pgtable-radix.c 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Page table handling routines for radix page table.
 *
 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
11 12 13 14

#define pr_fmt(fmt) "radix-mmu: " fmt

#include <linux/kernel.h>
15
#include <linux/sched/mm.h>
16 17
#include <linux/memblock.h>
#include <linux/of_fdt.h>
18
#include <linux/mm.h>
19
#include <linux/string_helpers.h>
20
#include <linux/stop_machine.h>
21 22 23

#include <asm/pgtable.h>
#include <asm/pgalloc.h>
24
#include <asm/mmu_context.h>
25 26 27 28
#include <asm/dma.h>
#include <asm/machdep.h>
#include <asm/mmu.h>
#include <asm/firmware.h>
29
#include <asm/powernv.h>
30
#include <asm/sections.h>
31
#include <asm/trace.h>
32

33 34
#include <trace/events/thp.h>

35 36 37
unsigned int mmu_pid_bits;
unsigned int mmu_base_pid;

38 39
static int native_register_process_table(unsigned long base, unsigned long pg_sz,
					 unsigned long table_size)
40
{
41 42 43 44 45 46
	unsigned long patb0, patb1;

	patb0 = be64_to_cpu(partition_tb[0].patb0);
	patb1 = base | table_size | PATB_GR;

	mmu_partition_table_set_entry(0, patb0, patb1);
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
	return 0;
}

static __ref void *early_alloc_pgtable(unsigned long size)
{
	void *pt;

	pt = __va(memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE));
	memset(pt, 0, size);

	return pt;
}

int radix__map_kernel_page(unsigned long ea, unsigned long pa,
			  pgprot_t flags,
			  unsigned int map_page_size)
{
	pgd_t *pgdp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;
	/*
	 * Make sure task size is correct as per the max adddr
	 */
	BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
	if (slab_is_available()) {
		pgdp = pgd_offset_k(ea);
		pudp = pud_alloc(&init_mm, pgdp, ea);
		if (!pudp)
			return -ENOMEM;
		if (map_page_size == PUD_SIZE) {
			ptep = (pte_t *)pudp;
			goto set_the_pte;
		}
		pmdp = pmd_alloc(&init_mm, pudp, ea);
		if (!pmdp)
			return -ENOMEM;
		if (map_page_size == PMD_SIZE) {
86
			ptep = pmdp_ptep(pmdp);
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
			goto set_the_pte;
		}
		ptep = pte_alloc_kernel(pmdp, ea);
		if (!ptep)
			return -ENOMEM;
	} else {
		pgdp = pgd_offset_k(ea);
		if (pgd_none(*pgdp)) {
			pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
			BUG_ON(pudp == NULL);
			pgd_populate(&init_mm, pgdp, pudp);
		}
		pudp = pud_offset(pgdp, ea);
		if (map_page_size == PUD_SIZE) {
			ptep = (pte_t *)pudp;
			goto set_the_pte;
		}
		if (pud_none(*pudp)) {
			pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
			BUG_ON(pmdp == NULL);
			pud_populate(&init_mm, pudp, pmdp);
		}
		pmdp = pmd_offset(pudp, ea);
		if (map_page_size == PMD_SIZE) {
111
			ptep = pmdp_ptep(pmdp);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
			goto set_the_pte;
		}
		if (!pmd_present(*pmdp)) {
			ptep = early_alloc_pgtable(PAGE_SIZE);
			BUG_ON(ptep == NULL);
			pmd_populate_kernel(&init_mm, pmdp, ptep);
		}
		ptep = pte_offset_kernel(pmdp, ea);
	}

set_the_pte:
	set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, flags));
	smp_wmb();
	return 0;
}

128
#ifdef CONFIG_STRICT_KERNEL_RWX
129 130
void radix__change_memory_range(unsigned long start, unsigned long end,
				unsigned long clear)
131 132 133 134 135 136 137 138 139 140
{
	unsigned long idx;
	pgd_t *pgdp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	start = ALIGN_DOWN(start, PAGE_SIZE);
	end = PAGE_ALIGN(end); // aligns up

