pgtable-radix.c 26.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Page table handling routines for radix page table.
 *
 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
11 12 13 14

#define pr_fmt(fmt) "radix-mmu: " fmt

#include <linux/kernel.h>
15
#include <linux/sched/mm.h>
16 17
#include <linux/memblock.h>
#include <linux/of_fdt.h>
18
#include <linux/mm.h>
19
#include <linux/string_helpers.h>
20
#include <linux/stop_machine.h>
21 22 23

#include <asm/pgtable.h>
#include <asm/pgalloc.h>
24
#include <asm/mmu_context.h>
25 26 27 28
#include <asm/dma.h>
#include <asm/machdep.h>
#include <asm/mmu.h>
#include <asm/firmware.h>
29
#include <asm/powernv.h>
30
#include <asm/sections.h>
31
#include <asm/trace.h>
32

33 34
#include <trace/events/thp.h>

35 36 37
unsigned int mmu_pid_bits;
unsigned int mmu_base_pid;

38 39
static int native_register_process_table(unsigned long base, unsigned long pg_sz,
					 unsigned long table_size)
40
{
41 42 43 44 45 46
	unsigned long patb0, patb1;

	patb0 = be64_to_cpu(partition_tb[0].patb0);
	patb1 = base | table_size | PATB_GR;

	mmu_partition_table_set_entry(0, patb0, patb1);
47

48 49 50
	return 0;
}

51 52
static __ref void *early_alloc_pgtable(unsigned long size, int nid,
			unsigned long region_start, unsigned long region_end)
53
{
54
	unsigned long pa = 0;
55 56
	void *pt;

57 58 59 60 61 62 63 64 65 66 67 68 69 70
	if (region_start || region_end) /* has region hint */
		pa = memblock_alloc_range(size, size, region_start, region_end,
						MEMBLOCK_NONE);
	else if (nid != -1) /* has node hint */
		pa = memblock_alloc_base_nid(size, size,
						MEMBLOCK_ALLOC_ANYWHERE,
						nid, MEMBLOCK_NONE);

	if (!pa)
		pa = memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE);

	BUG_ON(!pa);

	pt = __va(pa);
71 72 73 74 75
	memset(pt, 0, size);

	return pt;
}

76
static int early_map_kernel_page(unsigned long ea, unsigned long pa,
77
			  pgprot_t flags,
78 79 80
			  unsigned int map_page_size,
			  int nid,
			  unsigned long region_start, unsigned long region_end)
81
{
82
	unsigned long pfn = pa >> PAGE_SHIFT;
83 84 85 86 87 88 89
	pgd_t *pgdp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	pgdp = pgd_offset_k(ea);
	if (pgd_none(*pgdp)) {
90 91
		pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
						region_start, region_end);
92 93 94 95 96 97 98 99
		pgd_populate(&init_mm, pgdp, pudp);
	}
	pudp = pud_offset(pgdp, ea);
	if (map_page_size == PUD_SIZE) {
		ptep = (pte_t *)pudp;
		goto set_the_pte;
	}
	if (pud_none(*pudp)) {
100 101
		pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
						region_start, region_end);
102 103 104 105 106 107 108 109
		pud_populate(&init_mm, pudp, pmdp);
	}
	pmdp = pmd_offset(pudp, ea);
	if (map_page_size == PMD_SIZE) {
		ptep = pmdp_ptep(pmdp);
		goto set_the_pte;
	}
	if (!pmd_present(*pmdp)) {
110 111
		ptep = early_alloc_pgtable(PAGE_SIZE, nid,
						region_start, region_end);
112 113 114 115 116
		pmd_populate_kernel(&init_mm, pmdp, ptep);
	}
	ptep = pte_offset_kernel(pmdp, ea);

set_the_pte:
117
	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
118 119 120 121
	smp_wmb();
	return 0;
}

