fsl_ssi.c 24.9 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13
 */

#include <linux/init.h>
14
#include <linux/io.h>
15 16 17 18
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/delay.h>
19
#include <linux/slab.h>
20 21
#include <linux/of_address.h>
#include <linux/of_irq.h>
22
#include <linux/of_platform.h>
23 24 25 26 27 28 29 30

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>

#include "fsl_ssi.h"
31
#include "imx-pcm.h"
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
#elif defined ARM
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

87 88 89 90 91 92 93
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

94 95 96 97 98 99
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
100 101
 * @first_stream: pointer to the stream that was opened first
 * @second_stream: pointer to second stream
102 103 104 105 106
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
107
 * @name: name for this device
108 109 110 111 112
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
113 114
	struct snd_pcm_substream *first_stream;
	struct snd_pcm_substream *second_stream;
115
	unsigned int fifo_depth;
116
	struct snd_soc_dai_driver cpu_dai_drv;
117
	struct device_attribute dev_attr;
118
	struct platform_device *pdev;
119

120 121 122 123 124 125
	bool new_binding;
	bool ssi_on_imx;
	struct platform_device *imx_pcm_pdev;
	struct imx_pcm_dma_params dma_params_tx;
	struct imx_pcm_dma_params dma_params_rx;

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
149 150

	char name[1];
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
177
	sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
292
		write_ssi(sisr2, &ssi->sisr);
293 294 295 296 297 298 299 300 301 302 303 304

	return ret;
}

/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
305 306
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
307 308
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
309 310 311
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
312 313 314 315 316

	/*
	 * If this is the first stream opened, then request the IRQ
	 * and initialize the SSI registers.
	 */
317
	if (!ssi_private->first_stream) {
318 319
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

320 321
		ssi_private->first_stream = substream;

322 323 324 325 326
		/*
		 * Section 16.5 of the MPC8610 reference manual says that the
		 * SSI needs to be disabled before updating the registers we set
		 * here.
		 */
327
		write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
328 329 330 331 332 333 334

		/*
		 * Program the SSI into I2S Slave Non-Network Synchronous mode.
		 * Also enable the transmit and receive FIFO.
		 *
		 * FIXME: Little-endian samples require a different shift dir
		 */
335
		write_ssi_mask(&ssi->scr,
336 337
			CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
			CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
338
			| (synchronous ? CCSR_SSI_SCR_SYN : 0));
339

340
		write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
341
			 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
342
			 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
343

344
		write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
345
			 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
346
			 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
347 348 349 350 351 352

		/*
		 * The DC and PM bits are only used if the SSI is the clock
		 * master.
		 */

353
		/* Enable the interrupts and DMA requests */
354
		write_ssi(SIER_FLAGS, &ssi->sier);
355 356 357

		/*
		 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
358 359 360 361 362 363 364 365 366 367
		 * don't use FIFO 1.  We program the transmit water to signal a
		 * DMA transfer if there are only two (or fewer) elements left
		 * in the FIFO.  Two elements equals one frame (left channel,
		 * right channel).  This value, however, depends on the depth of
		 * the transmit buffer.
		 *
		 * We program the receive FIFO to notify us if at least two
		 * elements (one frame) have been written to the FIFO.  We could
		 * make this value larger (and maybe we should), but this way
		 * data will be written to memory as soon as it's available.
368
		 */
369 370 371
		write_ssi(CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
			CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2),
			&ssi->sfcsr);
372 373 374 375 376 377 378 379 380 381

		/*
		 * We keep the SSI disabled because if we enable it, then the
		 * DMA controller will start.  It's not supposed to start until
		 * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
		 * DMA controller will transfer one "BWC" of data (i.e. the
		 * amount of data that the MR.BWC bits are set to).  The reason
		 * this is bad is because at this point, the PCM driver has not
		 * finished initializing the DMA controller.
		 */
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	} else {
		if (synchronous) {
			struct snd_pcm_runtime *first_runtime =
				ssi_private->first_stream->runtime;
			/*
			 * This is the second stream open, and we're in
			 * synchronous mode, so we need to impose sample
			 * sample size constraints. This is because STCCR is
			 * used for playback and capture in synchronous mode,
			 * so there's no way to specify different word
			 * lengths.
			 *
			 * Note that this can cause a race condition if the
			 * second stream is opened before the first stream is
			 * fully initialized.  We provide some protection by
			 * checking to make sure the first stream is
			 * initialized, but it's not perfect.  ALSA sometimes
			 * re-initializes the driver with a different sample
			 * rate or size.  If the second stream is opened
			 * before the first stream has received its final
			 * parameters, then the second stream may be
			 * constrained to the wrong sample rate or size.
			 */
			if (!first_runtime->sample_bits) {
				dev_err(substream->pcm->card->dev,
					"set sample size in %s stream first\n",
					substream->stream ==
					SNDRV_PCM_STREAM_PLAYBACK
					? "capture" : "playback");
				return -EAGAIN;
			}
413