141 142
	pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
		 start, end, clear);
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	for (idx = start; idx < end; idx += PAGE_SIZE) {
		pgdp = pgd_offset_k(idx);
		pudp = pud_alloc(&init_mm, pgdp, idx);
		if (!pudp)
			continue;
		if (pud_huge(*pudp)) {
			ptep = (pte_t *)pudp;
			goto update_the_pte;
		}
		pmdp = pmd_alloc(&init_mm, pudp, idx);
		if (!pmdp)
			continue;
		if (pmd_huge(*pmdp)) {
			ptep = pmdp_ptep(pmdp);
			goto update_the_pte;
		}
		ptep = pte_alloc_kernel(pmdp, idx);
		if (!ptep)
			continue;
update_the_pte:
164
		radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
165 166 167 168
	}

	radix__flush_tlb_kernel_range(start, end);
}
169 170 171 172 173

void radix__mark_rodata_ro(void)
{
	unsigned long start, end;

174 175 176 177 178 179 180 181 182 183
	/*
	 * mark_rodata_ro() will mark itself as !writable at some point.
	 * Due to DD1 workaround in radix__pte_update(), we'll end up with
	 * an invalid pte and the system will crash quite severly.
	 */
	if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
		pr_warn("Warning: Unable to mark rodata read only on P9 DD1\n");
		return;
	}

184 185 186 187 188
	start = (unsigned long)_stext;
	end = (unsigned long)__init_begin;

	radix__change_memory_range(start, end, _PAGE_WRITE);
}
189 190 191 192 193 194 195 196

void radix__mark_initmem_nx(void)
{
	unsigned long start = (unsigned long)__init_begin;
	unsigned long end = (unsigned long)__init_end;

	radix__change_memory_range(start, end, _PAGE_EXEC);
}
197 198
#endif /* CONFIG_STRICT_KERNEL_RWX */

199 200 201 202
static inline void __meminit print_mapping(unsigned long start,
					   unsigned long end,
					   unsigned long size)
{
203 204
	char buf[10];

205 206 207
	if (end <= start)
		return;

208 209 210
	string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));

	pr_info("Mapped 0x%016lx-0x%016lx with %s pages\n", start, end, buf);
211 212 213 214 215
}

static int __meminit create_physical_mapping(unsigned long start,
					     unsigned long end)
{
216 217
	unsigned long vaddr, addr, mapping_size = 0;
	pgprot_t prot;
218 219 220 221 222 223
	unsigned long max_mapping_size;
#ifdef CONFIG_STRICT_KERNEL_RWX
	int split_text_mapping = 1;
#else
	int split_text_mapping = 0;
#endif
224 225 226 227 228 229 230 231

	start = _ALIGN_UP(start, PAGE_SIZE);
	for (addr = start; addr < end; addr += mapping_size) {
		unsigned long gap, previous_size;
		int rc;

		gap = end - addr;
		previous_size = mapping_size;
232
		max_mapping_size = PUD_SIZE;
233

234
retry:
235
		if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
236 237
		    mmu_psize_defs[MMU_PAGE_1G].shift &&
		    PUD_SIZE <= max_mapping_size)
238 239 240 241 242 243 244
			mapping_size = PUD_SIZE;
		else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
			 mmu_psize_defs[MMU_PAGE_2M].shift)
			mapping_size = PMD_SIZE;
		else
			mapping_size = PAGE_SIZE;

245 246 247 248 249 250 251 252 253 254 255 256
		if (split_text_mapping && (mapping_size == PUD_SIZE) &&
			(addr <= __pa_symbol(__init_begin)) &&
			(addr + mapping_size) >= __pa_symbol(_stext)) {
			max_mapping_size = PMD_SIZE;
			goto retry;
		}

		if (split_text_mapping && (mapping_size == PMD_SIZE) &&
		    (addr <= __pa_symbol(__init_begin)) &&
		    (addr + mapping_size) >= __pa_symbol(_stext))
			mapping_size = PAGE_SIZE;

257 258 259 260 261
		if (mapping_size != previous_size) {
			print_mapping(start, addr, previous_size);
			start = addr;
		}

262 263
		vaddr = (unsigned long)__va(addr);