122 123 124 125 126
/*
 * nid, region_start, and region_end are hints to try to place the page
 * table memory in the same node or region.
 */
static int __map_kernel_page(unsigned long ea, unsigned long pa,
127
			  pgprot_t flags,
128 129 130
			  unsigned int map_page_size,
			  int nid,
			  unsigned long region_start, unsigned long region_end)
131
{
132
	unsigned long pfn = pa >> PAGE_SHIFT;
133 134 135 136 137 138 139 140
	pgd_t *pgdp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;
	/*
	 * Make sure task size is correct as per the max adddr
	 */
	BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
141

142 143 144
	if (unlikely(!slab_is_available()))
		return early_map_kernel_page(ea, pa, flags, map_page_size,
						nid, region_start, region_end);
145

146 147 148 149 150
	/*
	 * Should make page table allocation functions be able to take a
	 * node, so we can place kernel page tables on the right nodes after
	 * boot.
	 */
151 152 153 154 155 156 157
	pgdp = pgd_offset_k(ea);
	pudp = pud_alloc(&init_mm, pgdp, ea);
	if (!pudp)
		return -ENOMEM;
	if (map_page_size == PUD_SIZE) {
		ptep = (pte_t *)pudp;
		goto set_the_pte;
158
	}
159 160 161 162 163 164
	pmdp = pmd_alloc(&init_mm, pudp, ea);
	if (!pmdp)
		return -ENOMEM;
	if (map_page_size == PMD_SIZE) {
		ptep = pmdp_ptep(pmdp);
		goto set_the_pte;
165
	}
166 167 168
	ptep = pte_alloc_kernel(pmdp, ea);
	if (!ptep)
		return -ENOMEM;
169 170

set_the_pte:
171
	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
172 173 174 175
	smp_wmb();
	return 0;
}

176 177 178 179 180 181 182
int radix__map_kernel_page(unsigned long ea, unsigned long pa,
			  pgprot_t flags,
			  unsigned int map_page_size)
{
	return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
}

183
#ifdef CONFIG_STRICT_KERNEL_RWX
184 185
void radix__change_memory_range(unsigned long start, unsigned long end,
				unsigned long clear)
186 187 188 189 190 191 192 193 194 195
{
	unsigned long idx;
	pgd_t *pgdp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	start = ALIGN_DOWN(start, PAGE_SIZE);
	end = PAGE_ALIGN(end); // aligns up

196 197
	pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
		 start, end, clear);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

	for (idx = start; idx < end; idx += PAGE_SIZE) {
		pgdp = pgd_offset_k(idx);
		pudp = pud_alloc(&init_mm, pgdp, idx);
		if (!pudp)
			continue;
		if (pud_huge(*pudp)) {
			ptep = (pte_t *)pudp;
			goto update_the_pte;
		}
		pmdp = pmd_alloc(&init_mm, pudp, idx);
		if (!pmdp)
			continue;
		if (pmd_huge(*pmdp)) {
			ptep = pmdp_ptep(pmdp);
			goto update_the_pte;
		}
		ptep = pte_alloc_kernel(pmdp, idx);
		if (!ptep)
			continue;
update_the_pte:
219
		radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
220 221 222 223
	}

	radix__flush_tlb_kernel_range(start, end);
}
224 225 226 227 228 229 230 231 232 233

void radix__mark_rodata_ro(void)
{
	unsigned long start, end;

	start = (unsigned long)_stext;
	end = (unsigned long)__init_begin;

	radix__change_memory_range(start, end, _PAGE_WRITE);
}
234 235 236 237 238 239 240 241

void radix__mark_initmem_nx(void)
{
	unsigned long start = (unsigned long)__init_begin;
	unsigned long end = (unsigned long)__init_end;

	radix__change_memory_range(start, end, _PAGE_EXEC);
}
242 243
#endif /* CONFIG_STRICT_KERNEL_RWX */

244 245 246 247
static inline void __meminit print_mapping(unsigned long start,
					   unsigned long end,
					   unsigned long size)
{
248 249
	char buf[10];

250 251 252
	if (end <= start)
		return;

