adv7604.c 86.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * adv7604 - Analog Devices ADV7604 video decoder driver
 *
 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 *
 * This program is free software; you may redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

/*
 * References (c = chapter, p = page):
 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
 *		Revision 2.5, June 2010
 * REF_02 - Analog devices, Register map documentation, Documentation of
 *		the register maps, Software manual, Rev. F, June 2010
 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
 */

30
#include <linux/delay.h>
31
#include <linux/gpio/consumer.h>
32
#include <linux/i2c.h>
33 34 35
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
36
#include <linux/v4l2-dv-timings.h>
37 38
#include <linux/videodev2.h>
#include <linux/workqueue.h>
39 40

#include <media/adv7604.h>
41
#include <media/v4l2-ctrls.h>
42
#include <media/v4l2-device.h>
43
#include <media/v4l2-dv-timings.h>
44
#include <media/v4l2-of.h>
45 46 47 48 49 50 51 52 53 54 55

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");

MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
MODULE_LICENSE("GPL");

/* ADV7604 system clock frequency */
56
#define ADV76XX_FSC (28636360)
57

58
#define ADV76XX_RGB_OUT					(1 << 1)
59

60
#define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
61
#define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
62
#define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
63

64
#define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
65
#define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
66
#define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
67
#define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
68
#define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
69 70
#define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)

71 72 73 74 75 76
#define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
#define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
#define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
#define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
#define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
#define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
77

78
#define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
79

80
enum adv76xx_type {
81 82 83 84
	ADV7604,
	ADV7611,
};

85
struct adv76xx_reg_seq {
86 87 88 89
	unsigned int reg;
	u8 val;
};

90
struct adv76xx_format_info {
91
	u32 code;
92 93 94 95 96 97
	u8 op_ch_sel;
	bool rgb_out;
	bool swap_cb_cr;
	u8 op_format_sel;
};

98 99
struct adv76xx_chip_info {
	enum adv76xx_type type;
100 101 102 103 104 105 106 107 108 109 110 111

	bool has_afe;
	unsigned int max_port;
	unsigned int num_dv_ports;

	unsigned int edid_enable_reg;
	unsigned int edid_status_reg;
	unsigned int lcf_reg;

	unsigned int cable_det_mask;
	unsigned int tdms_lock_mask;
	unsigned int fmt_change_digital_mask;
112
	unsigned int cp_csc;
113

114
	const struct adv76xx_format_info *formats;
115 116
	unsigned int nformats;

117 118 119 120 121 122
	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
	void (*setup_irqs)(struct v4l2_subdev *sd);
	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);

	/* 0 = AFE, 1 = HDMI */
123
	const struct adv76xx_reg_seq *recommended_settings[2];
124 125 126 127 128
	unsigned int num_recommended_settings[2];

	unsigned long page_mask;
};

129 130 131 132 133 134 135
/*
 **********************************************************************
 *
 *  Arrays with configuration parameters for the ADV7604
 *
 **********************************************************************
 */
136

137 138 139
struct adv76xx_state {
	const struct adv76xx_chip_info *info;
	struct adv76xx_platform_data pdata;
140

141 142
	struct gpio_desc *hpd_gpio[4];

143
	struct v4l2_subdev sd;
144
	struct media_pad pads[ADV76XX_PAD_MAX];
145
	unsigned int source_pad;
146

147
	struct v4l2_ctrl_handler hdl;
148

149
	enum adv76xx_pad selected_input;
150

151
	struct v4l2_dv_timings timings;
152
	const struct adv76xx_format_info *format;
153

154 155 156 157 158
	struct {
		u8 edid[256];
		u32 present;
		unsigned blocks;
	} edid;
159
	u16 spa_port_a[2];
160 161 162 163
	struct v4l2_fract aspect_ratio;
	u32 rgb_quantization_range;
	struct workqueue_struct *work_queues;
	struct delayed_work delayed_work_enable_hotplug;
164
	bool restart_stdi_once;
165 166

	/* i2c clients */
167
	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
168 169 170 171 172 173 174 175 176

	/* controls */
	struct v4l2_ctrl *detect_tx_5v_ctrl;
	struct v4l2_ctrl *analog_sampling_phase_ctrl;
	struct v4l2_ctrl *free_run_color_manual_ctrl;
	struct v4l2_ctrl *free_run_color_ctrl;
	struct v4l2_ctrl *rgb_quantization_range_ctrl;
};

177
static bool adv76xx_has_afe(struct adv76xx_state *state)
178 179 180 181
{
	return state->info->has_afe;
}

182
/* Supported CEA and DMT timings */
183
static const struct v4l2_dv_timings adv76xx_timings[] = {
184 185 186 187 188 189 190 191 192 193 194 195
	V4L2_DV_BT_CEA_720X480P59_94,
	V4L2_DV_BT_CEA_720X576P50,
	V4L2_DV_BT_CEA_1280X720P24,
	V4L2_DV_BT_CEA_1280X720P25,
	V4L2_DV_BT_CEA_1280X720P50,
	V4L2_DV_BT_CEA_1280X720P60,
	V4L2_DV_BT_CEA_1920X1080P24,
	V4L2_DV_BT_CEA_1920X1080P25,
	V4L2_DV_BT_CEA_1920X1080P30,
	V4L2_DV_BT_CEA_1920X1080P50,
	V4L2_DV_BT_CEA_1920X1080P60,

196
	/* sorted by DMT ID */
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	V4L2_DV_BT_DMT_640X350P85,
	V4L2_DV_BT_DMT_640X400P85,
	V4L2_DV_BT_DMT_720X400P85,
	V4L2_DV_BT_DMT_640X480P60,
	V4L2_DV_BT_DMT_640X480P72,
	V4L2_DV_BT_DMT_640X480P75,
	V4L2_DV_BT_DMT_640X480P85,
	V4L2_DV_BT_DMT_800X600P56,
	V4L2_DV_BT_DMT_800X600P60,
	V4L2_DV_BT_DMT_800X600P72,
	V4L2_DV_BT_DMT_800X600P75,
	V4L2_DV_BT_DMT_800X600P85,
	V4L2_DV_BT_DMT_848X480P60,
	V4L2_DV_BT_DMT_1024X768P60,
	V4L2_DV_BT_DMT_1024X768P70,
	V4L2_DV_BT_DMT_1024X768P75,
	V4L2_DV_BT_DMT_1024X768P85,
	V4L2_DV_BT_DMT_1152X864P75,
	V4L2_DV_BT_DMT_1280X768P60_RB,
	V4L2_DV_BT_DMT_1280X768P60,
	V4L2_DV_BT_DMT_1280X768P75,
	V4L2_DV_BT_DMT_1280X768P85,
	V4L2_DV_BT_DMT_1280X800P60_RB,
	V4L2_DV_BT_DMT_1280X800P60,
	V4L2_DV_BT_DMT_1280X800P75,
	V4L2_DV_BT_DMT_1280X800P85,
	V4L2_DV_BT_DMT_1280X960P60,
	V4L2_DV_BT_DMT_1280X960P85,
	V4L2_DV_BT_DMT_1280X1024P60,
	V4L2_DV_BT_DMT_1280X1024P75,
	V4L2_DV_BT_DMT_1280X1024P85,
	V4L2_DV_BT_DMT_1360X768P60,
	V4L2_DV_BT_DMT_1400X1050P60_RB,
	V4L2_DV_BT_DMT_1400X1050P60,
	V4L2_DV_BT_DMT_1400X1050P75,
	V4L2_DV_BT_DMT_1400X1050P85,
	V4L2_DV_BT_DMT_1440X900P60_RB,
	V4L2_DV_BT_DMT_1440X900P60,
	V4L2_DV_BT_DMT_1600X1200P60,
	V4L2_DV_BT_DMT_1680X1050P60_RB,
	V4L2_DV_BT_DMT_1680X1050P60,
	V4L2_DV_BT_DMT_1792X1344P60,
	V4L2_DV_BT_DMT_1856X1392P60,
	V4L2_DV_BT_DMT_1920X1200P60_RB,
241
	V4L2_DV_BT_DMT_1366X768P60_RB,
242 243 244 245 246
	V4L2_DV_BT_DMT_1366X768P60,
	V4L2_DV_BT_DMT_1920X1080P60,
	{ },
};

247
struct adv76xx_video_standards {
248 249 250 251 252 253
	struct v4l2_dv_timings timings;
	u8 vid_std;
	u8 v_freq;
};

/* sorted by number of lines */
254
static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
255 256 257 258 259 260 261 262 263 264 265 266 267 268
	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	/* TODO add 1920x1080P60_RB (CVT timing) */
	{ },
};

/* sorted by number of lines */
269
static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
	/* TODO add 1600X1200P60_RB (not a DMT timing) */
	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
	{ },
};

/* sorted by number of lines */
297
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
298 299 300 301 302 303 304 305 306 307 308 309 310
	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	{ },
};

/* sorted by number of lines */
311
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ },
};

330 331
/* ----------------------------------------------------------------------- */

332
static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
333
{
334
	return container_of(sd, struct adv76xx_state, sd);
335 336 337 338
}

static inline unsigned htotal(const struct v4l2_bt_timings *t)
{
339
	return V4L2_DV_BT_FRAME_WIDTH(t);
340 341 342 343
}

static inline unsigned vtotal(const struct v4l2_bt_timings *t)
{
344
	return V4L2_DV_BT_FRAME_HEIGHT(t);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
}

/* ----------------------------------------------------------------------- */

static s32 adv_smbus_read_byte_data_check(struct i2c_client *client,
		u8 command, bool check)
{
	union i2c_smbus_data data;

	if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags,
			I2C_SMBUS_READ, command,
			I2C_SMBUS_BYTE_DATA, &data))
		return data.byte;
	if (check)
		v4l_err(client, "error reading %02x, %02x\n",
				client->addr, command);
	return -EIO;
}