264 265
		if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
		    overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size))
266 267 268 269 270
			prot = PAGE_KERNEL_X;
		else
			prot = PAGE_KERNEL;

		rc = radix__map_kernel_page(vaddr, addr, prot, mapping_size);
271 272 273 274 275 276 277 278
		if (rc)
			return rc;
	}

	print_mapping(start, addr, mapping_size);
	return 0;
}

279 280 281 282 283 284 285 286 287 288
static void __init radix_init_pgtable(void)
{
	unsigned long rts_field;
	struct memblock_region *reg;

	/* We don't support slb for radix */
	mmu_slb_size = 0;
	/*
	 * Create the linear mapping, using standard page size for now
	 */
289 290 291
	for_each_memblock(memory, reg)
		WARN_ON(create_physical_mapping(reg->base,
						reg->base + reg->size));
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

	/* Find out how many PID bits are supported */
	if (cpu_has_feature(CPU_FTR_HVMODE)) {
		if (!mmu_pid_bits)
			mmu_pid_bits = 20;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
		/*
		 * When KVM is possible, we only use the top half of the
		 * PID space to avoid collisions between host and guest PIDs
		 * which can cause problems due to prefetch when exiting the
		 * guest with AIL=3
		 */
		mmu_base_pid = 1 << (mmu_pid_bits - 1);
#else
		mmu_base_pid = 1;
#endif
	} else {
		/* The guest uses the bottom half of the PID space */
		if (!mmu_pid_bits)
			mmu_pid_bits = 19;
		mmu_base_pid = 1;
	}

315 316 317 318
	/*
	 * Allocate Partition table and process table for the
	 * host.
	 */
319
	BUG_ON(PRTB_SIZE_SHIFT > 36);
320 321 322 323
	process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT);
	/*
	 * Fill in the process table.
	 */
324
	rts_field = radix__get_tree_size();
325 326 327 328 329 330
	process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
	/*
	 * Fill in the partition table. We are suppose to use effective address
	 * of process table here. But our linear mapping also enable us to use
	 * physical address here.
	 */
331
	register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
332
	pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
333 334 335 336
	asm volatile("ptesync" : : : "memory");
	asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
		     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
	asm volatile("eieio; tlbsync; ptesync" : : : "memory");
337
	trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

	/*
	 * The init_mm context is given the first available (non-zero) PID,
	 * which is the "guard PID" and contains no page table. PIDR should
	 * never be set to zero because that duplicates the kernel address
	 * space at the 0x0... offset (quadrant 0)!
	 *
	 * An arbitrary PID that may later be allocated by the PID allocator
	 * for userspace processes must not be used either, because that
	 * would cause stale user mappings for that PID on CPUs outside of
	 * the TLB invalidation scheme (because it won't be in mm_cpumask).
	 *
	 * So permanently carve out one PID for the purpose of a guard PID.
	 */
	init_mm.context.id = mmu_base_pid;
	mmu_base_pid++;
354 355 356 357
}

static void __init radix_init_partition_table(void)
{
358
	unsigned long rts_field, dw0;
359

360
	mmu_partition_table_init();
361
	rts_field = radix__get_tree_size();
362 363
	dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
	mmu_partition_table_set_entry(0, dw0, 0);
364

365 366
	pr_info("Initializing Radix MMU\n");
	pr_info("Partition table %p\n", partition_tb);
367 368 369 370
}

void __init radix_init_native(void)
{
371
	register_process_table = native_register_process_table;
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
}

static int __init get_idx_from_shift(unsigned int shift)
{
	int idx = -1;

	switch (shift) {
	case 0xc:
		idx = MMU_PAGE_4K;
		break;
	case 0x10:
		idx = MMU_PAGE_64K;
		break;
	case 0x15:
		idx = MMU_PAGE_2M;
		break;
	case 0x1e:
		idx = MMU_PAGE_1G;
		break;
	}
	return idx;
}

static int __init radix_dt_scan_page_sizes(unsigned long node,
					   const char *uname, int depth,
					   void *data)
{
	int size = 0;
	int shift, idx;
	unsigned int ap;
	const __be32 *prop;
	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);

	/* We are scanning "cpu" nodes only */
	if (type == NULL || strcmp(type, "cpu") != 0)
		return 0;

409 410 411 412 413 414
	/* Find MMU PID size */
	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
	if (prop && size == 4)
		mmu_pid_bits = be32_to_cpup(prop);