253 254 255
	string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));

	pr_info("Mapped 0x%016lx-0x%016lx with %s pages\n", start, end, buf);
256 257 258
}

static int __meminit create_physical_mapping(unsigned long start,
259 260
					     unsigned long end,
					     int nid)
261
{
262 263
	unsigned long vaddr, addr, mapping_size = 0;
	pgprot_t prot;
264 265 266 267 268 269
	unsigned long max_mapping_size;
#ifdef CONFIG_STRICT_KERNEL_RWX
	int split_text_mapping = 1;
#else
	int split_text_mapping = 0;
#endif
270
	int psize;
271 272 273 274 275 276 277 278

	start = _ALIGN_UP(start, PAGE_SIZE);
	for (addr = start; addr < end; addr += mapping_size) {
		unsigned long gap, previous_size;
		int rc;

		gap = end - addr;
		previous_size = mapping_size;
279
		max_mapping_size = PUD_SIZE;
280

281
retry:
282
		if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
283
		    mmu_psize_defs[MMU_PAGE_1G].shift &&
284
		    PUD_SIZE <= max_mapping_size) {
285
			mapping_size = PUD_SIZE;
286 287 288
			psize = MMU_PAGE_1G;
		} else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
			   mmu_psize_defs[MMU_PAGE_2M].shift) {
289
			mapping_size = PMD_SIZE;
290 291
			psize = MMU_PAGE_2M;
		} else {
292
			mapping_size = PAGE_SIZE;
293 294
			psize = mmu_virtual_psize;
		}
295

296
		if (split_text_mapping && (mapping_size == PUD_SIZE) &&
297
			(addr < __pa_symbol(__init_begin)) &&
298
			(addr + mapping_size) > __pa_symbol(__init_begin)) {
299 300 301 302 303
			max_mapping_size = PMD_SIZE;
			goto retry;
		}

		if (split_text_mapping && (mapping_size == PMD_SIZE) &&
304
		    (addr < __pa_symbol(__init_begin)) &&
305
		    (addr + mapping_size) > __pa_symbol(__init_begin)) {
306
			mapping_size = PAGE_SIZE;
307 308
			psize = mmu_virtual_psize;
		}
309

310 311 312 313 314
		if (mapping_size != previous_size) {
			print_mapping(start, addr, previous_size);
			start = addr;
		}

315 316
		vaddr = (unsigned long)__va(addr);

317 318
		if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
		    overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size))
319 320 321 322
			prot = PAGE_KERNEL_X;
		else
			prot = PAGE_KERNEL;

323
		rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
324 325
		if (rc)
			return rc;
326 327

		update_page_count(psize, 1);
328 329 330 331 332 333
	}

	print_mapping(start, addr, mapping_size);
	return 0;
}

334
void __init radix_init_pgtable(void)
335 336 337 338 339 340 341 342 343
{
	unsigned long rts_field;
	struct memblock_region *reg;

	/* We don't support slb for radix */
	mmu_slb_size = 0;
	/*
	 * Create the linear mapping, using standard page size for now
	 */
344 345 346 347 348 349
	for_each_memblock(memory, reg) {
		/*
		 * The memblock allocator  is up at this point, so the
		 * page tables will be allocated within the range. No
		 * need or a node (which we don't have yet).
		 */
350
		WARN_ON(create_physical_mapping(reg->base,
351 352 353
						reg->base + reg->size,
						-1));
	}
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

	/* Find out how many PID bits are supported */
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		if (!mmu_pid_bits)
			mmu_pid_bits = 20;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
		/*
		 * When KVM is possible, we only use the top half of the
		 * PID space to avoid collisions between host and guest PIDs
		 * which can cause problems due to prefetch when exiting the
		 * guest with AIL=3
		 */
		mmu_base_pid = 1 << (mmu_pid_bits - 1);
#else
		mmu_base_pid = 1;
#endif
	} else {
		/* The guest uses the bottom half of the PID space */
		if (!mmu_pid_bits)
			mmu_pid_bits = 19;
		mmu_base_pid = 1;
	}

