	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
                    "display given CPUs in map"),
3336
	OPT_PARENT(sched_options)
3337
	};
3338 3339 3340 3341 3342
	const struct option timehist_options[] = {
	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
		   "file", "vmlinux pathname"),
	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
		   "file", "kallsyms pathname"),
3343 3344 3345 3346
	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
		    "Display call chains if present (default on)"),
	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
		   "Maximum number of functions to display backtrace."),
3347 3348
	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
		    "Look for files with symbols relative to this directory"),
3349 3350 3351 3352
	OPT_BOOLEAN('s', "summary", &sched.summary_only,
		    "Show only syscall summary with statistics"),
	OPT_BOOLEAN('S', "with-summary", &sched.summary,
		    "Show all syscalls and summary with statistics"),
3353
	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3354
	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3355
	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3356
	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3357
	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3358 3359
	OPT_STRING(0, "time", &sched.time_str, "str",
		   "Time span for analysis (start,stop)"),
3360
	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3361 3362 3363
	OPT_PARENT(sched_options)
	};

3364 3365 3366 3367 3368 3369 3370 3371
	const char * const latency_usage[] = {
		"perf sched latency [<options>]",
		NULL
	};
	const char * const replay_usage[] = {
		"perf sched replay [<options>]",
		NULL
	};
3372 3373 3374 3375
	const char * const map_usage[] = {
		"perf sched map [<options>]",
		NULL
	};
3376 3377 3378 3379
	const char * const timehist_usage[] = {
		"perf sched timehist [<options>]",
		NULL
	};
3380
	const char *const sched_subcommands[] = { "record", "latency", "map",
3381 3382
						  "replay", "script",
						  "timehist", NULL };
3383 3384
	const char *sched_usage[] = {
		NULL,
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
		NULL
	};
	struct trace_sched_handler lat_ops  = {
		.wakeup_event	    = latency_wakeup_event,
		.switch_event	    = latency_switch_event,
		.runtime_event	    = latency_runtime_event,
		.migrate_task_event = latency_migrate_task_event,
	};
	struct trace_sched_handler map_ops  = {
		.switch_event	    = map_switch_event,
	};
	struct trace_sched_handler replay_ops  = {
		.wakeup_event	    = replay_wakeup_event,
		.switch_event	    = replay_switch_event,
		.fork_event	    = replay_fork_event,
	};
A
Adrian Hunter 已提交
3401 3402 3403 3404
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
		sched.curr_pid[i] = -1;
3405

3406 3407
	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3408 3409
	if (!argc)
		usage_with_options(sched_usage, sched_options);
I
Ingo Molnar 已提交
3410

3411
	/*
3412
	 * Aliased to 'perf script' for now:
3413
	 */
3414 3415
	if (!strcmp(argv[0], "script"))
		return cmd_script(argc, argv, prefix);
3416

3417 3418 3419
	if (!strncmp(argv[0], "rec", 3)) {
		return __cmd_record(argc, argv);
	} else if (!strncmp(argv[0], "lat", 3)) {
3420
		sched.tp_handler = &lat_ops;
3421 3422 3423 3424 3425
		if (argc > 1) {
			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
			if (argc)
				usage_with_options(latency_usage, latency_options);
		}
3426 3427
		setup_sorting(&sched, latency_options, latency_usage);
		return perf_sched__lat(&sched);
3428
	} else if (!strcmp(argv[0], "map")) {
3429
		if (argc) {
J
Jiri Olsa 已提交
3430
			argc = parse_options(argc, argv, map_options, map_usage, 0);
3431 3432 3433
			if (argc)
				usage_with_options(map_usage, map_options);
		}
3434 3435 3436
		sched.tp_handler = &map_ops;
		setup_sorting(&sched, latency_options, latency_usage);
		return perf_sched__map(&sched);
3437
	} else if (!strncmp(argv[0], "rep", 3)) {
3438
		sched.tp_handler = &replay_ops;
3439 3440 3441 3442 3443
		if (argc) {
			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
			if (argc)
				usage_with_options(replay_usage, replay_options);
		}
3444
		return perf_sched__replay(&sched);
3445 3446 3447 3448 3449 3450 3451
	} else if (!strcmp(argv[0], "timehist")) {
		if (argc) {
			argc = parse_options(argc, argv, timehist_options,
					     timehist_usage, 0);
			if (argc)
				usage_with_options(timehist_usage, timehist_options);
		}
3452 3453 3454
		if ((sched.show_wakeups || sched.show_next) &&
		    sched.summary_only) {
			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3455
			parse_options_usage(timehist_usage, timehist_options, "s", true);
3456 3457 3458 3459
			if (sched.show_wakeups)
				parse_options_usage(NULL, timehist_options, "w", true);
			if (sched.show_next)
				parse_options_usage(NULL, timehist_options, "n", true);
3460 3461 3462
			return -EINVAL;
		}

3463
		return perf_sched__timehist(&sched);
3464 3465 3466 3467
	} else {
		usage_with_options(sched_usage, sched_options);
	}

I
Ingo Molnar 已提交
3468
	return 0;
I
Ingo Molnar 已提交
3469
}