	/* Grab page size encodings */
415 416 417 418 419 420 421 422 423 424 425 426
	prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
	if (!prop)
		return 0;

	pr_info("Page sizes from device-tree:\n");
	for (; size >= 4; size -= 4, ++prop) {

		struct mmu_psize_def *def;

		/* top 3 bit is AP encoding */
		shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
		ap = be32_to_cpu(prop[0]) >> 29;
427
		pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

		idx = get_idx_from_shift(shift);
		if (idx < 0)
			continue;

		def = &mmu_psize_defs[idx];
		def->shift = shift;
		def->ap  = ap;
	}

	/* needed ? */
	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
	return 1;
}

443
void __init radix__early_init_devtree(void)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
{
	int rc;

	/*
	 * Try to find the available page sizes in the device-tree
	 */
	rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
	if (rc != 0)  /* Found */
		goto found;
	/*
	 * let's assume we have page 4k and 64k support
	 */
	mmu_psize_defs[MMU_PAGE_4K].shift = 12;
	mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;

	mmu_psize_defs[MMU_PAGE_64K].shift = 16;
	mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
found:
#ifdef CONFIG_SPARSEMEM_VMEMMAP
	if (mmu_psize_defs[MMU_PAGE_2M].shift) {
		/*
		 * map vmemmap using 2M if available
		 */
		mmu_vmemmap_psize = MMU_PAGE_2M;
	}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
	return;
}

473 474 475 476 477 478 479 480 481 482 483 484 485
static void update_hid_for_radix(void)
{
	unsigned long hid0;
	unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */

	asm volatile("ptesync": : :"memory");
	/* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
		     : : "r"(rb), "i"(1), "i"(0), "i"(2), "r"(0) : "memory");
	/* prs = 1, ric = 2, rs = 0, r = 1 is = 3 */
	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
		     : : "r"(rb), "i"(1), "i"(1), "i"(2), "r"(0) : "memory");
	asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
486 487 488
	trace_tlbie(0, 0, rb, 0, 2, 0, 1);
	trace_tlbie(0, 0, rb, 0, 2, 1, 1);

489 490 491 492 493 494 495 496 497 498 499 500 501
	/*
	 * now switch the HID
	 */
	hid0  = mfspr(SPRN_HID0);
	hid0 |= HID0_POWER9_RADIX;
	mtspr(SPRN_HID0, hid0);
	asm volatile("isync": : :"memory");

	/* Wait for it to happen */
	while (!(mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
		cpu_relax();
}

502 503 504 505 506 507 508 509 510 511 512 513
static void radix_init_amor(void)
{
	/*
	* In HV mode, we init AMOR (Authority Mask Override Register) so that
	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
	* Register), enable key 0 and set it to 1.
	*
	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
	*/
	mtspr(SPRN_AMOR, (3ul << 62));
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static void radix_init_iamr(void)
{
	unsigned long iamr;

	/*
	 * The IAMR should set to 0 on DD1.
	 */
	if (cpu_has_feature(CPU_FTR_POWER9_DD1))
		iamr = 0;
	else
		iamr = (1ul << 62);

	/*
	 * Radix always uses key0 of the IAMR to determine if an access is
	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
	 * fetch.
	 */
	mtspr(SPRN_IAMR, iamr);
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
void __init radix__early_init_mmu(void)
{
	unsigned long lpcr;

#ifdef CONFIG_PPC_64K_PAGES
	/* PAGE_SIZE mappings */
	mmu_virtual_psize = MMU_PAGE_64K;
#else
	mmu_virtual_psize = MMU_PAGE_4K;
#endif

#ifdef CONFIG_SPARSEMEM_VMEMMAP
	/* vmemmap mapping */
	mmu_vmemmap_psize = mmu_virtual_psize;
#endif
	/*
	 * initialize page table size
	 */
	__pte_index_size = RADIX_PTE_INDEX_SIZE;
	__pmd_index_size = RADIX_PMD_INDEX_SIZE;
	__pud_index_size = RADIX_PUD_INDEX_SIZE;
	__pgd_index_size = RADIX_PGD_INDEX_SIZE;
556
	__pud_cache_index = RADIX_PUD_INDEX_SIZE;
557 558 559 560 561 562
	__pmd_cache_index = RADIX_PMD_INDEX_SIZE;
	__pte_table_size = RADIX_PTE_TABLE_SIZE;
	__pmd_table_size = RADIX_PMD_TABLE_SIZE;
	__pud_table_size = RADIX_PUD_TABLE_SIZE;
	__pgd_table_size = RADIX_PGD_TABLE_SIZE;