414 415 416 417
			snd_pcm_hw_constraint_minmax(substream->runtime,
				SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
				first_runtime->sample_bits,
				first_runtime->sample_bits);
418
		}
419 420 421 422

		ssi_private->second_stream = substream;
	}

423 424 425 426 427 428
	if (ssi_private->ssi_on_imx)
		snd_soc_dai_set_dma_data(dai, substream,
			(substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
				&ssi_private->dma_params_tx :
				&ssi_private->dma_params_rx);

429 430 431 432
	return 0;
}

/**
433
 * fsl_ssi_hw_params - program the sample size
434 435 436 437 438 439 440 441 442 443 444
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
445 446
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
447
{
448
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
449 450 451 452
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
453
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
454

455 456 457 458 459 460
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
461

462 463 464 465 466 467 468 469 470
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
471

472 473 474
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
475
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
476
	else
477
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
478 479 480 481 482 483 484 485 486 487 488 489 490

	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
491 492
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
493 494
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
495
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
496 497 498 499 500
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
501
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
502
			write_ssi_mask(&ssi->scr, 0,
503
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
504
		else
505
			write_ssi_mask(&ssi->scr, 0,
506
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
507 508 509 510 511
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
512
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
513
		else
514
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
515 516 517 518 519 520 521 522 523 524 525 526 527 528
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 * Shutdown the SSI if there are no other substreams open.
 */
529 530
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
531 532
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
533
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
534

535 536 537 538 539
	if (ssi_private->first_stream == substream)
		ssi_private->first_stream = ssi_private->second_stream;

	ssi_private->second_stream = NULL;

540
	/*
541
	 * If this is the last active substream, disable the SSI.
542
	 */
543
	if (!ssi_private->first_stream) {
544 545
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

546
		write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
547 548 549
	}
}

550
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
551 552 553 554 555 556
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_trigger,
};

557 558
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
559 560 561 562 563 564 565 566 567 568 569 570 571
	.playback = {
		/* The SSI does not support monaural audio. */
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
572
	.ops = &fsl_ssi_dai_ops,
573 574
};

575 576 577 578 579 580 581 582 583 584 585 586
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
			length += sprintf(buf + length, #name "=%u\n", \
				ssi_private->stats.name); \
	} while (0)


587 588 589
/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
590 591
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
592 593 594 595 596
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
		container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length = 0;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);
621 622 623 624 625

	return length;
}

/**
626
 * Make every character in a string lower-case
627
 */
628 629 630 631 632 633 634 635 636 637 638 639
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

640
static int __devinit fsl_ssi_probe(struct platform_device *pdev)
641 642 643
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
644
	struct device_attribute *dev_attr = NULL;
645
	struct device_node *np = pdev->dev.of_node;
646
	const char *p, *sprop;
647
	const uint32_t *iprop;
648 649
	struct resource res;
	char name[64];
650

651 652 653
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
654
	 */
655
	if (!of_device_is_available(np))
656 657 658 659 660
		return -ENODEV;

	/* We only support the SSI in "I2S Slave" mode */
	sprop = of_get_property(np, "fsl,mode", NULL);
	if (!sprop || strcmp(sprop, "i2s-slave")) {
661
		dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
662 663 664 665 666 667 668
		return -ENODEV;
	}

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
	ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
			      GFP_KERNEL);
669
	if (!ssi_private) {
670
		dev_err(&pdev->dev, "could not allocate DAI object\n");
671
		return -ENOMEM;
672 673
	}

674
	strcpy(ssi_private->name, p);
675

676 677 678 679 680 681 682 683
	/* Initialize this copy of the CPU DAI driver structure */
	memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
	       sizeof(fsl_ssi_dai_template));
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
684
		dev_err(&pdev->dev, "could not determine device resources\n");
685
		goto error_kmalloc;
686
	}
687 688 689
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
690 691
		ret = -ENOMEM;
		goto error_kmalloc;
692
	}
693
	ssi_private->ssi_phys = res.start;
694

695
	ssi_private->irq = irq_of_parse_and_map(np, 0);
696 697 698 699 700 701 702 703 704 705 706 707 708
	if (ssi_private->irq == NO_IRQ) {
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
		ret = -ENXIO;
		goto error_iomap;
	}

	/* The 'name' should not have any slashes in it. */
	ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
			  ssi_private);
	if (ret < 0) {
		dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
		goto error_irqmap;
	}
709

710
	/* Are the RX and the TX clocks locked? */
711
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
712
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
713

714 715 716
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
717
		ssi_private->fifo_depth = be32_to_cpup(iprop);
718 719 720 721
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
		u32 dma_events[2];
		ssi_private->ssi_on_imx = true;
		/*
		 * We have burstsize be "fifo_depth - 2" to match the SSI
		 * watermark setting in fsl_ssi_startup().
		 */
		ssi_private->dma_params_tx.burstsize =
			ssi_private->fifo_depth - 2;
		ssi_private->dma_params_rx.burstsize =
			ssi_private->fifo_depth - 2;
		ssi_private->dma_params_tx.dma_addr =
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
		ssi_private->dma_params_rx.dma_addr =
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
		/*
		 * TODO: This is a temporary solution and should be changed
		 * to use generic DMA binding later when the helplers get in.
		 */
		ret = of_property_read_u32_array(pdev->dev.of_node,
					"fsl,ssi-dma-events", dma_events, 2);
		if (ret) {
			dev_err(&pdev->dev, "could not get dma events\n");
			goto error_irq;
		}
		ssi_private->dma_params_tx.dma = dma_events[0];
		ssi_private->dma_params_rx.dma = dma_events[1];
749 750 751 752 753 754

		ssi_private->dma_params_tx.shared_peripheral =
				of_device_is_compatible(of_get_parent(np),
							"fsl,spba-bus");
		ssi_private->dma_params_rx.shared_peripheral =
				ssi_private->dma_params_tx.shared_peripheral;
755 756
	}

757
	/* Initialize the the device_attribute structure */
758
	dev_attr = &ssi_private->dev_attr;
759
	sysfs_attr_init(&dev_attr->attr);
760
	dev_attr->attr.name = "statistics";
761 762 763
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

764
	ret = device_create_file(&pdev->dev, dev_attr);
765
	if (ret) {
766
		dev_err(&pdev->dev, "could not create sysfs %s file\n",
767
			ssi_private->dev_attr.attr.name);
768
		goto error_irq;
769 770
	}

771
	/* Register with ASoC */
772
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
773

774
	ret = snd_soc_register_dai(&pdev->dev, &ssi_private->cpu_dai_drv);
775
	if (ret) {
776
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
777
		goto error_dev;
778 779
	}

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	if (ssi_private->ssi_on_imx) {
		ssi_private->imx_pcm_pdev =
			platform_device_register_simple("imx-pcm-audio",
							-1, NULL, 0);
		if (IS_ERR(ssi_private->imx_pcm_pdev)) {
			ret = PTR_ERR(ssi_private->imx_pcm_pdev);
			goto error_dev;
		}
	}

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
	if (!of_get_property(np, "codec-handle", NULL)) {
		ssi_private->new_binding = true;
		goto done;
	}

800
	/* Trigger the machine driver's probe function.  The platform driver
801
	 * name of the machine driver is taken from /compatible property of the
802 803 804
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
805 806
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
807 808 809 810 811 812 813
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
814
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
815 816
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
817
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
818
		goto error_dai;
M
Mark Brown 已提交
819
	}
820

821
done:
822
	return 0;
823

824
error_dai:
825 826
	if (ssi_private->ssi_on_imx)
		platform_device_unregister(ssi_private->imx_pcm_pdev);
827
	snd_soc_unregister_dai(&pdev->dev);
828 829

error_dev:
830
	dev_set_drvdata(&pdev->dev, NULL);
831 832 833 834 835 836
	device_remove_file(&pdev->dev, dev_attr);

error_irq:
	free_irq(ssi_private->irq, ssi_private);

error_irqmap:
837
	irq_dispose_mapping(ssi_private->irq);
838 839

error_iomap:
840
	iounmap(ssi_private->ssi);
841 842

error_kmalloc:
843 844 845
	kfree(ssi_private);

	return ret;
846 847
}

848
static int fsl_ssi_remove(struct platform_device *pdev)
849
{
850
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
851

852 853 854 855
	if (!ssi_private->new_binding)
		platform_device_unregister(ssi_private->pdev);
	if (ssi_private->ssi_on_imx)
		platform_device_unregister(ssi_private->imx_pcm_pdev);
856 857
	snd_soc_unregister_dai(&pdev->dev);
	device_remove_file(&pdev->dev, &ssi_private->dev_attr);
M
Mark Brown 已提交
858

859 860 861
	free_irq(ssi_private->irq, ssi_private);
	irq_dispose_mapping(ssi_private->irq);

862
	kfree(ssi_private);
863
	dev_set_drvdata(&pdev->dev, NULL);
864 865

	return 0;
866
}
867 868 869

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", },
870
	{ .compatible = "fsl,imx21-ssi", },
871 872 873 874
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

875
static struct platform_driver fsl_ssi_driver = {
876 877 878 879 880 881 882 883
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
884

885
module_platform_driver(fsl_ssi_driver);
886

887 888
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
889
MODULE_LICENSE("GPL v2");