364 365
static s32 adv_smbus_read_byte_data(struct adv76xx_state *state,
				    enum adv76xx_page page, u8 command)
366
{
367 368
	return adv_smbus_read_byte_data_check(state->i2c_clients[page],
					      command, true);
369 370
}

371 372
static s32 adv_smbus_write_byte_data(struct adv76xx_state *state,
				     enum adv76xx_page page, u8 command,
373
				     u8 value)
374
{
375
	struct i2c_client *client = state->i2c_clients[page];
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	union i2c_smbus_data data;
	int err;
	int i;

	data.byte = value;
	for (i = 0; i < 3; i++) {
		err = i2c_smbus_xfer(client->adapter, client->addr,
				client->flags,
				I2C_SMBUS_WRITE, command,
				I2C_SMBUS_BYTE_DATA, &data);
		if (!err)
			break;
	}
	if (err < 0)
		v4l_err(client, "error writing %02x, %02x, %02x\n",
				client->addr, command, value);
	return err;
}

395 396
static s32 adv_smbus_write_i2c_block_data(struct adv76xx_state *state,
					  enum adv76xx_page page, u8 command,
397
					  unsigned length, const u8 *values)
398
{
399
	struct i2c_client *client = state->i2c_clients[page];
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	union i2c_smbus_data data;

	if (length > I2C_SMBUS_BLOCK_MAX)
		length = I2C_SMBUS_BLOCK_MAX;
	data.block[0] = length;
	memcpy(data.block + 1, values, length);
	return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
			      I2C_SMBUS_WRITE, command,
			      I2C_SMBUS_I2C_BLOCK_DATA, &data);
}

/* ----------------------------------------------------------------------- */

static inline int io_read(struct v4l2_subdev *sd, u8 reg)
{
415
	struct adv76xx_state *state = to_state(sd);
416

417
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_IO, reg);
418 419 420 421
}

static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
422
	struct adv76xx_state *state = to_state(sd);
423

424
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_IO, reg, val);
425 426
}

427
static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
428
{
429
	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
430 431 432 433
}

static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
{
434
	struct adv76xx_state *state = to_state(sd);
435

436
	return adv_smbus_read_byte_data(state, ADV7604_PAGE_AVLINK, reg);
437 438 439 440
}

static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
441
	struct adv76xx_state *state = to_state(sd);
442

443
	return adv_smbus_write_byte_data(state, ADV7604_PAGE_AVLINK, reg, val);
444 445 446 447
}

static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
{
448
	struct adv76xx_state *state = to_state(sd);
449

450
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_CEC, reg);
451 452 453 454
}

static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
455
	struct adv76xx_state *state = to_state(sd);
456

457
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_CEC, reg, val);
458 459 460 461
}

static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
{
462
	struct adv76xx_state *state = to_state(sd);
463

464
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_INFOFRAME, reg);
465 466 467 468
}

static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
469
	struct adv76xx_state *state = to_state(sd);
470

471
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_INFOFRAME,
472
					 reg, val);
473 474 475 476
}

static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
{
477
	struct adv76xx_state *state = to_state(sd);
478

479
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_AFE, reg);
480 481 482 483
}

static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
484
	struct adv76xx_state *state = to_state(sd);
485

486
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_AFE, reg, val);
487 488 489 490
}

static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
{
491
	struct adv76xx_state *state = to_state(sd);
492

493
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_REP, reg);
494 495 496 497
}

static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
498
	struct adv76xx_state *state = to_state(sd);
499

500
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_REP, reg, val);
501 502
}

503
static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
504
{
505
	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
506 507 508 509
}

static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
{
510
	struct adv76xx_state *state = to_state(sd);
511

512
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_EDID, reg);
513 514 515 516
}

static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
517
	struct adv76xx_state *state = to_state(sd);
518

519
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_EDID, reg, val);
520 521 522 523 524
}

static inline int edid_write_block(struct v4l2_subdev *sd,
					unsigned len, const u8 *val)
{
525
	struct adv76xx_state *state = to_state(sd);
526 527 528 529 530 531
	int err = 0;
	int i;

	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", __func__, len);

	for (i = 0; !err && i < len; i += I2C_SMBUS_BLOCK_MAX)
532
		err = adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_EDID,
533
				i, I2C_SMBUS_BLOCK_MAX, val + i);
534 535
	return err;
}
536

537
static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
538 539 540 541 542 543 544 545 546 547
{
	unsigned int i;

	for (i = 0; i < state->info->num_dv_ports; ++i) {
		if (IS_ERR(state->hpd_gpio[i]))
			continue;

		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
	}

548
	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
549 550
}

551
static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
552 553
{
	struct delayed_work *dwork = to_delayed_work(work);
554
	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
555 556
						delayed_work_enable_hotplug);
	struct v4l2_subdev *sd = &state->sd;
557

558
	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
559

560
	adv76xx_set_hpd(state, state->edid.present);
561 562 563 564
}

static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
{
565
	struct adv76xx_state *state = to_state(sd);
566

567
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_HDMI, reg);
568 569
}

570 571 572 573 574
static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
}

575 576
static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
577
	struct adv76xx_state *state = to_state(sd);
578

579
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_HDMI, reg, val);
580 581
}

582
static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
583
{
584
	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
585 586
}

587 588
static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
589
	struct adv76xx_state *state = to_state(sd);
590

591
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_TEST, reg, val);
592 593 594 595
}

static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
{
596
	struct adv76xx_state *state = to_state(sd);
597

598
	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_CP, reg);
599 600
}

601 602 603 604 605
static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
}

606 607
static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
608
	struct adv76xx_state *state = to_state(sd);
609

610
	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_CP, reg, val);
611 612
}

613
static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
614
{
615
	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
616 617 618 619
}

static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
{
620
	struct adv76xx_state *state = to_state(sd);
621

622
	return adv_smbus_read_byte_data(state, ADV7604_PAGE_VDP, reg);
623 624 625 626
}

static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
627
	struct adv76xx_state *state = to_state(sd);
628

629 630
	return adv_smbus_write_byte_data(state, ADV7604_PAGE_VDP, reg, val);
}
631

632 633
#define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
#define ADV76XX_REG_SEQ_TERM		0xffff
634 635

#ifdef CONFIG_VIDEO_ADV_DEBUG
636
static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
637
{
638
	struct adv76xx_state *state = to_state(sd);
639 640 641 642 643 644 645
	unsigned int page = reg >> 8;

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;

646
	return adv_smbus_read_byte_data(state, page, reg);
647 648 649
}
#endif

650
static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
651
{
652
	struct adv76xx_state *state = to_state(sd);
653 654 655 656 657 658 659
	unsigned int page = reg >> 8;

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;

660
	return adv_smbus_write_byte_data(state, page, reg, val);
661 662
}

663 664
static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
				  const struct adv76xx_reg_seq *reg_seq)
665 666 667
{
	unsigned int i;

668 669
	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
670 671
}

672 673 674 675
/* -----------------------------------------------------------------------------
 * Format helpers
 */

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
static const struct adv76xx_format_info adv7604_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
715 716
};

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
static const struct adv76xx_format_info adv7611_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
744 745
};

746 747
static const struct adv76xx_format_info *
adv76xx_format_info(struct adv76xx_state *state, u32 code)
748 749 750 751 752 753 754 755 756 757 758
{
	unsigned int i;

	for (i = 0; i < state->info->nformats; ++i) {
		if (state->info->formats[i].code == code)
			return &state->info->formats[i];
	}

	return NULL;
}

759 760
/* ----------------------------------------------------------------------- */

761 762
static inline bool is_analog_input(struct v4l2_subdev *sd)
{
763
	struct adv76xx_state *state = to_state(sd);
764

765 766
	return state->selected_input == ADV7604_PAD_VGA_RGB ||
	       state->selected_input == ADV7604_PAD_VGA_COMP;
767 768 769 770
}

static inline bool is_digital_input(struct v4l2_subdev *sd)
{
771
	struct adv76xx_state *state = to_state(sd);
772

773
	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
774 775 776
	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
777 778 779 780
}

/* ----------------------------------------------------------------------- */

781
#ifdef CONFIG_VIDEO_ADV_DEBUG
782
static void adv76xx_inv_register(struct v4l2_subdev *sd)
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
{
	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
}

799
static int adv76xx_g_register(struct v4l2_subdev *sd,
800 801
					struct v4l2_dbg_register *reg)
{
802 803
	int ret;

804
	ret = adv76xx_read_reg(sd, reg->reg);
805
	if (ret < 0) {
806
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
807
		adv76xx_inv_register(sd);
808
		return ret;
809
	}
810 811 812 813

	reg->size = 1;
	reg->val = ret;

814 815 816
	return 0;
}

817
static int adv76xx_s_register(struct v4l2_subdev *sd,
818
					const struct v4l2_dbg_register *reg)
819
{
820
	int ret;
821

822
	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
823
	if (ret < 0) {
824
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
825
		adv76xx_inv_register(sd);
826
		return ret;
827
	}
828

829 830 831 832
	return 0;
}
#endif

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return ((value & 0x10) >> 4)
	     | ((value & 0x08) >> 2)
	     | ((value & 0x04) << 0)
	     | ((value & 0x02) << 2);
}

static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

850
static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
851
{
852 853
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
854 855

	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
856
				info->read_cable_det(sd));
857 858
}

859 860
static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
		u8 prim_mode,
861
		const struct adv76xx_video_standards *predef_vid_timings,
862 863 864 865 866
		const struct v4l2_dv_timings *timings)
{
	int i;