563 564 565
	__pmd_val_bits = RADIX_PMD_VAL_BITS;
	__pud_val_bits = RADIX_PUD_VAL_BITS;
	__pgd_val_bits = RADIX_PGD_VAL_BITS;
566

567 568 569 570
	__kernel_virt_start = RADIX_KERN_VIRT_START;
	__kernel_virt_size = RADIX_KERN_VIRT_SIZE;
	__vmalloc_start = RADIX_VMALLOC_START;
	__vmalloc_end = RADIX_VMALLOC_END;
571
	__kernel_io_start = RADIX_KERN_IO_START;
572 573
	vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
	ioremap_bot = IOREMAP_BASE;
574 575 576 577 578

#ifdef CONFIG_PCI
	pci_io_base = ISA_IO_BASE;
#endif

579 580 581 582 583
	/*
	 * For now radix also use the same frag size
	 */
	__pte_frag_nr = H_PTE_FRAG_NR;
	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
584

585
	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
586
		radix_init_native();
587 588
		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
			update_hid_for_radix();
589
		lpcr = mfspr(SPRN_LPCR);
590
		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
591
		radix_init_partition_table();
592
		radix_init_amor();
593 594
	} else {
		radix_init_pseries();
595
	}
596

597 598
	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);

599
	radix_init_iamr();
600
	radix_init_pgtable();
601 602
	/* Switch to the guard PID before turning on MMU */
	radix__switch_mmu_context(NULL, &init_mm);
603 604
	if (cpu_has_feature(CPU_FTR_HVMODE))
		tlbiel_all();
605 606 607 608 609 610
}

void radix__early_init_mmu_secondary(void)
{
	unsigned long lpcr;
	/*
611
	 * update partition table control register and UPRT
612
	 */
613
	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
614 615 616 617

		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
			update_hid_for_radix();

618
		lpcr = mfspr(SPRN_LPCR);
619
		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
620

621 622
		mtspr(SPRN_PTCR,
		      __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
623
		radix_init_amor();
624
	}
625
	radix_init_iamr();
626

627
	radix__switch_mmu_context(NULL, &init_mm);
628 629
	if (cpu_has_feature(CPU_FTR_HVMODE))
		tlbiel_all();
630 631
}

632 633 634 635 636 637 638 639
void radix__mmu_cleanup_all(void)
{
	unsigned long lpcr;

	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
		lpcr = mfspr(SPRN_LPCR);
		mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
		mtspr(SPRN_PTCR, 0);
640
		powernv_set_nmmu_ptcr(0);
641 642 643 644
		radix__flush_tlb_all();
	}
}

645 646 647
void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
				phys_addr_t first_memblock_size)
{
648 649 650 651
	/* We don't currently support the first MEMBLOCK not mapping 0
	 * physical on those processors
	 */
	BUG_ON(first_memblock_base != 0);
652

653 654 655 656
	/*
	 * Radix mode is not limited by RMA / VRMA addressing.
	 */
	ppc64_rma_size = ULONG_MAX;
657
}
658

659
#ifdef CONFIG_MEMORY_HOTPLUG
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
{
	pte_t *pte;
	int i;

	for (i = 0; i < PTRS_PER_PTE; i++) {
		pte = pte_start + i;
		if (!pte_none(*pte))
			return;
	}

	pte_free_kernel(&init_mm, pte_start);
	pmd_clear(pmd);
}

static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
{
	pmd_t *pmd;
	int i;

	for (i = 0; i < PTRS_PER_PMD; i++) {
		pmd = pmd_start + i;
		if (!pmd_none(*pmd))
			return;
	}

	pmd_free(&init_mm, pmd_start);
	pud_clear(pud);
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
struct change_mapping_params {
	pte_t *pte;
	unsigned long start;
	unsigned long end;
	unsigned long aligned_start;
	unsigned long aligned_end;
};

static int stop_machine_change_mapping(void *data)
{
	struct change_mapping_params *params =
			(struct change_mapping_params *)data;

	if (!data)
		return -1;

	spin_unlock(&init_mm.page_table_lock);
	pte_clear(&init_mm, params->aligned_start, params->pte);
	create_physical_mapping(params->aligned_start, params->start);
	create_physical_mapping(params->end, params->aligned_end);
	spin_lock(&init_mm.page_table_lock);
	return 0;
}