377 378 379 380
	/*
	 * Allocate Partition table and process table for the
	 * host.
	 */
381
	BUG_ON(PRTB_SIZE_SHIFT > 36);
382
	process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
383 384 385
	/*
	 * Fill in the process table.
	 */
386
	rts_field = radix__get_tree_size();
387 388 389 390 391 392
	process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
	/*
	 * Fill in the partition table. We are suppose to use effective address
	 * of process table here. But our linear mapping also enable us to use
	 * physical address here.
	 */
393
	register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
394
	pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
395 396 397 398
	asm volatile("ptesync" : : : "memory");
	asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
		     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
	asm volatile("eieio; tlbsync; ptesync" : : : "memory");
399
	trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

	/*
	 * The init_mm context is given the first available (non-zero) PID,
	 * which is the "guard PID" and contains no page table. PIDR should
	 * never be set to zero because that duplicates the kernel address
	 * space at the 0x0... offset (quadrant 0)!
	 *
	 * An arbitrary PID that may later be allocated by the PID allocator
	 * for userspace processes must not be used either, because that
	 * would cause stale user mappings for that PID on CPUs outside of
	 * the TLB invalidation scheme (because it won't be in mm_cpumask).
	 *
	 * So permanently carve out one PID for the purpose of a guard PID.
	 */
	init_mm.context.id = mmu_base_pid;
	mmu_base_pid++;
416 417 418 419
}

static void __init radix_init_partition_table(void)
{
420
	unsigned long rts_field, dw0;
421

422
	mmu_partition_table_init();
423
	rts_field = radix__get_tree_size();
424 425
	dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
	mmu_partition_table_set_entry(0, dw0, 0);
426

427 428
	pr_info("Initializing Radix MMU\n");
	pr_info("Partition table %p\n", partition_tb);
429 430 431 432
}

void __init radix_init_native(void)
{
433
	register_process_table = native_register_process_table;
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
}

static int __init get_idx_from_shift(unsigned int shift)
{
	int idx = -1;

	switch (shift) {
	case 0xc:
		idx = MMU_PAGE_4K;
		break;
	case 0x10:
		idx = MMU_PAGE_64K;
		break;
	case 0x15:
		idx = MMU_PAGE_2M;
		break;
	case 0x1e:
		idx = MMU_PAGE_1G;
		break;
	}
	return idx;
}

static int __init radix_dt_scan_page_sizes(unsigned long node,
					   const char *uname, int depth,
					   void *data)
{
	int size = 0;
	int shift, idx;
	unsigned int ap;
	const __be32 *prop;
	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);

	/* We are scanning "cpu" nodes only */
	if (type == NULL || strcmp(type, "cpu") != 0)
		return 0;

471 472 473 474 475 476
	/* Find MMU PID size */
	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
	if (prop && size == 4)
		mmu_pid_bits = be32_to_cpup(prop);

	/* Grab page size encodings */
477 478 479 480 481 482 483 484 485 486 487 488
	prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
	if (!prop)
		return 0;

	pr_info("Page sizes from device-tree:\n");
	for (; size >= 4; size -= 4, ++prop) {

		struct mmu_psize_def *def;

		/* top 3 bit is AP encoding */
		shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
		ap = be32_to_cpu(prop[0]) >> 29;
489
		pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

		idx = get_idx_from_shift(shift);
		if (idx < 0)
			continue;

		def = &mmu_psize_defs[idx];
		def->shift = shift;
		def->ap  = ap;
	}

	/* needed ? */
	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
	return 1;
}

505
void __init radix__early_init_devtree(void)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
{
	int rc;

	/*
	 * Try to find the available page sizes in the device-tree
	 */
	rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
	if (rc != 0)  /* Found */
		goto found;
	/*
	 * let's assume we have page 4k and 64k support
	 */
	mmu_psize_defs[MMU_PAGE_4K].shift = 12;
	mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;

	mmu_psize_defs[MMU_PAGE_64K].shift = 16;
	mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
found:
	return;
}

527 528 529 530 531 532 533 534 535 536 537 538
static void radix_init_amor(void)
{
	/*
	* In HV mode, we init AMOR (Authority Mask Override Register) so that
	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
	* Register), enable key 0 and set it to 1.
	*
	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
	*/
	mtspr(SPRN_AMOR, (3ul << 62));
}

539 540 541 542 543 544 545
static void radix_init_iamr(void)
{
	/*
	 * Radix always uses key0 of the IAMR to determine if an access is
	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
	 * fetch.
	 */
546
	mtspr(SPRN_IAMR, (1ul << 62));
547 548
}

549 550 551 552 553 554 555 556 557 558 559 560 561
void __init radix__early_init_mmu(void)
{
	unsigned long lpcr;

#ifdef CONFIG_PPC_64K_PAGES
	/* PAGE_SIZE mappings */
	mmu_virtual_psize = MMU_PAGE_64K;
#else
	mmu_virtual_psize = MMU_PAGE_4K;
#endif

#ifdef CONFIG_SPARSEMEM_VMEMMAP
	/* vmemmap mapping */
562 563 564 565 566 567 568
	if (mmu_psize_defs[MMU_PAGE_2M].shift) {
		/*
		 * map vmemmap using 2M if available
		 */
		mmu_vmemmap_psize = MMU_PAGE_2M;
	} else
		mmu_vmemmap_psize = mmu_virtual_psize;
569 570 571 572 573 574 575 576
#endif
	/*
	 * initialize page table size
	 */
	__pte_index_size = RADIX_PTE_INDEX_SIZE;
	__pmd_index_size = RADIX_PMD_INDEX_SIZE;
	__pud_index_size = RADIX_PUD_INDEX_SIZE;
	__pgd_index_size = RADIX_PGD_INDEX_SIZE;
577
	__pud_cache_index = RADIX_PUD_INDEX_SIZE;
578 579 580 581 582
	__pte_table_size = RADIX_PTE_TABLE_SIZE;
	__pmd_table_size = RADIX_PMD_TABLE_SIZE;
	__pud_table_size = RADIX_PUD_TABLE_SIZE;
	__pgd_table_size = RADIX_PGD_TABLE_SIZE;

583 584 585
	__pmd_val_bits = RADIX_PMD_VAL_BITS;
	__pud_val_bits = RADIX_PUD_VAL_BITS;
	__pgd_val_bits = RADIX_PGD_VAL_BITS;
586

587 588 589 590
	__kernel_virt_start = RADIX_KERN_VIRT_START;
	__kernel_virt_size = RADIX_KERN_VIRT_SIZE;
	__vmalloc_start = RADIX_VMALLOC_START;
	__vmalloc_end = RADIX_VMALLOC_END;
591
	__kernel_io_start = RADIX_KERN_IO_START;
592 593
	vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
	ioremap_bot = IOREMAP_BASE;
594 595 596 597

#ifdef CONFIG_PCI
	pci_io_base = ISA_IO_BASE;
#endif
598 599
	__pte_frag_nr = RADIX_PTE_FRAG_NR;
	__pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
600 601
	__pmd_frag_nr = RADIX_PMD_FRAG_NR;
	__pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
602

603
	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
604
		radix_init_native();
605
		lpcr = mfspr(SPRN_LPCR);
606
		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
607
		radix_init_partition_table();
608
		radix_init_amor();
609 610
	} else {
		radix_init_pseries();
611
	}
612

613 614
	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);

615
	radix_init_iamr();
616
	radix_init_pgtable();
617 618
	/* Switch to the guard PID before turning on MMU */
	radix__switch_mmu_context(NULL, &init_mm);
619 620
	if (cpu_has_feature(CPU_FTR_HVMODE))
		tlbiel_all();
621 622 623 624 625 626
}

void radix__early_init_mmu_secondary(void)
{
	unsigned long lpcr;
	/*
627
	 * update partition table control register and UPRT
628
	 */
629 630
	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
		lpcr = mfspr(SPRN_LPCR);
631
		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
632

633 634
		mtspr(SPRN_PTCR,
		      __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
635
		radix_init_amor();
636
	}
637
	radix_init_iamr();
638

639
	radix__switch_mmu_context(NULL, &init_mm);
640 641
	if (cpu_has_feature(CPU_FTR_HVMODE))
		tlbiel_all();
642 643
}

644 645 646 647 648 649 650 651
void radix__mmu_cleanup_all(void)
{
	unsigned long lpcr;

	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
		lpcr = mfspr(SPRN_LPCR);
		mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
		mtspr(SPRN_PTCR, 0);
652
		powernv_set_nmmu_ptcr(0);
653 654 655 656
		radix__flush_tlb_all();
	}
}

657 658 659
void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
				phys_addr_t first_memblock_size)
{
660 661 662 663
	/* We don't currently support the first MEMBLOCK not mapping 0
	 * physical on those processors
	 */
	BUG_ON(first_memblock_base != 0);
664

665 666 667 668
	/*
	 * Radix mode is not limited by RMA / VRMA addressing.
	 */
	ppc64_rma_size = ULONG_MAX;
669
}
670

671
#ifdef CONFIG_MEMORY_HOTPLUG
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
{
	pte_t *pte;
	int i;

	for (i = 0; i < PTRS_PER_PTE; i++) {
		pte = pte_start + i;
		if (!pte_none(*pte))
			return;
	}

	pte_free_kernel(&init_mm, pte_start);
	pmd_clear(pmd);
}

static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
{
	pmd_t *pmd;
	int i;

	for (i = 0; i < PTRS_PER_PMD; i++) {
		pmd = pmd_start + i;
		if (!pmd_none(*pmd))
			return;
	}

	pmd_free(&init_mm, pmd_start);
	pud_clear(pud);
}

702 703 704 705 706 707 708 709
struct change_mapping_params {
	pte_t *pte;
	unsigned long start;
	unsigned long end;
	unsigned long aligned_start;
	unsigned long aligned_end;
};

710
static int __meminit stop_machine_change_mapping(void *data)
711 712 713 714 715 716 717 718 719
{
	struct change_mapping_params *params =
			(struct change_mapping_params *)data;

	if (!data)
		return -1;

	spin_unlock(&init_mm.page_table_lock);
	pte_clear(&init_mm, params->aligned_start, params->pte);
720 721
	create_physical_mapping(params->aligned_start, params->start, -1);
	create_physical_mapping(params->end, params->aligned_end, -1);
722 723 724 725
	spin_lock(&init_mm.page_table_lock);
	return 0;
}

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
static void remove_pte_table(pte_t *pte_start, unsigned long addr,
			     unsigned long end)
{
	unsigned long next;
	pte_t *pte;

	pte = pte_start + pte_index(addr);
	for (; addr < end; addr = next, pte++) {
		next = (addr + PAGE_SIZE) & PAGE_MASK;
		if (next > end)
			next = end;

		if (!pte_present(*pte))
			continue;

741 742 743 744 745 746 747 748 749
		if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
			/*
			 * The vmemmap_free() and remove_section_mapping()
			 * codepaths call us with aligned addresses.
			 */
			WARN_ONCE(1, "%s: unaligned range\n", __func__);
			continue;
		}

750 751 752 753
		pte_clear(&init_mm, addr, pte);
	}
}

754 755 756
/*
 * clear the pte and potentially split the mapping helper
 */
757
static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
				unsigned long size, pte_t *pte)
{
	unsigned long mask = ~(size - 1);
	unsigned long aligned_start = addr & mask;
	unsigned long aligned_end = addr + size;
	struct change_mapping_params params;
	bool split_region = false;

	if ((end - addr) < size) {
		/*
		 * We're going to clear the PTE, but not flushed
		 * the mapping, time to remap and flush. The
		 * effects if visible outside the processor or
		 * if we are running in code close to the
		 * mapping we cleared, we are in trouble.
		 */
		if (overlaps_kernel_text(aligned_start, addr) ||
			overlaps_kernel_text(end, aligned_end)) {
			/*
			 * Hack, just return, don't pte_clear
			 */
			WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
				  "text, not splitting\n", addr, end);
			return;
		}
		split_region = true;
	}

	if (split_region) {
		params.pte = pte;
		params.start = addr;
		params.end = end;
		params.aligned_start = addr & ~(size - 1);
		params.aligned_end = min_t(unsigned long, aligned_end,
				(unsigned long)__va(memblock_end_of_DRAM()));
		stop_machine(stop_machine_change_mapping, &params, NULL);
		return;
	}

	pte_clear(&init_mm, addr, pte);
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
			     unsigned long end)
{
	unsigned long next;
	pte_t *pte_base;
	pmd_t *pmd;

	pmd = pmd_start + pmd_index(addr);
	for (; addr < end; addr = next, pmd++) {
		next = pmd_addr_end(addr, end);

		if (!pmd_present(*pmd))
			continue;

		if (pmd_huge(*pmd)) {
815
			split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
			continue;
		}

		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
		remove_pte_table(pte_base, addr, next);
		free_pte_table(pte_base, pmd);
	}
}

static void remove_pud_table(pud_t *pud_start, unsigned long addr,
			     unsigned long end)
{
	unsigned long next;
	pmd_t *pmd_base;
	pud_t *pud;

	pud = pud_start + pud_index(addr);
	for (; addr < end; addr = next, pud++) {
		next = pud_addr_end(addr, end);

		if (!pud_present(*pud))
			continue;

		if (pud_huge(*pud)) {
840
			split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
841 842 843 844 845 846 847 848 849
			continue;
		}

		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
		remove_pmd_table(pmd_base, addr, next);
		free_pmd_table(pmd_base, pud);
	}
}

850
static void __meminit remove_pagetable(unsigned long start, unsigned long end)
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
{
	unsigned long addr, next;
	pud_t *pud_base;
	pgd_t *pgd;

	spin_lock(&init_mm.page_table_lock);

	for (addr = start; addr < end; addr = next) {
		next = pgd_addr_end(addr, end);

		pgd = pgd_offset_k(addr);
		if (!pgd_present(*pgd))
			continue;

		if (pgd_huge(*pgd)) {
866
			split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
867 868 869 870 871 872 873 874 875 876 877
			continue;
		}

		pud_base = (pud_t *)pgd_page_vaddr(*pgd);
		remove_pud_table(pud_base, addr, next);
	}

	spin_unlock(&init_mm.page_table_lock);
	radix__flush_tlb_kernel_range(start, end);
}

878
int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
879
{
880
	return create_physical_mapping(start, end, nid);
881
}
882

883
int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
884 885 886 887
{
	remove_pagetable(start, end);
	return 0;
}
888 889
#endif /* CONFIG_MEMORY_HOTPLUG */

890
#ifdef CONFIG_SPARSEMEM_VMEMMAP
891 892 893 894 895 896 897
static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
				 pgprot_t flags, unsigned int map_page_size,
				 int nid)
{
	return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
}

898 899 900 901 902 903
int __meminit radix__vmemmap_create_mapping(unsigned long start,
				      unsigned long page_size,
				      unsigned long phys)
{
	/* Create a PTE encoding */
	unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
904 905 906 907 908
	int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
	int ret;

	ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
	BUG_ON(ret);
909 910 911 912 913

	return 0;
}

#ifdef CONFIG_MEMORY_HOTPLUG
914
void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
915
{
916
	remove_pagetable(start, start + page_size);
917 918 919
}
#endif
#endif
920 921 922 923 924 925 926 927 928 929

#ifdef CONFIG_TRANSPARENT_HUGEPAGE

unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
				  pmd_t *pmdp, unsigned long clr,
				  unsigned long set)
{
	unsigned long old;

#ifdef CONFIG_DEBUG_VM
930
	WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
931
	assert_spin_locked(pmd_lockptr(mm, pmdp));
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
#endif

	old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
	trace_hugepage_update(addr, old, clr, set);

	return old;
}

pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
			pmd_t *pmdp)

{
	pmd_t pmd;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
	VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
948
	VM_BUG_ON(pmd_devmap(*pmdp));
949 950 951 952 953
	/*
	 * khugepaged calls this for normal pmd
	 */
	pmd = *pmdp;
	pmd_clear(pmdp);
954

955
	/*FIXME!!  Verify whether we need this kick below */
956
	serialize_against_pte_lookup(vma->vm_mm);
957 958 959

	radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	return pmd;
}

/*
 * For us pgtable_t is pte_t *. Inorder to save the deposisted
 * page table, we consider the allocated page table as a list
 * head. On withdraw we need to make sure we zero out the used
 * list_head memory area.
 */
void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
				 pgtable_t pgtable)
{
        struct list_head *lh = (struct list_head *) pgtable;

        assert_spin_locked(pmd_lockptr(mm, pmdp));

        /* FIFO */
        if (!pmd_huge_pte(mm, pmdp))
                INIT_LIST_HEAD(lh);
        else
                list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
        pmd_huge_pte(mm, pmdp) = pgtable;
}

pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
{
        pte_t *ptep;
        pgtable_t pgtable;
        struct list_head *lh;

        assert_spin_locked(pmd_lockptr(mm, pmdp));

        /* FIFO */
        pgtable = pmd_huge_pte(mm, pmdp);
        lh = (struct list_head *) pgtable;
        if (list_empty(lh))
                pmd_huge_pte(mm, pmdp) = NULL;
        else {
                pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
                list_del(lh);
        }
        ptep = (pte_t *) pgtable;
        *ptep = __pte(0);
        ptep++;
        *ptep = __pte(0);
        return pgtable;
}


pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
			       unsigned long addr, pmd_t *pmdp)
{
	pmd_t old_pmd;
	unsigned long old;

	old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
	old_pmd = __pmd(old);
	/*
1018
	 * Serialize against find_current_mm_pte which does lock-less
1019 1020 1021 1022 1023 1024
	 * lookup in page tables with local interrupts disabled. For huge pages
	 * it casts pmd_t to pte_t. Since format of pte_t is different from
	 * pmd_t we want to prevent transit from pmd pointing to page table
	 * to pmd pointing to huge page (and back) while interrupts are disabled.
	 * We clear pmd to possibly replace it with page table pointer in
	 * different code paths. So make sure we wait for the parallel
1025
	 * find_current_mm_pte to finish.
1026
	 */
1027
	serialize_against_pte_lookup(mm);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	return old_pmd;
}

int radix__has_transparent_hugepage(void)
{
	/* For radix 2M at PMD level means thp */
	if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
		return 1;
	return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1039

1040 1041
void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
				  pte_t entry, unsigned long address, int psize)
1042
{
1043
	struct mm_struct *mm = vma->vm_mm;
1044 1045
	unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
					      _PAGE_RW | _PAGE_EXEC);
1046 1047

	unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1048 1049 1050 1051
	/*
	 * To avoid NMMU hang while relaxing access, we need mark
	 * the pte invalid in between.
	 */
1052
	if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1053 1054
		unsigned long old_pte, new_pte;

1055
		old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1056 1057 1058 1059
		/*
		 * new value of pte
		 */
		new_pte = old_pte | set;
1060
		radix__flush_tlb_page_psize(mm, address, psize);
1061
		__radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1062
	} else {
1063
		__radix_pte_update(ptep, 0, set);
1064 1065 1066 1067 1068 1069
		/*
		 * Book3S does not require a TLB flush when relaxing access
		 * restrictions when the address space is not attached to a
		 * NMMU, because the core MMU will reload the pte after taking
		 * an access fault, which is defined by the architectue.
		 */
1070
	}
1071
	/* See ptesync comment in radix__set_pte_at */
1072
}