	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
867
		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
868
					is_digital_input(sd) ? 250000 : 1000000))
869 870 871 872 873 874 875 876 877 878 879 880
			continue;
		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
				prim_mode); /* v_freq and prim mode */
		return 0;
	}

	return -1;
}

static int configure_predefined_video_timings(struct v4l2_subdev *sd,
		struct v4l2_dv_timings *timings)
881
{
882
	struct adv76xx_state *state = to_state(sd);
883 884 885 886
	int err;

	v4l2_dbg(1, debug, sd, "%s", __func__);

887
	if (adv76xx_has_afe(state)) {
888 889 890 891
		/* reset to default values */
		io_write(sd, 0x16, 0x43);
		io_write(sd, 0x17, 0x5a);
	}
892
	/* disable embedded syncs for auto graphics mode */
893
	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
894 895 896 897 898 899 900 901 902 903 904
	cp_write(sd, 0x8f, 0x00);
	cp_write(sd, 0x90, 0x00);
	cp_write(sd, 0xa2, 0x00);
	cp_write(sd, 0xa3, 0x00);
	cp_write(sd, 0xa4, 0x00);
	cp_write(sd, 0xa5, 0x00);
	cp_write(sd, 0xa6, 0x00);
	cp_write(sd, 0xa7, 0x00);
	cp_write(sd, 0xab, 0x00);
	cp_write(sd, 0xac, 0x00);

905
	if (is_analog_input(sd)) {
906 907 908 909 910
		err = find_and_set_predefined_video_timings(sd,
				0x01, adv7604_prim_mode_comp, timings);
		if (err)
			err = find_and_set_predefined_video_timings(sd,
					0x02, adv7604_prim_mode_gr, timings);
911
	} else if (is_digital_input(sd)) {
912
		err = find_and_set_predefined_video_timings(sd,
913
				0x05, adv76xx_prim_mode_hdmi_comp, timings);
914 915
		if (err)
			err = find_and_set_predefined_video_timings(sd,
916
					0x06, adv76xx_prim_mode_hdmi_gr, timings);
917 918 919
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
920 921 922 923 924 925 926 927 928 929
		err = -1;
	}


	return err;
}

static void configure_custom_video_timings(struct v4l2_subdev *sd,
		const struct v4l2_bt_timings *bt)
{
930
	struct adv76xx_state *state = to_state(sd);
931 932 933 934 935 936 937
	u32 width = htotal(bt);
	u32 height = vtotal(bt);
	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
	u16 cp_start_eav = width - bt->hfrontporch;
	u16 cp_start_vbi = height - bt->vfrontporch;
	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
938
		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
939 940 941 942
	const u8 pll[2] = {
		0xc0 | ((width >> 8) & 0x1f),
		width & 0xff
	};
943 944 945

	v4l2_dbg(2, debug, sd, "%s\n", __func__);

946
	if (is_analog_input(sd)) {
947 948 949 950
		/* auto graphics */
		io_write(sd, 0x00, 0x07); /* video std */
		io_write(sd, 0x01, 0x02); /* prim mode */
		/* enable embedded syncs for auto graphics mode */
951
		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
952

953
		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
954 955
		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
956
		if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_IO,
957
						   0x16, 2, pll))
958 959 960 961
			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");

		/* active video - horizontal timing */
		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
962
		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
963
				   ((cp_start_eav >> 8) & 0x0f));
964 965 966 967
		cp_write(sd, 0xa4, cp_start_eav & 0xff);

		/* active video - vertical timing */
		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
968
		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
969
				   ((cp_end_vbi >> 8) & 0xf));
970
		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
971
	} else if (is_digital_input(sd)) {
972
		/* set default prim_mode/vid_std for HDMI
973
		   according to [REF_03, c. 4.2] */
974 975
		io_write(sd, 0x00, 0x02); /* video std */
		io_write(sd, 0x01, 0x06); /* prim mode */
976 977 978
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
979 980
	}

981 982 983 984 985
	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
	cp_write(sd, 0xab, (height >> 4) & 0xff);
	cp_write(sd, 0xac, (height & 0x0f) << 4);
}
986

987
static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
988
{
989
	struct adv76xx_state *state = to_state(sd);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	u8 offset_buf[4];

	if (auto_offset) {
		offset_a = 0x3ff;
		offset_b = 0x3ff;
		offset_c = 0x3ff;
	}

	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_offset ? "Auto" : "Manual",
			offset_a, offset_b, offset_c);

	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
	offset_buf[3] = offset_c & 0x0ff;

	/* Registers must be written in this order with no i2c access in between */
1008
	if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_CP,
1009
					   0x77, 4, offset_buf))
1010 1011 1012
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
}

1013
static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1014
{
1015
	struct adv76xx_state *state = to_state(sd);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	u8 gain_buf[4];
	u8 gain_man = 1;
	u8 agc_mode_man = 1;

	if (auto_gain) {
		gain_man = 0;
		agc_mode_man = 0;
		gain_a = 0x100;
		gain_b = 0x100;
		gain_c = 0x100;
	}

	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_gain ? "Auto" : "Manual",
			gain_a, gain_b, gain_c);

	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
	gain_buf[3] = ((gain_c & 0x0ff));

	/* Registers must be written in this order with no i2c access in between */
1038
	if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_CP,
1039
					   0x73, 4, gain_buf))
1040 1041 1042
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
}

1043 1044
static void set_rgb_quantization_range(struct v4l2_subdev *sd)
{
1045
	struct adv76xx_state *state = to_state(sd);
1046 1047 1048 1049 1050 1051
	bool rgb_output = io_read(sd, 0x02) & 0x02;
	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;

	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
			__func__, state->rgb_quantization_range,
			rgb_output, hdmi_signal);
1052

1053 1054
	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1055

1056 1057
	switch (state->rgb_quantization_range) {
	case V4L2_DV_RGB_RANGE_AUTO:
1058
		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1059 1060
			/* Receiving analog RGB signal
			 * Set RGB full range (0-255) */
1061
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1062 1063 1064
			break;
		}

1065
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1066 1067
			/* Receiving analog YPbPr signal
			 * Set automode */
1068
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1069 1070 1071
			break;
		}

1072
		if (hdmi_signal) {
1073 1074
			/* Receiving HDMI signal
			 * Set automode */
1075
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1076 1077 1078 1079 1080 1081 1082 1083
			break;
		}

		/* Receiving DVI-D signal
		 * ADV7604 selects RGB limited range regardless of
		 * input format (CE/IT) in automatic mode */
		if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861) {
			/* RGB limited range (16-235) */
1084
			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1085 1086
		} else {
			/* RGB full range (0-255) */
1087
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1088 1089

			if (is_digital_input(sd) && rgb_output) {
1090
				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1091
			} else {
1092 1093
				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1094
			}
1095 1096 1097
		}
		break;
	case V4L2_DV_RGB_RANGE_LIMITED:
1098
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1099
			/* YCrCb limited range (16-235) */
1100
			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1101
			break;
1102
		}
1103 1104

		/* RGB limited range (16-235) */
1105
		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1106

1107 1108
		break;
	case V4L2_DV_RGB_RANGE_FULL:
1109
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1110
			/* YCrCb full range (0-255) */
1111
			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1112 1113 1114 1115
			break;
		}

		/* RGB full range (0-255) */
1116
		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1117 1118 1119 1120 1121 1122

		if (is_analog_input(sd) || hdmi_signal)
			break;

		/* Adjust gain/offset for DVI-D signals only */
		if (rgb_output) {
1123
			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1124
		} else {
1125 1126
			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1127
		}
1128 1129 1130 1131
		break;
	}
}

1132
static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1133
{
1134
	struct v4l2_subdev *sd =
1135
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1136

1137
	struct adv76xx_state *state = to_state(sd);
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		cp_write(sd, 0x3c, ctrl->val);
		return 0;
	case V4L2_CID_CONTRAST:
		cp_write(sd, 0x3a, ctrl->val);
		return 0;
	case V4L2_CID_SATURATION:
		cp_write(sd, 0x3b, ctrl->val);
		return 0;
	case V4L2_CID_HUE:
		cp_write(sd, 0x3d, ctrl->val);
		return 0;
	case  V4L2_CID_DV_RX_RGB_RANGE:
		state->rgb_quantization_range = ctrl->val;
		set_rgb_quantization_range(sd);
		return 0;
	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1157
		if (!adv76xx_has_afe(state))
1158
			return -EINVAL;
1159 1160 1161 1162 1163 1164 1165 1166 1167
		/* Set the analog sampling phase. This is needed to find the
		   best sampling phase for analog video: an application or
		   driver has to try a number of phases and analyze the picture
		   quality before settling on the best performing phase. */
		afe_write(sd, 0xc8, ctrl->val);
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
		/* Use the default blue color for free running mode,
		   or supply your own. */
1168
		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
		return 0;
	}
	return -EINVAL;
}

/* ----------------------------------------------------------------------- */

static inline bool no_power(struct v4l2_subdev *sd)
{
	/* Entire chip or CP powered off */
	return io_read(sd, 0x0c) & 0x24;
}

static inline bool no_signal_tmds(struct v4l2_subdev *sd)
{
1189
	struct adv76xx_state *state = to_state(sd);
1190 1191

	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1192 1193 1194 1195
}

static inline bool no_lock_tmds(struct v4l2_subdev *sd)
{
1196 1197
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1198 1199

	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1200 1201
}

1202 1203 1204 1205 1206
static inline bool is_hdmi(struct v4l2_subdev *sd)
{
	return hdmi_read(sd, 0x05) & 0x80;
}

1207 1208
static inline bool no_lock_sspd(struct v4l2_subdev *sd)
{
1209
	struct adv76xx_state *state = to_state(sd);
1210 1211 1212 1213 1214

	/*
	 * Chips without a AFE don't expose registers for the SSPD, so just assume
	 * that we have a lock.
	 */
1215
	if (adv76xx_has_afe(state))
1216 1217
		return false;

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	/* TODO channel 2 */
	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
}

static inline bool no_lock_stdi(struct v4l2_subdev *sd)
{
	/* TODO channel 2 */
	return !(cp_read(sd, 0xb1) & 0x80);
}

static inline bool no_signal(struct v4l2_subdev *sd)
{
	bool ret;

	ret = no_power(sd);

	ret |= no_lock_stdi(sd);
	ret |= no_lock_sspd(sd);

1237
	if (is_digital_input(sd)) {
1238 1239 1240 1241 1242 1243 1244 1245 1246
		ret |= no_lock_tmds(sd);
		ret |= no_signal_tmds(sd);
	}

	return ret;
}

static inline bool no_lock_cp(struct v4l2_subdev *sd)
{
1247
	struct adv76xx_state *state = to_state(sd);
1248

1249
	if (!adv76xx_has_afe(state))
1250 1251
		return false;

1252 1253 1254 1255 1256
	/* CP has detected a non standard number of lines on the incoming
	   video compared to what it is configured to receive by s_dv_timings */
	return io_read(sd, 0x12) & 0x01;
}

1257 1258 1259 1260 1261
static inline bool in_free_run(struct v4l2_subdev *sd)
{
	return cp_read(sd, 0xff) & 0x10;
}

1262
static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1263 1264 1265 1266
{
	*status = 0;
	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1267 1268 1269
	if (!in_free_run(sd) && no_lock_cp(sd))
		*status |= is_digital_input(sd) ?
			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);

	return 0;
}

/* ----------------------------------------------------------------------- */

struct stdi_readback {
	u16 bl, lcf, lcvs;
	u8 hs_pol, vs_pol;
	bool interlaced;
};

static int stdi2dv_timings(struct v4l2_subdev *sd,
		struct stdi_readback *stdi,
		struct v4l2_dv_timings *timings)
{
1288 1289
	struct adv76xx_state *state = to_state(sd);
	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1290 1291 1292
	u32 pix_clk;
	int i;

1293 1294
	for (i = 0; adv76xx_timings[i].bt.height; i++) {
		if (vtotal(&adv76xx_timings[i].bt) != stdi->lcf + 1)
1295
			continue;
1296
		if (adv76xx_timings[i].bt.vsync != stdi->lcvs)
1297 1298
			continue;

1299
		pix_clk = hfreq * htotal(&adv76xx_timings[i].bt);
1300

1301 1302 1303
		if ((pix_clk < adv76xx_timings[i].bt.pixelclock + 1000000) &&
		    (pix_clk > adv76xx_timings[i].bt.pixelclock - 1000000)) {
			*timings = adv76xx_timings[i];
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
			return 0;
		}
	}

	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs,
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
			timings))
		return 0;
	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
			state->aspect_ratio, timings))
		return 0;

1319 1320 1321 1322
	v4l2_dbg(2, debug, sd,
		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
		stdi->hs_pol, stdi->vs_pol);
1323 1324 1325
	return -1;
}

1326

1327 1328
static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
{
1329 1330
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1331 1332
	u8 polarity;

1333 1334 1335 1336 1337 1338
	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
		return -1;
	}

	/* read STDI */
1339
	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1340
	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1341 1342 1343
	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
	stdi->interlaced = io_read(sd, 0x12) & 0x10;

1344
	if (adv76xx_has_afe(state)) {
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		/* read SSPD */
		polarity = cp_read(sd, 0xb5);
		if ((polarity & 0x03) == 0x01) {
			stdi->hs_pol = polarity & 0x10
				     ? (polarity & 0x08 ? '+' : '-') : 'x';
			stdi->vs_pol = polarity & 0x40
				     ? (polarity & 0x20 ? '+' : '-') : 'x';
		} else {
			stdi->hs_pol = 'x';
			stdi->vs_pol = 'x';
		}
1356
	} else {
1357 1358 1359
		polarity = hdmi_read(sd, 0x05);
		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	}

	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd,
			"%s: signal lost during readout of STDI/SSPD\n", __func__);
		return -1;
	}

	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
		memset(stdi, 0, sizeof(struct stdi_readback));
		return -1;
	}

	v4l2_dbg(2, debug, sd,
		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
		stdi->hs_pol, stdi->vs_pol,
		stdi->interlaced ? "interlaced" : "progressive");

	return 0;
}

1383
static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1384 1385
			struct v4l2_enum_dv_timings *timings)
{
1386
	struct adv76xx_state *state = to_state(sd);
1387

1388
	if (timings->index >= ARRAY_SIZE(adv76xx_timings) - 1)
1389
		return -EINVAL;
1390 1391 1392 1393

	if (timings->pad >= state->source_pad)
		return -EINVAL;

1394
	memset(timings->reserved, 0, sizeof(timings->reserved));
1395
	timings->timings = adv76xx_timings[timings->index];
1396 1397 1398
	return 0;
}

1399
static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1400
			struct v4l2_dv_timings_cap *cap)
1401
{
1402
	struct adv76xx_state *state = to_state(sd);
1403 1404 1405 1406

	if (cap->pad >= state->source_pad)
		return -EINVAL;

1407 1408 1409
	cap->type = V4L2_DV_BT_656_1120;
	cap->bt.max_width = 1920;
	cap->bt.max_height = 1200;
1410
	cap->bt.min_pixelclock = 25000000;
1411

1412
	switch (cap->pad) {
1413
	case ADV76XX_PAD_HDMI_PORT_A:
1414 1415 1416
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
1417
		cap->bt.max_pixelclock = 225000000;
1418 1419 1420 1421
		break;
	case ADV7604_PAD_VGA_RGB:
	case ADV7604_PAD_VGA_COMP:
	default:
1422
		cap->bt.max_pixelclock = 170000000;
1423 1424 1425
		break;
	}

1426 1427 1428 1429 1430 1431 1432 1433
	cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT;
	cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE |
		V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM;
	return 0;
}

/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1434 1435
   if the format is listed in adv76xx_timings[] */
static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1436 1437 1438 1439
		struct v4l2_dv_timings *timings)
{
	int i;

1440 1441
	for (i = 0; adv76xx_timings[i].bt.width; i++) {
		if (v4l2_match_dv_timings(timings, &adv76xx_timings[i],
1442
					is_digital_input(sd) ? 250000 : 1000000)) {
1443
			*timings = adv76xx_timings[i];
1444 1445 1446 1447 1448
			break;
		}
	}
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	unsigned int freq;
	int a, b;

	a = hdmi_read(sd, 0x06);
	b = hdmi_read(sd, 0x3b);
	if (a < 0 || b < 0)
		return 0;
	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;

	if (is_hdmi(sd)) {
		/* adjust for deep color mode */
		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;

		freq = freq * 8 / bits_per_channel;
	}

	return freq;
}

static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	int a, b;

	a = hdmi_read(sd, 0x51);
	b = hdmi_read(sd, 0x52);
	if (a < 0 || b < 0)
		return 0;
	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
}

1481
static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1482 1483
			struct v4l2_dv_timings *timings)
{
1484 1485
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1486 1487 1488 1489 1490 1491 1492 1493 1494
	struct v4l2_bt_timings *bt = &timings->bt;
	struct stdi_readback stdi;

	if (!timings)
		return -EINVAL;

	memset(timings, 0, sizeof(struct v4l2_dv_timings));

	if (no_signal(sd)) {
1495
		state->restart_stdi_once = true;
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
		return -ENOLINK;
	}

	/* read STDI */
	if (read_stdi(sd, &stdi)) {
		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
		return -ENOLINK;
	}
	bt->interlaced = stdi.interlaced ?
		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;

1508
	if (is_digital_input(sd)) {
1509 1510
		timings->type = V4L2_DV_BT_656_1120;

1511
		/* FIXME: All masks are incorrect for ADV7611 */
1512 1513
		bt->width = hdmi_read16(sd, 0x07, 0xfff);
		bt->height = hdmi_read16(sd, 0x09, 0xfff);
1514
		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1515 1516 1517 1518 1519 1520
		bt->hfrontporch = hdmi_read16(sd, 0x20, 0x3ff);
		bt->hsync = hdmi_read16(sd, 0x22, 0x3ff);
		bt->hbackporch = hdmi_read16(sd, 0x24, 0x3ff);
		bt->vfrontporch = hdmi_read16(sd, 0x2a, 0x1fff) / 2;
		bt->vsync = hdmi_read16(sd, 0x2e, 0x1fff) / 2;
		bt->vbackporch = hdmi_read16(sd, 0x32, 0x1fff) / 2;
1521 1522 1523
		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
		if (bt->interlaced == V4L2_DV_INTERLACED) {
1524 1525 1526
			bt->height += hdmi_read16(sd, 0x0b, 0xfff);
			bt->il_vfrontporch = hdmi_read16(sd, 0x2c, 0x1fff) / 2;
			bt->il_vsync = hdmi_read16(sd, 0x30, 0x1fff) / 2;
1527
			bt->il_vbackporch = hdmi_read16(sd, 0x34, 0x1fff) / 2;
1528
		}
1529
		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1530 1531
	} else {
		/* find format
H
Hans Verkuil 已提交
1532
		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
		 */
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs += 1;
		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs -= 2;
		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
		if (stdi2dv_timings(sd, &stdi, timings)) {
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
			/*
			 * The STDI block may measure wrong values, especially
			 * for lcvs and lcf. If the driver can not find any
			 * valid timing, the STDI block is restarted to measure
			 * the video timings again. The function will return an
			 * error, but the restart of STDI will generate a new
			 * STDI interrupt and the format detection process will
			 * restart.
			 */
			if (state->restart_stdi_once) {
				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
				/* TODO restart STDI for Sync Channel 2 */
				/* enter one-shot mode */
1557
				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1558
				/* trigger STDI restart */
1559
				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1560
				/* reset to continuous mode */
1561
				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1562 1563 1564
				state->restart_stdi_once = false;
				return -ENOLINK;
			}
1565 1566 1567
			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
			return -ERANGE;
		}
1568
		state->restart_stdi_once = true;
1569 1570 1571 1572 1573 1574 1575 1576 1577
	}
found:

	if (no_signal(sd)) {
		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
		memset(timings, 0, sizeof(struct v4l2_dv_timings));
		return -ENOLINK;
	}

1578 1579
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1580 1581 1582 1583 1584 1585
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}

	if (debug > 1)
1586
		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1587
				      timings, true);
1588 1589 1590 1591

	return 0;
}

1592
static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1593 1594
		struct v4l2_dv_timings *timings)
{
1595
	struct adv76xx_state *state = to_state(sd);
1596
	struct v4l2_bt_timings *bt;
1597
	int err;
1598 1599 1600 1601

	if (!timings)
		return -EINVAL;

1602 1603 1604 1605 1606
	if (v4l2_match_dv_timings(&state->timings, timings, 0)) {
		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
		return 0;
	}

1607 1608
	bt = &timings->bt;

1609 1610
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1611 1612 1613 1614
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}
1615

1616
	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1617 1618 1619

	state->timings = *timings;

1620
	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1621 1622 1623 1624 1625 1626 1627 1628

	/* Use prim_mode and vid_std when available */
	err = configure_predefined_video_timings(sd, timings);
	if (err) {
		/* custom settings when the video format
		 does not have prim_mode/vid_std */
		configure_custom_video_timings(sd, bt);
	}
1629 1630 1631 1632

	set_rgb_quantization_range(sd);

	if (debug > 1)
1633
		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1634
				      timings, true);
1635 1636 1637
	return 0;
}

1638
static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1639 1640
		struct v4l2_dv_timings *timings)
{
1641
	struct adv76xx_state *state = to_state(sd);
1642 1643 1644 1645 1646

	*timings = state->timings;
	return 0;
}

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
}

static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
}

1657
static void enable_input(struct v4l2_subdev *sd)
1658
{
1659
	struct adv76xx_state *state = to_state(sd);
1660

1661
	if (is_analog_input(sd)) {
1662
		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1663
	} else if (is_digital_input(sd)) {
1664
		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1665
		state->info->set_termination(sd, true);
1666
		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1667
		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1668 1669 1670
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1671 1672 1673 1674 1675
	}
}

static void disable_input(struct v4l2_subdev *sd)
{
1676
	struct adv76xx_state *state = to_state(sd);
1677

1678
	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1679
	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1680
	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1681
	state->info->set_termination(sd, false);
1682 1683
}

1684
static void select_input(struct v4l2_subdev *sd)
1685
{
1686 1687
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1688

1689
	if (is_analog_input(sd)) {
1690
		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1691 1692 1693 1694

		afe_write(sd, 0x00, 0x08); /* power up ADC */
		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
		afe_write(sd, 0xc8, 0x00); /* phase control */
1695 1696
	} else if (is_digital_input(sd)) {
		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1697

1698
		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1699

1700
		if (adv76xx_has_afe(state)) {
1701 1702 1703 1704 1705
			afe_write(sd, 0x00, 0xff); /* power down ADC */
			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
			afe_write(sd, 0xc8, 0x40); /* phase control */
		}

1706 1707 1708
		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1709 1710 1711
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1712 1713 1714
	}
}

1715
static int adv76xx_s_routing(struct v4l2_subdev *sd,
1716 1717
		u32 input, u32 output, u32 config)
{
1718
	struct adv76xx_state *state = to_state(sd);
1719

1720 1721 1722 1723 1724
	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
			__func__, input, state->selected_input);

	if (input == state->selected_input)
		return 0;
1725

1726 1727 1728
	if (input > state->info->max_port)
		return -EINVAL;

1729
	state->selected_input = input;
1730 1731 1732

	disable_input(sd);

1733
	select_input(sd);
1734

1735
	enable_input(sd);
1736 1737 1738 1739

	return 0;
}

1740
static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1741 1742
				  struct v4l2_subdev_fh *fh,
				  struct v4l2_subdev_mbus_code_enum *code)
1743
{
1744
	struct adv76xx_state *state = to_state(sd);
1745 1746

	if (code->index >= state->info->nformats)
1747
		return -EINVAL;
1748 1749 1750

	code->code = state->info->formats[code->index].code;

1751 1752 1753
	return 0;
}

1754
static void adv76xx_fill_format(struct adv76xx_state *state,
1755
				struct v4l2_mbus_framefmt *format)
1756
{
1757
	memset(format, 0, sizeof(*format));
1758

1759 1760 1761 1762 1763 1764
	format->width = state->timings.bt.width;
	format->height = state->timings.bt.height;
	format->field = V4L2_FIELD_NONE;

	if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861)
		format->colorspace = (state->timings.bt.height <= 576) ?
1765
			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1766 1767 1768 1769 1770 1771 1772 1773 1774
}

/*
 * Compute the op_ch_sel value required to obtain on the bus the component order
 * corresponding to the selected format taking into account bus reordering
 * applied by the board at the output of the device.
 *
 * The following table gives the op_ch_value from the format component order
 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1775
 * adv76xx_bus_order value in row).
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
 *
 *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
 * ----------+-------------------------------------------------
 * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
 * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
 * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
 * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
 * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
 * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
 */
1786
static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1787 1788
{
#define _SEL(a,b,c,d,e,f)	{ \
1789 1790
	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
#define _BUS(x)			[ADV7604_BUS_ORDER_##x]

	static const unsigned int op_ch_sel[6][6] = {
		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
	};

	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
}

1805
static void adv76xx_setup_format(struct adv76xx_state *state)
1806 1807 1808
{
	struct v4l2_subdev *sd = &state->sd;

1809
	io_write_clr_set(sd, 0x02, 0x02,
1810
			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1811 1812
	io_write(sd, 0x03, state->format->op_format_sel |
		 state->pdata.op_format_mode_sel);
1813
	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1814
	io_write_clr_set(sd, 0x05, 0x01,
1815
			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1816 1817
}

1818
static int adv76xx_get_format(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh,
1819 1820
			      struct v4l2_subdev_format *format)
{
1821
	struct adv76xx_state *state = to_state(sd);
1822 1823 1824 1825

	if (format->pad != state->source_pad)
		return -EINVAL;

1826
	adv76xx_fill_format(state, &format->format);
1827 1828 1829 1830 1831 1832 1833 1834

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

		fmt = v4l2_subdev_get_try_format(fh, format->pad);
		format->format.code = fmt->code;
	} else {
		format->format.code = state->format->code;
1835
	}
1836 1837 1838 1839

	return 0;
}

1840
static int adv76xx_set_format(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh,
1841 1842
			      struct v4l2_subdev_format *format)
{
1843 1844
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_format_info *info;
1845 1846 1847 1848

	if (format->pad != state->source_pad)
		return -EINVAL;

1849
	info = adv76xx_format_info(state, format->format.code);
1850
	if (info == NULL)
1851
		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1852

1853
	adv76xx_fill_format(state, &format->format);
1854 1855 1856 1857 1858 1859 1860 1861 1862
	format->format.code = info->code;

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

		fmt = v4l2_subdev_get_try_format(fh, format->pad);
		fmt->code = format->format.code;
	} else {
		state->format = info;
1863
		adv76xx_setup_format(state);
1864 1865
	}

1866 1867 1868
	return 0;
}

1869
static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1870
{
1871 1872
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	const u8 irq_reg_0x43 = io_read(sd, 0x43);
	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
	const u8 irq_reg_0x70 = io_read(sd, 0x70);
	u8 fmt_change_digital;
	u8 fmt_change;
	u8 tx_5v;

	if (irq_reg_0x43)
		io_write(sd, 0x44, irq_reg_0x43);
	if (irq_reg_0x70)
		io_write(sd, 0x71, irq_reg_0x70);
	if (irq_reg_0x6b)
		io_write(sd, 0x6c, irq_reg_0x6b);
1886

1887 1888
	v4l2_dbg(2, debug, sd, "%s: ", __func__);

1889
	/* format change */
1890
	fmt_change = irq_reg_0x43 & 0x98;
1891 1892 1893
	fmt_change_digital = is_digital_input(sd)
			   ? irq_reg_0x6b & info->fmt_change_digital_mask
			   : 0;
1894

1895 1896
	if (fmt_change || fmt_change_digital) {
		v4l2_dbg(1, debug, sd,
1897
			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1898
			__func__, fmt_change, fmt_change_digital);
1899

1900
		v4l2_subdev_notify(sd, ADV76XX_FMT_CHANGE, NULL);
1901

1902 1903 1904
		if (handled)
			*handled = true;
	}
1905 1906 1907 1908 1909 1910 1911 1912 1913
	/* HDMI/DVI mode */
	if (irq_reg_0x6b & 0x01) {
		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
		set_rgb_quantization_range(sd);
		if (handled)
			*handled = true;
	}

1914
	/* tx 5v detect */
1915
	tx_5v = io_read(sd, 0x70) & info->cable_det_mask;
1916 1917 1918
	if (tx_5v) {
		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
		io_write(sd, 0x71, tx_5v);
1919
		adv76xx_s_detect_tx_5v_ctrl(sd);
1920 1921 1922 1923 1924 1925
		if (handled)
			*handled = true;
	}
	return 0;
}

1926
static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1927
{
1928
	struct adv76xx_state *state = to_state(sd);
1929
	u8 *data = NULL;
1930

1931
	memset(edid->reserved, 0, sizeof(edid->reserved));
1932 1933

	switch (edid->pad) {
1934
	case ADV76XX_PAD_HDMI_PORT_A:
1935 1936 1937
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
1938 1939 1940 1941 1942 1943
		if (state->edid.present & (1 << edid->pad))
			data = state->edid.edid;
		break;
	default:
		return -EINVAL;
	}
1944 1945 1946 1947 1948 1949 1950

	if (edid->start_block == 0 && edid->blocks == 0) {
		edid->blocks = data ? state->edid.blocks : 0;
		return 0;
	}

	if (data == NULL)
1951 1952
		return -ENODATA;

1953 1954 1955 1956 1957 1958 1959 1960
	if (edid->start_block >= state->edid.blocks)
		return -EINVAL;

	if (edid->start_block + edid->blocks > state->edid.blocks)
		edid->blocks = state->edid.blocks - edid->start_block;

	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);

1961 1962 1963
	return 0;
}

1964
static int get_edid_spa_location(const u8 *edid)
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
{
	u8 d;

	if ((edid[0x7e] != 1) ||
	    (edid[0x80] != 0x02) ||
	    (edid[0x81] != 0x03)) {
		return -1;
	}

	/* search Vendor Specific Data Block (tag 3) */
	d = edid[0x82] & 0x7f;
	if (d > 4) {
		int i = 0x84;
		int end = 0x80 + d;

		do {
			u8 tag = edid[i] >> 5;
			u8 len = edid[i] & 0x1f;

			if ((tag == 3) && (len >= 5))
				return i + 4;
			i += len + 1;
		} while (i < end);
	}
	return -1;
}

1992
static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1993
{
1994 1995
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1996
	int spa_loc;
1997
	int err;
1998
	int i;
1999

2000 2001
	memset(edid->reserved, 0, sizeof(edid->reserved));

2002
	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2003 2004 2005 2006
		return -EINVAL;
	if (edid->start_block != 0)
		return -EINVAL;
	if (edid->blocks == 0) {
2007
		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2008
		state->edid.present &= ~(1 << edid->pad);
2009
		adv76xx_set_hpd(state, state->edid.present);
2010
		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2011

2012 2013 2014
		/* Fall back to a 16:9 aspect ratio */
		state->aspect_ratio.numerator = 16;
		state->aspect_ratio.denominator = 9;
2015 2016 2017 2018 2019 2020

		if (!state->edid.present)
			state->edid.blocks = 0;

		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
				__func__, edid->pad, state->edid.present);
2021 2022
		return 0;
	}
2023 2024
	if (edid->blocks > 2) {
		edid->blocks = 2;
2025
		return -E2BIG;
2026 2027
	}

2028 2029 2030
	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
			__func__, edid->pad, state->edid.present);

2031
	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2032
	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2033
	adv76xx_set_hpd(state, 0);
2034
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2035

2036 2037 2038 2039
	spa_loc = get_edid_spa_location(edid->edid);
	if (spa_loc < 0)
		spa_loc = 0xc0; /* Default value [REF_02, p. 116] */

2040
	switch (edid->pad) {
2041
	case ADV76XX_PAD_HDMI_PORT_A:
2042 2043
		state->spa_port_a[0] = edid->edid[spa_loc];
		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2044
		break;
2045
	case ADV7604_PAD_HDMI_PORT_B:
2046 2047
		rep_write(sd, 0x70, edid->edid[spa_loc]);
		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2048
		break;
2049
	case ADV7604_PAD_HDMI_PORT_C:
2050 2051
		rep_write(sd, 0x72, edid->edid[spa_loc]);
		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2052
		break;
2053
	case ADV7604_PAD_HDMI_PORT_D:
2054 2055
		rep_write(sd, 0x74, edid->edid[spa_loc]);
		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2056
		break;
2057 2058
	default:
		return -EINVAL;
2059
	}
2060 2061 2062

	if (info->type == ADV7604) {
		rep_write(sd, 0x76, spa_loc & 0xff);
2063
		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2064 2065
	} else {
		/* FIXME: Where is the SPA location LSB register ? */
2066
		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2067
	}
2068

2069 2070
	edid->edid[spa_loc] = state->spa_port_a[0];
	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2071 2072 2073

	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
	state->edid.blocks = edid->blocks;
2074 2075
	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
			edid->edid[0x16]);
2076
	state->edid.present |= 1 << edid->pad;
2077 2078 2079

	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
	if (err < 0) {
2080
		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2081 2082 2083
		return err;
	}

2084
	/* adv76xx calculates the checksums and enables I2C access to internal
2085
	   EDID RAM from DDC port. */
2086
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2087 2088

	for (i = 0; i < 1000; i++) {
2089
		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2090 2091 2092 2093 2094 2095 2096 2097
			break;
		mdelay(1);
	}
	if (i == 1000) {
		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
		return -EIO;
	}

2098 2099 2100 2101
	/* enable hotplug after 100 ms */
	queue_delayed_work(state->work_queues,
			&state->delayed_work_enable_hotplug, HZ / 10);
	return 0;
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
}

/*********** avi info frame CEA-861-E **************/

static void print_avi_infoframe(struct v4l2_subdev *sd)
{
	int i;
	u8 buf[14];
	u8 avi_len;
	u8 avi_ver;

2113
	if (!is_hdmi(sd)) {
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
		v4l2_info(sd, "receive DVI-D signal (AVI infoframe not supported)\n");
		return;
	}
	if (!(io_read(sd, 0x60) & 0x01)) {
		v4l2_info(sd, "AVI infoframe not received\n");
		return;
	}

	if (io_read(sd, 0x83) & 0x01) {
		v4l2_info(sd, "AVI infoframe checksum error has occurred earlier\n");
		io_write(sd, 0x85, 0x01); /* clear AVI_INF_CKS_ERR_RAW */
		if (io_read(sd, 0x83) & 0x01) {
			v4l2_info(sd, "AVI infoframe checksum error still present\n");
			io_write(sd, 0x85, 0x01); /* clear AVI_INF_CKS_ERR_RAW */
		}
	}

	avi_len = infoframe_read(sd, 0xe2);
	avi_ver = infoframe_read(sd, 0xe1);
	v4l2_info(sd, "AVI infoframe version %d (%d byte)\n",
			avi_ver, avi_len);

	if (avi_ver != 0x02)
		return;

	for (i = 0; i < 14; i++)
		buf[i] = infoframe_read(sd, i);

	v4l2_info(sd,
		"\t%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
		buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7],
		buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]);
}

2148
static int adv76xx_log_status(struct v4l2_subdev *sd)
2149
{
2150 2151
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2152 2153 2154
	struct v4l2_dv_timings timings;
	struct stdi_readback stdi;
	u8 reg_io_0x02 = io_read(sd, 0x02);
2155 2156
	u8 edid_enabled;
	u8 cable_det;
2157

2158
	static const char * const csc_coeff_sel_rb[16] = {
2159 2160 2161 2162 2163
		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
		"reserved", "reserved", "reserved", "reserved", "manual"
	};
2164
	static const char * const input_color_space_txt[16] = {
2165 2166
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2167
		"xvYCC Bt.601", "xvYCC Bt.709",
2168 2169 2170 2171
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"invalid", "invalid", "invalid", "invalid", "invalid",
		"invalid", "invalid", "automatic"
	};
2172
	static const char * const rgb_quantization_range_txt[] = {
2173 2174 2175 2176
		"Automatic",
		"RGB limited range (16-235)",
		"RGB full range (0-255)",
	};
2177
	static const char * const deep_color_mode_txt[4] = {
2178 2179 2180 2181 2182
		"8-bits per channel",
		"10-bits per channel",
		"12-bits per channel",
		"16-bits per channel (not supported)"
	};
2183 2184 2185

	v4l2_info(sd, "-----Chip status-----\n");
	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2186
	edid_enabled = rep_read(sd, info->edid_status_reg);
2187
	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2188 2189 2190 2191
			((edid_enabled & 0x01) ? "Yes" : "No"),
			((edid_enabled & 0x02) ? "Yes" : "No"),
			((edid_enabled & 0x04) ? "Yes" : "No"),
			((edid_enabled & 0x08) ? "Yes" : "No"));
2192 2193 2194 2195
	v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
			"enabled" : "disabled");

	v4l2_info(sd, "-----Signal status-----\n");
2196
	cable_det = info->read_cable_det(sd);
2197
	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2198 2199
			((cable_det & 0x01) ? "Yes" : "No"),
			((cable_det & 0x02) ? "Yes" : "No"),
2200
			((cable_det & 0x04) ? "Yes" : "No"),
2201
			((cable_det & 0x08) ? "Yes" : "No"));
2202 2203 2204 2205 2206 2207 2208 2209
	v4l2_info(sd, "TMDS signal detected: %s\n",
			no_signal_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "TMDS signal locked: %s\n",
			no_lock_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
	v4l2_info(sd, "CP free run: %s\n",
2210
			(in_free_run(sd)) ? "on" : "off");
2211 2212 2213
	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
			(io_read(sd, 0x01) & 0x70) >> 4);
2214 2215 2216 2217 2218 2219 2220 2221 2222

	v4l2_info(sd, "-----Video Timings-----\n");
	if (read_stdi(sd, &stdi))
		v4l2_info(sd, "STDI: not locked\n");
	else
		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
				stdi.lcf, stdi.bl, stdi.lcvs,
				stdi.interlaced ? "interlaced" : "progressive",
				stdi.hs_pol, stdi.vs_pol);
2223
	if (adv76xx_query_dv_timings(sd, &timings))
2224 2225
		v4l2_info(sd, "No video detected\n");
	else
2226 2227 2228 2229
		v4l2_print_dv_timings(sd->name, "Detected format: ",
				      &timings, true);
	v4l2_print_dv_timings(sd->name, "Configured format: ",
			      &state->timings, true);
2230

2231 2232 2233
	if (no_signal(sd))
		return 0;

2234 2235 2236 2237 2238 2239 2240 2241 2242
	v4l2_info(sd, "-----Color space-----\n");
	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
			rgb_quantization_range_txt[state->rgb_quantization_range]);
	v4l2_info(sd, "Input color space: %s\n",
			input_color_space_txt[reg_io_0x02 >> 4]);
	v4l2_info(sd, "Output color space: %s %s, saturator %s\n",
			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
			(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
			((reg_io_0x02 & 0x04) ^ (reg_io_0x02 & 0x01)) ?
2243
				"enabled" : "disabled");
2244
	v4l2_info(sd, "Color space conversion: %s\n",
2245
			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2246

2247
	if (!is_digital_input(sd))
2248 2249 2250
		return 0;

	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2251 2252 2253 2254
	v4l2_info(sd, "Digital video port selected: %c\n",
			(hdmi_read(sd, 0x00) & 0x03) + 'A');
	v4l2_info(sd, "HDCP encrypted content: %s\n",
			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2255 2256 2257
	v4l2_info(sd, "HDCP keys read: %s%s\n",
			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2258
	if (is_hdmi(sd)) {
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
		bool audio_mute = io_read(sd, 0x65) & 0x40;

		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
				audio_pll_locked ? "locked" : "not locked",
				audio_sample_packet_detect ? "detected" : "not detected",
				audio_mute ? "muted" : "enabled");
		if (audio_pll_locked && audio_sample_packet_detect) {
			v4l2_info(sd, "Audio format: %s\n",
					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
		}
		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
				(hdmi_read(sd, 0x5c) << 8) +
				(hdmi_read(sd, 0x5d) & 0xf0));
		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
				(hdmi_read(sd, 0x5e) << 8) +
				hdmi_read(sd, 0x5f));
		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");

		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);

2281 2282 2283 2284 2285 2286 2287 2288
		print_avi_infoframe(sd);
	}

	return 0;
}

/* ----------------------------------------------------------------------- */

2289 2290
static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
	.s_ctrl = adv76xx_s_ctrl,
2291 2292
};

2293 2294 2295
static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
	.log_status = adv76xx_log_status,
	.interrupt_service_routine = adv76xx_isr,
2296
#ifdef CONFIG_VIDEO_ADV_DEBUG
2297 2298
	.g_register = adv76xx_g_register,
	.s_register = adv76xx_s_register,
2299 2300 2301
#endif
};

2302 2303 2304 2305 2306 2307
static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
	.s_routing = adv76xx_s_routing,
	.g_input_status = adv76xx_g_input_status,
	.s_dv_timings = adv76xx_s_dv_timings,
	.g_dv_timings = adv76xx_g_dv_timings,
	.query_dv_timings = adv76xx_query_dv_timings,
2308 2309
};

2310 2311 2312 2313 2314 2315 2316 2317
static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
	.enum_mbus_code = adv76xx_enum_mbus_code,
	.get_fmt = adv76xx_get_format,
	.set_fmt = adv76xx_set_format,
	.get_edid = adv76xx_get_edid,
	.set_edid = adv76xx_set_edid,
	.dv_timings_cap = adv76xx_dv_timings_cap,
	.enum_dv_timings = adv76xx_enum_dv_timings,
2318 2319
};

2320 2321 2322 2323
static const struct v4l2_subdev_ops adv76xx_ops = {
	.core = &adv76xx_core_ops,
	.video = &adv76xx_video_ops,
	.pad = &adv76xx_pad_ops,
2324 2325 2326 2327 2328
};

/* -------------------------- custom ctrls ---------------------------------- */

static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2329
	.ops = &adv76xx_ctrl_ops,
2330 2331 2332 2333 2334 2335 2336 2337 2338
	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
	.name = "Analog Sampling Phase",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0,
	.max = 0x1f,
	.step = 1,
	.def = 0,
};

2339 2340
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
	.ops = &adv76xx_ctrl_ops,
2341 2342 2343 2344 2345 2346 2347 2348 2349
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
	.name = "Free Running Color, Manual",
	.type = V4L2_CTRL_TYPE_BOOLEAN,
	.min = false,
	.max = true,
	.step = 1,
	.def = false,
};

2350 2351
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
	.ops = &adv76xx_ctrl_ops,
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
	.name = "Free Running Color",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0x0,
	.max = 0xffffff,
	.step = 0x1,
	.def = 0x0,
};

/* ----------------------------------------------------------------------- */

2363
static int adv76xx_core_init(struct v4l2_subdev *sd)
2364
{
2365 2366 2367
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
	struct adv76xx_platform_data *pdata = &state->pdata;
2368 2369 2370 2371 2372 2373 2374

	hdmi_write(sd, 0x48,
		(pdata->disable_pwrdnb ? 0x80 : 0) |
		(pdata->disable_cable_det_rst ? 0x40 : 0));

	disable_input(sd);

2375 2376 2377 2378 2379 2380 2381
	if (pdata->default_input >= 0 &&
	    pdata->default_input < state->source_pad) {
		state->selected_input = pdata->default_input;
		select_input(sd);
		enable_input(sd);
	}

2382 2383 2384 2385 2386 2387
	/* power */
	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */

	/* video format */
2388
	io_write_clr_set(sd, 0x02, 0x0f,
2389 2390 2391
			pdata->alt_gamma << 3 |
			pdata->op_656_range << 2 |
			pdata->alt_data_sat << 0);
2392
	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2393 2394
			pdata->insert_av_codes << 2 |
			pdata->replicate_av_codes << 1);
2395
	adv76xx_setup_format(state);
2396 2397

	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2398 2399

	/* VS, HS polarities */
2400 2401
	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2402 2403 2404 2405 2406 2407

	/* Adjust drive strength */
	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
				pdata->dr_str_clk << 2 |
				pdata->dr_str_sync);

2408 2409 2410
	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
H
Hans Verkuil 已提交
2411
				      ADI recommended setting [REF_01, c. 2.3.3] */
2412
	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
H
Hans Verkuil 已提交
2413
				      ADI recommended setting [REF_01, c. 2.3.3] */
2414 2415 2416
	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
				     for digital formats */

2417
	/* HDMI audio */
2418 2419 2420
	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2421

2422 2423 2424
	/* TODO from platform data */
	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */

2425
	if (adv76xx_has_afe(state)) {
2426
		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2427
		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2428
	}
2429 2430

	/* interrupts */
2431
	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2432
	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2433 2434 2435
	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
	info->setup_irqs(sd);
2436 2437 2438 2439

	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
static void adv7604_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
}

static void adv7611_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
}

2450
static void adv76xx_unregister_clients(struct adv76xx_state *state)
2451
{
2452 2453 2454 2455 2456 2457
	unsigned int i;

	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
		if (state->i2c_clients[i])
			i2c_unregister_device(state->i2c_clients[i]);
	}
2458 2459
}

2460
static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2461 2462 2463 2464 2465 2466 2467 2468 2469
							u8 addr, u8 io_reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (addr)
		io_write(sd, io_reg, addr << 1);
	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
}

2470
static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2471 2472
	/* reset ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2485 2486 2487

	/* set ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2488 2489 2490 2491 2492
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2493

2494
	{ ADV76XX_REG_SEQ_TERM, 0 },
2495 2496
};

2497
static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2498 2499
	/* set ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2511 2512 2513

	/* reset ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2514 2515
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2516

2517
	{ ADV76XX_REG_SEQ_TERM, 0 },
2518 2519
};

2520
static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2521
	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },

	{ ADV76XX_REG_SEQ_TERM, 0 },
2535 2536
};

2537
static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2538 2539 2540
	[ADV7604] = {
		.type = ADV7604,
		.has_afe = true,
2541
		.max_port = ADV7604_PAD_VGA_COMP,
2542 2543 2544 2545 2546 2547 2548
		.num_dv_ports = 4,
		.edid_enable_reg = 0x77,
		.edid_status_reg = 0x7d,
		.lcf_reg = 0xb3,
		.tdms_lock_mask = 0xe0,
		.cable_det_mask = 0x1e,
		.fmt_change_digital_mask = 0xc1,
2549
		.cp_csc = 0xfc,
2550 2551
		.formats = adv7604_formats,
		.nformats = ARRAY_SIZE(adv7604_formats),
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
		.set_termination = adv7604_set_termination,
		.setup_irqs = adv7604_setup_irqs,
		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
		.read_cable_det = adv7604_read_cable_det,
		.recommended_settings = {
		    [0] = adv7604_recommended_settings_afe,
		    [1] = adv7604_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
		},
2564 2565
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2566
			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2567 2568 2569
			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2570 2571 2572 2573 2574
			BIT(ADV7604_PAGE_VDP),
	},
	[ADV7611] = {
		.type = ADV7611,
		.has_afe = false,
2575
		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2576 2577 2578 2579 2580 2581 2582
		.num_dv_ports = 1,
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2583
		.cp_csc = 0xf4,
2584 2585
		.formats = adv7611_formats,
		.nformats = ARRAY_SIZE(adv7611_formats),
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7611_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
		.read_cable_det = adv7611_read_cable_det,
		.recommended_settings = {
		    [1] = adv7611_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
		},
2596 2597 2598 2599
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2600 2601 2602
	},
};

2603 2604 2605
static struct i2c_device_id adv76xx_i2c_id[] = {
	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2606 2607
	{ }
};
2608
MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2609

2610 2611
static struct of_device_id adv76xx_of_id[] __maybe_unused = {
	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2612 2613
	{ }
};
2614
MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2615

2616
static int adv76xx_parse_dt(struct adv76xx_state *state)
2617
{
2618 2619 2620 2621 2622
	struct v4l2_of_endpoint bus_cfg;
	struct device_node *endpoint;
	struct device_node *np;
	unsigned int flags;

2623
	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648

	/* Parse the endpoint. */
	endpoint = of_graph_get_next_endpoint(np, NULL);
	if (!endpoint)
		return -EINVAL;

	v4l2_of_parse_endpoint(endpoint, &bus_cfg);
	of_node_put(endpoint);

	flags = bus_cfg.bus.parallel.flags;

	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
		state->pdata.inv_hs_pol = 1;

	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
		state->pdata.inv_vs_pol = 1;

	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
		state->pdata.inv_llc_pol = 1;

	if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
		state->pdata.insert_av_codes = 1;
		state->pdata.op_656_range = 1;
	}

2649
	/* Disable the interrupt for now as no DT-based board uses it. */
2650
	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2651 2652 2653

	/* Use the default I2C addresses. */
	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2654 2655
	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2656 2657
	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2658 2659 2660 2661 2662 2663
	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;

	/* Hardcode the remaining platform data fields. */
	state->pdata.disable_pwrdnb = 0;
	state->pdata.disable_cable_det_rst = 0;
	state->pdata.default_input = -1;
	state->pdata.blank_data = 1;
	state->pdata.alt_data_sat = 1;
	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;

	return 0;
}

2678
static int adv76xx_probe(struct i2c_client *client,
2679 2680
			 const struct i2c_device_id *id)
{
2681 2682
	static const struct v4l2_dv_timings cea640x480 =
		V4L2_DV_BT_CEA_640X480P59_94;
2683
	struct adv76xx_state *state;
2684 2685
	struct v4l2_ctrl_handler *hdl;
	struct v4l2_subdev *sd;
2686
	unsigned int i;
2687
	u16 val;
2688 2689 2690 2691 2692
	int err;

	/* Check if the adapter supports the needed features */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -EIO;
2693
	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
2694 2695
			client->addr << 1);

2696
	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
2697
	if (!state) {
2698
		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
2699 2700 2701
		return -ENOMEM;
	}

2702
	state->i2c_clients[ADV76XX_PAGE_IO] = client;
2703

2704 2705
	/* initialize variables */
	state->restart_stdi_once = true;
2706
	state->selected_input = ~0;
2707

2708 2709 2710
	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
		const struct of_device_id *oid;

2711
		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
2712 2713
		state->info = oid->data;

2714
		err = adv76xx_parse_dt(state);
2715 2716 2717 2718 2719
		if (err < 0) {
			v4l_err(client, "DT parsing error\n");
			return err;
		}
	} else if (client->dev.platform_data) {
2720
		struct adv76xx_platform_data *pdata = client->dev.platform_data;
2721

2722
		state->info = (const struct adv76xx_chip_info *)id->driver_data;
2723 2724
		state->pdata = *pdata;
	} else {
2725
		v4l_err(client, "No platform data!\n");
2726
		return -ENODEV;
2727
	}
2728 2729 2730 2731 2732 2733 2734 2735

	/* Request GPIOs. */
	for (i = 0; i < state->info->num_dv_ports; ++i) {
		state->hpd_gpio[i] =
			devm_gpiod_get_index(&client->dev, "hpd", i);
		if (IS_ERR(state->hpd_gpio[i]))
			continue;

2736
		gpiod_direction_output(state->hpd_gpio[i], 0);
2737 2738 2739 2740

		v4l_info(client, "Handling HPD %u GPIO\n", i);
	}

2741
	state->timings = cea640x480;
2742
	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
2743 2744

	sd = &state->sd;
2745
	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
2746 2747 2748
	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
		id->name, i2c_adapter_id(client->adapter),
		client->addr);
2749 2750
	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	/*
	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
	 * identifies the revision, while on ADV7611 it identifies the model as
	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
	 */
	if (state->info->type == ADV7604) {
		val = adv_smbus_read_byte_data_check(client, 0xfb, false);
		if (val != 0x68) {
			v4l2_info(sd, "not an adv7604 on address 0x%x\n",
					client->addr << 1);
			return -ENODEV;
		}
	} else {
		val = (adv_smbus_read_byte_data_check(client, 0xea, false) << 8)
		    | (adv_smbus_read_byte_data_check(client, 0xeb, false) << 0);
		if (val != 0x2051) {
			v4l2_info(sd, "not an adv7611 on address 0x%x\n",
					client->addr << 1);
			return -ENODEV;
		}
2771 2772 2773 2774
	}

	/* control handlers */
	hdl = &state->hdl;
2775
	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
2776

2777
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2778
			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
2779
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2780
			V4L2_CID_CONTRAST, 0, 255, 1, 128);
2781
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2782
			V4L2_CID_SATURATION, 0, 255, 1, 128);
2783
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2784 2785 2786 2787
			V4L2_CID_HUE, 0, 128, 1, 0);

	/* private controls */
	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
2788 2789
			V4L2_CID_DV_RX_POWER_PRESENT, 0,
			(1 << state->info->num_dv_ports) - 1, 0, 0);
2790
	state->rgb_quantization_range_ctrl =
2791
		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
2792 2793 2794 2795
			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
			0, V4L2_DV_RGB_RANGE_AUTO);

	/* custom controls */
2796
	if (adv76xx_has_afe(state))
2797 2798
		state->analog_sampling_phase_ctrl =
			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
2799
	state->free_run_color_manual_ctrl =
2800
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
2801
	state->free_run_color_ctrl =
2802
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
2803 2804 2805 2806 2807 2808

	sd->ctrl_handler = hdl;
	if (hdl->error) {
		err = hdl->error;
		goto err_hdl;
	}
2809 2810
	state->detect_tx_5v_ctrl->is_private = true;
	state->rgb_quantization_range_ctrl->is_private = true;
2811
	if (adv76xx_has_afe(state))
2812
		state->analog_sampling_phase_ctrl->is_private = true;
2813 2814 2815
	state->free_run_color_manual_ctrl->is_private = true;
	state->free_run_color_ctrl->is_private = true;

2816
	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
2817 2818 2819 2820
		err = -ENODEV;
		goto err_hdl;
	}

2821
	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
2822 2823
		if (!(BIT(i) & state->info->page_mask))
			continue;
2824

2825
		state->i2c_clients[i] =
2826
			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
2827 2828
					     0xf2 + i);
		if (state->i2c_clients[i] == NULL) {
2829
			err = -ENOMEM;
2830
			v4l2_err(sd, "failed to create i2c client %u\n", i);
2831 2832 2833
			goto err_i2c;
		}
	}
2834

2835 2836 2837 2838 2839 2840 2841 2842 2843
	/* work queues */
	state->work_queues = create_singlethread_workqueue(client->name);
	if (!state->work_queues) {
		v4l2_err(sd, "Could not create work queue\n");
		err = -ENOMEM;
		goto err_i2c;
	}

	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
2844
			adv76xx_delayed_work_enable_hotplug);
2845

2846 2847 2848 2849 2850 2851 2852 2853
	state->source_pad = state->info->num_dv_ports
			  + (state->info->has_afe ? 2 : 0);
	for (i = 0; i < state->source_pad; ++i)
		state->pads[i].flags = MEDIA_PAD_FL_SINK;
	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;

	err = media_entity_init(&sd->entity, state->source_pad + 1,
				state->pads, 0);
2854 2855 2856
	if (err)
		goto err_work_queues;

2857
	err = adv76xx_core_init(sd);
2858 2859 2860 2861
	if (err)
		goto err_entity;
	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
			client->addr << 1, client->adapter->name);
2862 2863 2864 2865 2866

	err = v4l2_async_register_subdev(sd);
	if (err)
		goto err_entity;

2867 2868 2869 2870 2871 2872 2873 2874
	return 0;

err_entity:
	media_entity_cleanup(&sd->entity);
err_work_queues:
	cancel_delayed_work(&state->delayed_work_enable_hotplug);
	destroy_workqueue(state->work_queues);
err_i2c:
2875
	adv76xx_unregister_clients(state);
2876 2877 2878 2879 2880 2881 2882
err_hdl:
	v4l2_ctrl_handler_free(hdl);
	return err;
}

/* ----------------------------------------------------------------------- */

2883
static int adv76xx_remove(struct i2c_client *client)
2884 2885
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
2886
	struct adv76xx_state *state = to_state(sd);
2887 2888 2889

	cancel_delayed_work(&state->delayed_work_enable_hotplug);
	destroy_workqueue(state->work_queues);
2890
	v4l2_async_unregister_subdev(sd);
2891 2892
	v4l2_device_unregister_subdev(sd);
	media_entity_cleanup(&sd->entity);
2893
	adv76xx_unregister_clients(to_state(sd));
2894 2895 2896 2897 2898 2899
	v4l2_ctrl_handler_free(sd->ctrl_handler);
	return 0;
}

/* ----------------------------------------------------------------------- */

2900
static struct i2c_driver adv76xx_driver = {
2901 2902 2903
	.driver = {
		.owner = THIS_MODULE,
		.name = "adv7604",
2904
		.of_match_table = of_match_ptr(adv76xx_of_id),
2905
	},
2906 2907 2908
	.probe = adv76xx_probe,
	.remove = adv76xx_remove,
	.id_table = adv76xx_i2c_id,
2909 2910
};

2911
module_i2c_driver(adv76xx_driver);