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
static void remove_pte_table(pte_t *pte_start, unsigned long addr,
			     unsigned long end)
{
	unsigned long next;
	pte_t *pte;

	pte = pte_start + pte_index(addr);
	for (; addr < end; addr = next, pte++) {
		next = (addr + PAGE_SIZE) & PAGE_MASK;
		if (next > end)
			next = end;

		if (!pte_present(*pte))
			continue;

729 730 731 732 733 734 735 736 737
		if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
			/*
			 * The vmemmap_free() and remove_section_mapping()
			 * codepaths call us with aligned addresses.
			 */
			WARN_ONCE(1, "%s: unaligned range\n", __func__);
			continue;
		}

738 739 740 741
		pte_clear(&init_mm, addr, pte);
	}
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/*
 * clear the pte and potentially split the mapping helper
 */
static void split_kernel_mapping(unsigned long addr, unsigned long end,
				unsigned long size, pte_t *pte)
{
	unsigned long mask = ~(size - 1);
	unsigned long aligned_start = addr & mask;
	unsigned long aligned_end = addr + size;
	struct change_mapping_params params;
	bool split_region = false;

	if ((end - addr) < size) {
		/*
		 * We're going to clear the PTE, but not flushed
		 * the mapping, time to remap and flush. The
		 * effects if visible outside the processor or
		 * if we are running in code close to the
		 * mapping we cleared, we are in trouble.
		 */
		if (overlaps_kernel_text(aligned_start, addr) ||
			overlaps_kernel_text(end, aligned_end)) {
			/*
			 * Hack, just return, don't pte_clear
			 */
			WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
				  "text, not splitting\n", addr, end);
			return;
		}
		split_region = true;
	}

	if (split_region) {
		params.pte = pte;
		params.start = addr;
		params.end = end;
		params.aligned_start = addr & ~(size - 1);
		params.aligned_end = min_t(unsigned long, aligned_end,
				(unsigned long)__va(memblock_end_of_DRAM()));
		stop_machine(stop_machine_change_mapping, &params, NULL);
		return;
	}

	pte_clear(&init_mm, addr, pte);
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
			     unsigned long end)
{
	unsigned long next;
	pte_t *pte_base;
	pmd_t *pmd;

	pmd = pmd_start + pmd_index(addr);
	for (; addr < end; addr = next, pmd++) {
		next = pmd_addr_end(addr, end);

		if (!pmd_present(*pmd))
			continue;

		if (pmd_huge(*pmd)) {
803
			split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
			continue;
		}

		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
		remove_pte_table(pte_base, addr, next);
		free_pte_table(pte_base, pmd);
	}
}

static void remove_pud_table(pud_t *pud_start, unsigned long addr,
			     unsigned long end)
{
	unsigned long next;
	pmd_t *pmd_base;
	pud_t *pud;

	pud = pud_start + pud_index(addr);
	for (; addr < end; addr = next, pud++) {
		next = pud_addr_end(addr, end);

		if (!pud_present(*pud))
			continue;

		if (pud_huge(*pud)) {
828
			split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
			continue;
		}

		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
		remove_pmd_table(pmd_base, addr, next);
		free_pmd_table(pmd_base, pud);
	}
}

static void remove_pagetable(unsigned long start, unsigned long end)
{
	unsigned long addr, next;
	pud_t *pud_base;
	pgd_t *pgd;

	spin_lock(&init_mm.page_table_lock);

	for (addr = start; addr < end; addr = next) {
		next = pgd_addr_end(addr, end);

		pgd = pgd_offset_k(addr);
		if (!pgd_present(*pgd))
			continue;

		if (pgd_huge(*pgd)) {
854
			split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
855 856 857 858 859 860 861 862 863 864 865
			continue;
		}

		pud_base = (pud_t *)pgd_page_vaddr(*pgd);
		remove_pud_table(pud_base, addr, next);
	}

	spin_unlock(&init_mm.page_table_lock);
	radix__flush_tlb_kernel_range(start, end);
}

866 867 868 869
int __ref radix__create_section_mapping(unsigned long start, unsigned long end)
{
	return create_physical_mapping(start, end);
}
870 871 872 873 874 875

int radix__remove_section_mapping(unsigned long start, unsigned long end)
{
	remove_pagetable(start, end);
	return 0;
}
876 877
#endif /* CONFIG_MEMORY_HOTPLUG */

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
#ifdef CONFIG_SPARSEMEM_VMEMMAP
int __meminit radix__vmemmap_create_mapping(unsigned long start,
				      unsigned long page_size,
				      unsigned long phys)
{
	/* Create a PTE encoding */
	unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;

	BUG_ON(radix__map_kernel_page(start, phys, __pgprot(flags), page_size));
	return 0;
}

#ifdef CONFIG_MEMORY_HOTPLUG
void radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
{
893
	remove_pagetable(start, start + page_size);
894 895 896
}
#endif
#endif
897 898 899 900 901 902 903 904 905 906

#ifdef CONFIG_TRANSPARENT_HUGEPAGE

unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
				  pmd_t *pmdp, unsigned long clr,
				  unsigned long set)
{
	unsigned long old;

#ifdef CONFIG_DEBUG_VM
907
	WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	assert_spin_locked(&mm->page_table_lock);
#endif

	old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
	trace_hugepage_update(addr, old, clr, set);

	return old;
}

pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
			pmd_t *pmdp)

{
	pmd_t pmd;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
	VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
925
	VM_BUG_ON(pmd_devmap(*pmdp));
926 927 928 929 930
	/*
	 * khugepaged calls this for normal pmd
	 */
	pmd = *pmdp;
	pmd_clear(pmdp);
931

932
	/*FIXME!!  Verify whether we need this kick below */
933
	serialize_against_pte_lookup(vma->vm_mm);
934 935 936

	radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	return pmd;
}

/*
 * For us pgtable_t is pte_t *. Inorder to save the deposisted
 * page table, we consider the allocated page table as a list
 * head. On withdraw we need to make sure we zero out the used
 * list_head memory area.
 */
void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
				 pgtable_t pgtable)
{
        struct list_head *lh = (struct list_head *) pgtable;

        assert_spin_locked(pmd_lockptr(mm, pmdp));

        /* FIFO */
        if (!pmd_huge_pte(mm, pmdp))
                INIT_LIST_HEAD(lh);
        else
                list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
        pmd_huge_pte(mm, pmdp) = pgtable;
}

pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
{
        pte_t *ptep;
        pgtable_t pgtable;
        struct list_head *lh;

        assert_spin_locked(pmd_lockptr(mm, pmdp));

        /* FIFO */
        pgtable = pmd_huge_pte(mm, pmdp);
        lh = (struct list_head *) pgtable;
        if (list_empty(lh))
                pmd_huge_pte(mm, pmdp) = NULL;
        else {
                pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
                list_del(lh);
        }
        ptep = (pte_t *) pgtable;
        *ptep = __pte(0);
        ptep++;
        *ptep = __pte(0);
        return pgtable;
}


pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
			       unsigned long addr, pmd_t *pmdp)
{
	pmd_t old_pmd;
	unsigned long old;

	old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
	old_pmd = __pmd(old);
	/*
995
	 * Serialize against find_current_mm_pte which does lock-less
996 997 998 999 1000 1001
	 * lookup in page tables with local interrupts disabled. For huge pages
	 * it casts pmd_t to pte_t. Since format of pte_t is different from
	 * pmd_t we want to prevent transit from pmd pointing to page table
	 * to pmd pointing to huge page (and back) while interrupts are disabled.
	 * We clear pmd to possibly replace it with page table pointer in
	 * different code paths. So make sure we wait for the parallel
1002
	 * find_current_mm_pte to finish.
1003
	 */
1004
	serialize_against_pte_lookup(mm);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	return old_pmd;
}

int radix__has_transparent_hugepage(void)
{
	/* For radix 2M at PMD level means thp */
	if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
		return 1;
	return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */