stat-shadow.c 27.7 KB
Newer Older
1 2 3 4
#include <stdio.h>
#include "evsel.h"
#include "stat.h"
#include "color.h"
5
#include "pmu.h"
6 7 8
#include "rblist.h"
#include "evlist.h"
#include "expr.h"
9
#include "metricgroup.h"
10 11 12 13 14 15 16 17 18 19 20 21

enum {
	CTX_BIT_USER	= 1 << 0,
	CTX_BIT_KERNEL	= 1 << 1,
	CTX_BIT_HV	= 1 << 2,
	CTX_BIT_HOST	= 1 << 3,
	CTX_BIT_IDLE	= 1 << 4,
	CTX_BIT_MAX	= 1 << 5,
};

#define NUM_CTX CTX_BIT_MAX

22 23 24 25 26 27 28
/*
 * AGGR_GLOBAL: Use CPU 0
 * AGGR_SOCKET: Use first CPU of socket
 * AGGR_CORE: Use first CPU of core
 * AGGR_NONE: Use matching CPU
 * AGGR_THREAD: Not supported?
 */
29 30 31 32 33 34 35 36 37 38 39 40 41 42
static struct stats runtime_nsecs_stats[MAX_NR_CPUS];
static struct stats runtime_cycles_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_stalled_cycles_front_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_stalled_cycles_back_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_branches_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_cacherefs_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_l1_dcache_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_l1_icache_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_ll_cache_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_itlb_cache_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_dtlb_cache_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_cycles_in_tx_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_transaction_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_elision_stats[NUM_CTX][MAX_NR_CPUS];
43 44 45 46 47
static struct stats runtime_topdown_total_slots[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_topdown_slots_issued[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_topdown_slots_retired[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_topdown_fetch_bubbles[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_topdown_recovery_bubbles[NUM_CTX][MAX_NR_CPUS];
48 49
static struct stats runtime_smi_num_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_aperf_stats[NUM_CTX][MAX_NR_CPUS];
50
static struct rblist runtime_saved_values;
51
static bool have_frontend_stalled;
52 53 54

struct stats walltime_nsecs_stats;

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
struct saved_value {
	struct rb_node rb_node;
	struct perf_evsel *evsel;
	int cpu;
	int ctx;
	struct stats stats;
};

static int saved_value_cmp(struct rb_node *rb_node, const void *entry)
{
	struct saved_value *a = container_of(rb_node,
					     struct saved_value,
					     rb_node);
	const struct saved_value *b = entry;

	if (a->ctx != b->ctx)
		return a->ctx - b->ctx;
	if (a->cpu != b->cpu)
		return a->cpu - b->cpu;
74 75 76 77 78
	if (a->evsel == b->evsel)
		return 0;
	if ((char *)a->evsel < (char *)b->evsel)
		return -1;
	return +1;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
}

static struct rb_node *saved_value_new(struct rblist *rblist __maybe_unused,
				     const void *entry)
{
	struct saved_value *nd = malloc(sizeof(struct saved_value));

	if (!nd)
		return NULL;
	memcpy(nd, entry, sizeof(struct saved_value));
	return &nd->rb_node;
}

static struct saved_value *saved_value_lookup(struct perf_evsel *evsel,
					      int cpu, int ctx,
					      bool create)
{
	struct rb_node *nd;
	struct saved_value dm = {
		.cpu = cpu,
		.ctx = ctx,
		.evsel = evsel,
	};
	nd = rblist__find(&runtime_saved_values, &dm);
	if (nd)
		return container_of(nd, struct saved_value, rb_node);
	if (create) {
		rblist__add_node(&runtime_saved_values, &dm);
		nd = rblist__find(&runtime_saved_values, &dm);
		if (nd)
			return container_of(nd, struct saved_value, rb_node);
	}
	return NULL;
}

114 115 116
void perf_stat__init_shadow_stats(void)
{
	have_frontend_stalled = pmu_have_event("cpu", "stalled-cycles-frontend");
117 118 119 120
	rblist__init(&runtime_saved_values);
	runtime_saved_values.node_cmp = saved_value_cmp;
	runtime_saved_values.node_new = saved_value_new;
	/* No delete for now */
121 122
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
static int evsel_context(struct perf_evsel *evsel)
{
	int ctx = 0;

	if (evsel->attr.exclude_kernel)
		ctx |= CTX_BIT_KERNEL;
	if (evsel->attr.exclude_user)
		ctx |= CTX_BIT_USER;
	if (evsel->attr.exclude_hv)
		ctx |= CTX_BIT_HV;
	if (evsel->attr.exclude_host)
		ctx |= CTX_BIT_HOST;
	if (evsel->attr.exclude_idle)
		ctx |= CTX_BIT_IDLE;

	return ctx;
}

void perf_stat__reset_shadow_stats(void)
{
143 144
	struct rb_node *pos, *next;

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	memset(runtime_nsecs_stats, 0, sizeof(runtime_nsecs_stats));
	memset(runtime_cycles_stats, 0, sizeof(runtime_cycles_stats));
	memset(runtime_stalled_cycles_front_stats, 0, sizeof(runtime_stalled_cycles_front_stats));
	memset(runtime_stalled_cycles_back_stats, 0, sizeof(runtime_stalled_cycles_back_stats));
	memset(runtime_branches_stats, 0, sizeof(runtime_branches_stats));
	memset(runtime_cacherefs_stats, 0, sizeof(runtime_cacherefs_stats));
	memset(runtime_l1_dcache_stats, 0, sizeof(runtime_l1_dcache_stats));
	memset(runtime_l1_icache_stats, 0, sizeof(runtime_l1_icache_stats));
	memset(runtime_ll_cache_stats, 0, sizeof(runtime_ll_cache_stats));
	memset(runtime_itlb_cache_stats, 0, sizeof(runtime_itlb_cache_stats));
	memset(runtime_dtlb_cache_stats, 0, sizeof(runtime_dtlb_cache_stats));
	memset(runtime_cycles_in_tx_stats, 0,
			sizeof(runtime_cycles_in_tx_stats));
	memset(runtime_transaction_stats, 0,
		sizeof(runtime_transaction_stats));
	memset(runtime_elision_stats, 0, sizeof(runtime_elision_stats));
	memset(&walltime_nsecs_stats, 0, sizeof(walltime_nsecs_stats));
162 163 164 165 166
	memset(runtime_topdown_total_slots, 0, sizeof(runtime_topdown_total_slots));
	memset(runtime_topdown_slots_retired, 0, sizeof(runtime_topdown_slots_retired));
	memset(runtime_topdown_slots_issued, 0, sizeof(runtime_topdown_slots_issued));
	memset(runtime_topdown_fetch_bubbles, 0, sizeof(runtime_topdown_fetch_bubbles));
	memset(runtime_topdown_recovery_bubbles, 0, sizeof(runtime_topdown_recovery_bubbles));
167 168
	memset(runtime_smi_num_stats, 0, sizeof(runtime_smi_num_stats));
	memset(runtime_aperf_stats, 0, sizeof(runtime_aperf_stats));
169 170 171 172 173 174 175 176 177

	next = rb_first(&runtime_saved_values.entries);
	while (next) {
		pos = next;
		next = rb_next(pos);
		memset(&container_of(pos, struct saved_value, rb_node)->stats,
		       0,
		       sizeof(struct stats));
	}
178 179 180 181 182 183 184 185 186 187 188 189
}

/*
 * Update various tracking values we maintain to print
 * more semantic information such as miss/hit ratios,
 * instruction rates, etc:
 */
void perf_stat__update_shadow_stats(struct perf_evsel *counter, u64 *count,
				    int cpu)
{
	int ctx = evsel_context(counter);

190 191
	if (perf_evsel__match(counter, SOFTWARE, SW_TASK_CLOCK) ||
	    perf_evsel__match(counter, SOFTWARE, SW_CPU_CLOCK))
192 193 194 195
		update_stats(&runtime_nsecs_stats[cpu], count[0]);
	else if (perf_evsel__match(counter, HARDWARE, HW_CPU_CYCLES))
		update_stats(&runtime_cycles_stats[ctx][cpu], count[0]);
	else if (perf_stat_evsel__is(counter, CYCLES_IN_TX))
196
		update_stats(&runtime_cycles_in_tx_stats[ctx][cpu], count[0]);
197 198 199 200
	else if (perf_stat_evsel__is(counter, TRANSACTION_START))
		update_stats(&runtime_transaction_stats[ctx][cpu], count[0]);
	else if (perf_stat_evsel__is(counter, ELISION_START))
		update_stats(&runtime_elision_stats[ctx][cpu], count[0]);
201 202 203 204 205 206 207 208 209 210
	else if (perf_stat_evsel__is(counter, TOPDOWN_TOTAL_SLOTS))
		update_stats(&runtime_topdown_total_slots[ctx][cpu], count[0]);
	else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_ISSUED))
		update_stats(&runtime_topdown_slots_issued[ctx][cpu], count[0]);
	else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_RETIRED))
		update_stats(&runtime_topdown_slots_retired[ctx][cpu], count[0]);
	else if (perf_stat_evsel__is(counter, TOPDOWN_FETCH_BUBBLES))
		update_stats(&runtime_topdown_fetch_bubbles[ctx][cpu],count[0]);
	else if (perf_stat_evsel__is(counter, TOPDOWN_RECOVERY_BUBBLES))
		update_stats(&runtime_topdown_recovery_bubbles[ctx][cpu], count[0]);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_FRONTEND))
		update_stats(&runtime_stalled_cycles_front_stats[ctx][cpu], count[0]);
	else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_BACKEND))
		update_stats(&runtime_stalled_cycles_back_stats[ctx][cpu], count[0]);
	else if (perf_evsel__match(counter, HARDWARE, HW_BRANCH_INSTRUCTIONS))
		update_stats(&runtime_branches_stats[ctx][cpu], count[0]);
	else if (perf_evsel__match(counter, HARDWARE, HW_CACHE_REFERENCES))
		update_stats(&runtime_cacherefs_stats[ctx][cpu], count[0]);
	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1D))
		update_stats(&runtime_l1_dcache_stats[ctx][cpu], count[0]);
	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1I))
		update_stats(&runtime_ll_cache_stats[ctx][cpu], count[0]);
	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_LL))
		update_stats(&runtime_ll_cache_stats[ctx][cpu], count[0]);
	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_DTLB))
		update_stats(&runtime_dtlb_cache_stats[ctx][cpu], count[0]);
	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_ITLB))
		update_stats(&runtime_itlb_cache_stats[ctx][cpu], count[0]);
229 230 231 232
	else if (perf_stat_evsel__is(counter, SMI_NUM))
		update_stats(&runtime_smi_num_stats[ctx][cpu], count[0]);
	else if (perf_stat_evsel__is(counter, APERF))
		update_stats(&runtime_aperf_stats[ctx][cpu], count[0]);
233 234 235 236 237 238

	if (counter->collect_stat) {
		struct saved_value *v = saved_value_lookup(counter, cpu, ctx,
							   true);
		update_stats(&v->stats, count[0]);
	}
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
}

/* used for get_ratio_color() */
enum grc_type {
	GRC_STALLED_CYCLES_FE,
	GRC_STALLED_CYCLES_BE,
	GRC_CACHE_MISSES,
	GRC_MAX_NR
};

static const char *get_ratio_color(enum grc_type type, double ratio)
{
	static const double grc_table[GRC_MAX_NR][3] = {
		[GRC_STALLED_CYCLES_FE] = { 50.0, 30.0, 10.0 },
		[GRC_STALLED_CYCLES_BE] = { 75.0, 50.0, 20.0 },
		[GRC_CACHE_MISSES] 	= { 20.0, 10.0, 5.0 },
	};
	const char *color = PERF_COLOR_NORMAL;

	if (ratio > grc_table[type][0])
		color = PERF_COLOR_RED;
	else if (ratio > grc_table[type][1])
		color = PERF_COLOR_MAGENTA;
	else if (ratio > grc_table[type][2])
		color = PERF_COLOR_YELLOW;

	return color;
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static struct perf_evsel *perf_stat__find_event(struct perf_evlist *evsel_list,
						const char *name)
{
	struct perf_evsel *c2;

	evlist__for_each_entry (evsel_list, c2) {
		if (!strcasecmp(c2->name, name))
			return c2;
	}
	return NULL;
}

/* Mark MetricExpr target events and link events using them to them. */
void perf_stat__collect_metric_expr(struct perf_evlist *evsel_list)
{
	struct perf_evsel *counter, *leader, **metric_events, *oc;
	bool found;
	const char **metric_names;
	int i;
	int num_metric_names;

	evlist__for_each_entry(evsel_list, counter) {
		bool invalid = false;

		leader = counter->leader;
		if (!counter->metric_expr)
			continue;
		metric_events = counter->metric_events;
		if (!metric_events) {
			if (expr__find_other(counter->metric_expr, counter->name,
						&metric_names, &num_metric_names) < 0)
				continue;

			metric_events = calloc(sizeof(struct perf_evsel *),
					       num_metric_names + 1);
			if (!metric_events)
				return;
			counter->metric_events = metric_events;
		}

		for (i = 0; i < num_metric_names; i++) {
			found = false;
			if (leader) {
				/* Search in group */
				for_each_group_member (oc, leader) {
					if (!strcasecmp(oc->name, metric_names[i])) {
						found = true;
						break;
					}
				}
			}
			if (!found) {
				/* Search ignoring groups */
				oc = perf_stat__find_event(evsel_list, metric_names[i]);
			}
			if (!oc) {
				/* Deduping one is good enough to handle duplicated PMUs. */
				static char *printed;

				/*
				 * Adding events automatically would be difficult, because
				 * it would risk creating groups that are not schedulable.
				 * perf stat doesn't understand all the scheduling constraints
				 * of events. So we ask the user instead to add the missing
				 * events.
				 */
				if (!printed || strcasecmp(printed, metric_names[i])) {
					fprintf(stderr,
						"Add %s event to groups to get metric expression for %s\n",
						metric_names[i],
						counter->name);
					printed = strdup(metric_names[i]);
				}
				invalid = true;
				continue;
			}
			metric_events[i] = oc;
			oc->collect_stat = true;
		}
		metric_events[i] = NULL;
		free(metric_names);
		if (invalid) {
			free(metric_events);
			counter->metric_events = NULL;
			counter->metric_expr = NULL;
		}
	}
}

357
static void print_stalled_cycles_frontend(int cpu,
358
					  struct perf_evsel *evsel, double avg,
359
					  struct perf_stat_output_ctx *out)
360 361 362 363 364 365 366 367 368 369 370 371
{
	double total, ratio = 0.0;
	const char *color;
	int ctx = evsel_context(evsel);

	total = avg_stats(&runtime_cycles_stats[ctx][cpu]);

	if (total)
		ratio = avg / total * 100.0;

	color = get_ratio_color(GRC_STALLED_CYCLES_FE, ratio);

372 373 374 375 376
	if (ratio)
		out->print_metric(out->ctx, color, "%7.2f%%", "frontend cycles idle",
				  ratio);
	else
		out->print_metric(out->ctx, NULL, NULL, "frontend cycles idle", 0);
377 378
}

379
static void print_stalled_cycles_backend(int cpu,
380
					 struct perf_evsel *evsel, double avg,
381
					 struct perf_stat_output_ctx *out)
382 383 384 385 386 387 388 389 390 391 392 393
{
	double total, ratio = 0.0;
	const char *color;
	int ctx = evsel_context(evsel);

	total = avg_stats(&runtime_cycles_stats[ctx][cpu]);

	if (total)
		ratio = avg / total * 100.0;

	color = get_ratio_color(GRC_STALLED_CYCLES_BE, ratio);

394
	out->print_metric(out->ctx, color, "%7.2f%%", "backend cycles idle", ratio);
395 396
}

397
static void print_branch_misses(int cpu,
398
				struct perf_evsel *evsel,
399 400
				double avg,
				struct perf_stat_output_ctx *out)
401 402 403 404 405 406 407 408 409 410 411 412
{
	double total, ratio = 0.0;
	const char *color;
	int ctx = evsel_context(evsel);

	total = avg_stats(&runtime_branches_stats[ctx][cpu]);

	if (total)
		ratio = avg / total * 100.0;

	color = get_ratio_color(GRC_CACHE_MISSES, ratio);

413
	out->print_metric(out->ctx, color, "%7.2f%%", "of all branches", ratio);
414 415
}

416
static void print_l1_dcache_misses(int cpu,
417
				   struct perf_evsel *evsel,
418 419
				   double avg,
				   struct perf_stat_output_ctx *out)
420 421 422 423 424 425 426 427 428 429 430 431
{
	double total, ratio = 0.0;
	const char *color;
	int ctx = evsel_context(evsel);

	total = avg_stats(&runtime_l1_dcache_stats[ctx][cpu]);

	if (total)
		ratio = avg / total * 100.0;

	color = get_ratio_color(GRC_CACHE_MISSES, ratio);

432
	out->print_metric(out->ctx, color, "%7.2f%%", "of all L1-dcache hits", ratio);
433 434
}

435
static void print_l1_icache_misses(int cpu,
436
				   struct perf_evsel *evsel,
437 438
				   double avg,
				   struct perf_stat_output_ctx *out)
439 440 441 442 443 444 445 446 447 448 449
{
	double total, ratio = 0.0;
	const char *color;
	int ctx = evsel_context(evsel);

	total = avg_stats(&runtime_l1_icache_stats[ctx][cpu]);

	if (total)
		ratio = avg / total * 100.0;

	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
450
	out->print_metric(out->ctx, color, "%7.2f%%", "of all L1-icache hits", ratio);
451 452
}

453
static void print_dtlb_cache_misses(int cpu,
454
				    struct perf_evsel *evsel,
455 456
				    double avg,
				    struct perf_stat_output_ctx *out)
457 458 459 460 461 462 463 464 465 466 467
{
	double total, ratio = 0.0;
	const char *color;
	int ctx = evsel_context(evsel);

	total = avg_stats(&runtime_dtlb_cache_stats[ctx][cpu]);

	if (total)
		ratio = avg / total * 100.0;

	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
468
	out->print_metric(out->ctx, color, "%7.2f%%", "of all dTLB cache hits", ratio);
469 470
}

471
static void print_itlb_cache_misses(int cpu,
472
				    struct perf_evsel *evsel,
473 474
				    double avg,
				    struct perf_stat_output_ctx *out)
475 476 477 478 479 480 481 482 483 484 485
{
	double total, ratio = 0.0;
	const char *color;
	int ctx = evsel_context(evsel);

	total = avg_stats(&runtime_itlb_cache_stats[ctx][cpu]);

	if (total)
		ratio = avg / total * 100.0;

	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
486
	out->print_metric(out->ctx, color, "%7.2f%%", "of all iTLB cache hits", ratio);
487 488
}

489
static void print_ll_cache_misses(int cpu,
490
				  struct perf_evsel *evsel,
491 492
				  double avg,
				  struct perf_stat_output_ctx *out)
493 494 495 496 497 498 499 500 501 502 503
{
	double total, ratio = 0.0;
	const char *color;
	int ctx = evsel_context(evsel);

	total = avg_stats(&runtime_ll_cache_stats[ctx][cpu]);

	if (total)
		ratio = avg / total * 100.0;

	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
504
	out->print_metric(out->ctx, color, "%7.2f%%", "of all LL-cache hits", ratio);
505 506
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
/*
 * High level "TopDown" CPU core pipe line bottleneck break down.
 *
 * Basic concept following
 * Yasin, A Top Down Method for Performance analysis and Counter architecture
 * ISPASS14
 *
 * The CPU pipeline is divided into 4 areas that can be bottlenecks:
 *
 * Frontend -> Backend -> Retiring
 * BadSpeculation in addition means out of order execution that is thrown away
 * (for example branch mispredictions)
 * Frontend is instruction decoding.
 * Backend is execution, like computation and accessing data in memory
 * Retiring is good execution that is not directly bottlenecked
 *
 * The formulas are computed in slots.
 * A slot is an entry in the pipeline each for the pipeline width
 * (for example a 4-wide pipeline has 4 slots for each cycle)
 *
 * Formulas:
 * BadSpeculation = ((SlotsIssued - SlotsRetired) + RecoveryBubbles) /
 *			TotalSlots
 * Retiring = SlotsRetired / TotalSlots
 * FrontendBound = FetchBubbles / TotalSlots
 * BackendBound = 1.0 - BadSpeculation - Retiring - FrontendBound
 *
 * The kernel provides the mapping to the low level CPU events and any scaling
 * needed for the CPU pipeline width, for example:
 *
 * TotalSlots = Cycles * 4
 *
 * The scaling factor is communicated in the sysfs unit.
 *
 * In some cases the CPU may not be able to measure all the formulas due to
 * missing events. In this case multiple formulas are combined, as possible.
 *
 * Full TopDown supports more levels to sub-divide each area: for example
 * BackendBound into computing bound and memory bound. For now we only
 * support Level 1 TopDown.
 */

static double sanitize_val(double x)
{
	if (x < 0 && x >= -0.02)
		return 0.0;
	return x;
}

static double td_total_slots(int ctx, int cpu)
{
	return avg_stats(&runtime_topdown_total_slots[ctx][cpu]);
}

static double td_bad_spec(int ctx, int cpu)
{
	double bad_spec = 0;
	double total_slots;
	double total;

	total = avg_stats(&runtime_topdown_slots_issued[ctx][cpu]) -
		avg_stats(&runtime_topdown_slots_retired[ctx][cpu]) +
		avg_stats(&runtime_topdown_recovery_bubbles[ctx][cpu]);
	total_slots = td_total_slots(ctx, cpu);
	if (total_slots)
		bad_spec = total / total_slots;
	return sanitize_val(bad_spec);
}

static double td_retiring(int ctx, int cpu)
{
	double retiring = 0;
	double total_slots = td_total_slots(ctx, cpu);
	double ret_slots = avg_stats(&runtime_topdown_slots_retired[ctx][cpu]);

	if (total_slots)
		retiring = ret_slots / total_slots;
	return retiring;
}

static double td_fe_bound(int ctx, int cpu)
{
	double fe_bound = 0;
	double total_slots = td_total_slots(ctx, cpu);
	double fetch_bub = avg_stats(&runtime_topdown_fetch_bubbles[ctx][cpu]);

	if (total_slots)
		fe_bound = fetch_bub / total_slots;
	return fe_bound;
}

static double td_be_bound(int ctx, int cpu)
{
	double sum = (td_fe_bound(ctx, cpu) +
		      td_bad_spec(ctx, cpu) +
		      td_retiring(ctx, cpu));
	if (sum == 0)
		return 0;
	return sanitize_val(1.0 - sum);
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
static void print_smi_cost(int cpu, struct perf_evsel *evsel,
			   struct perf_stat_output_ctx *out)
{
	double smi_num, aperf, cycles, cost = 0.0;
	int ctx = evsel_context(evsel);
	const char *color = NULL;

	smi_num = avg_stats(&runtime_smi_num_stats[ctx][cpu]);
	aperf = avg_stats(&runtime_aperf_stats[ctx][cpu]);
	cycles = avg_stats(&runtime_cycles_stats[ctx][cpu]);

	if ((cycles == 0) || (aperf == 0))
		return;

	if (smi_num)
		cost = (aperf - cycles) / aperf * 100.00;

	if (cost > 10)
		color = PERF_COLOR_RED;
	out->print_metric(out->ctx, color, "%8.1f%%", "SMI cycles%", cost);
	out->print_metric(out->ctx, NULL, "%4.0f", "SMI#", smi_num);
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
static void generic_metric(const char *metric_expr,
			   struct perf_evsel **metric_events,
			   char *name,
			   const char *metric_name,
			   double avg,
			   int cpu,
			   int ctx,
			   struct perf_stat_output_ctx *out)
{
	print_metric_t print_metric = out->print_metric;
	struct parse_ctx pctx;
	double ratio;
	int i;
	void *ctxp = out->ctx;

	expr__ctx_init(&pctx);
	expr__add_id(&pctx, name, avg);
	for (i = 0; metric_events[i]; i++) {
		struct saved_value *v;

		v = saved_value_lookup(metric_events[i], cpu, ctx, false);
		if (!v)
			break;
		expr__add_id(&pctx, metric_events[i]->name, avg_stats(&v->stats));
	}
	if (!metric_events[i]) {
		const char *p = metric_expr;

		if (expr__parse(&ratio, &pctx, &p) == 0)
			print_metric(ctxp, NULL, "%8.1f",
				metric_name ?
				metric_name :
				out->force_header ?  name : "",
				ratio);
		else
666 667 668
			print_metric(ctxp, NULL, NULL,
				     out->force_header ?
				     (metric_name ? metric_name : name) : "", 0);
669 670 671 672
	} else
		print_metric(ctxp, NULL, NULL, "", 0);
}

673 674
void perf_stat__print_shadow_stats(struct perf_evsel *evsel,
				   double avg, int cpu,
675 676
				   struct perf_stat_output_ctx *out,
				   struct rblist *metric_events)
677
{
678 679
	void *ctxp = out->ctx;
	print_metric_t print_metric = out->print_metric;
680
	double total, ratio = 0.0, total2;
681
	const char *color = NULL;
682
	int ctx = evsel_context(evsel);
683 684
	struct metric_event *me;
	int num = 1;
685 686 687 688 689

	if (perf_evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) {
		total = avg_stats(&runtime_cycles_stats[ctx][cpu]);
		if (total) {
			ratio = avg / total;
690 691
			print_metric(ctxp, NULL, "%7.2f ",
					"insn per cycle", ratio);
692
		} else {
693
			print_metric(ctxp, NULL, NULL, "insn per cycle", 0);
694 695 696 697 698
		}
		total = avg_stats(&runtime_stalled_cycles_front_stats[ctx][cpu]);
		total = max(total, avg_stats(&runtime_stalled_cycles_back_stats[ctx][cpu]));

		if (total && avg) {
699
			out->new_line(ctxp);
700
			ratio = total / avg;
701 702 703
			print_metric(ctxp, NULL, "%7.2f ",
					"stalled cycles per insn",
					ratio);
704
		} else if (have_frontend_stalled) {
705 706
			print_metric(ctxp, NULL, NULL,
				     "stalled cycles per insn", 0);
707
		}
708 709 710 711 712
	} else if (perf_evsel__match(evsel, HARDWARE, HW_BRANCH_MISSES)) {
		if (runtime_branches_stats[ctx][cpu].n != 0)
			print_branch_misses(cpu, evsel, avg, out);
		else
			print_metric(ctxp, NULL, NULL, "of all branches", 0);
713 714 715 716
	} else if (
		evsel->attr.type == PERF_TYPE_HW_CACHE &&
		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_L1D |
					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
717 718 719 720 721
					 ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
		if (runtime_l1_dcache_stats[ctx][cpu].n != 0)
			print_l1_dcache_misses(cpu, evsel, avg, out);
		else
			print_metric(ctxp, NULL, NULL, "of all L1-dcache hits", 0);
722 723 724 725
	} else if (
		evsel->attr.type == PERF_TYPE_HW_CACHE &&
		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_L1I |
					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
726 727 728 729 730
					 ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
		if (runtime_l1_icache_stats[ctx][cpu].n != 0)
			print_l1_icache_misses(cpu, evsel, avg, out);
		else
			print_metric(ctxp, NULL, NULL, "of all L1-icache hits", 0);
731 732 733 734
	} else if (
		evsel->attr.type == PERF_TYPE_HW_CACHE &&
		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_DTLB |
					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
735 736 737 738 739
					 ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
		if (runtime_dtlb_cache_stats[ctx][cpu].n != 0)
			print_dtlb_cache_misses(cpu, evsel, avg, out);
		else
			print_metric(ctxp, NULL, NULL, "of all dTLB cache hits", 0);
740 741 742 743
	} else if (
		evsel->attr.type == PERF_TYPE_HW_CACHE &&
		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_ITLB |
					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
744 745 746 747 748
					 ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
		if (runtime_itlb_cache_stats[ctx][cpu].n != 0)
			print_itlb_cache_misses(cpu, evsel, avg, out);
		else
			print_metric(ctxp, NULL, NULL, "of all iTLB cache hits", 0);
749 750 751 752
	} else if (
		evsel->attr.type == PERF_TYPE_HW_CACHE &&
		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_LL |
					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
753 754 755 756 757 758
					 ((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
		if (runtime_ll_cache_stats[ctx][cpu].n != 0)
			print_ll_cache_misses(cpu, evsel, avg, out);
		else
			print_metric(ctxp, NULL, NULL, "of all LL-cache hits", 0);
	} else if (perf_evsel__match(evsel, HARDWARE, HW_CACHE_MISSES)) {
759 760 761 762 763
		total = avg_stats(&runtime_cacherefs_stats[ctx][cpu]);

		if (total)
			ratio = avg * 100 / total;

764 765 766 767 768
		if (runtime_cacherefs_stats[ctx][cpu].n != 0)
			print_metric(ctxp, NULL, "%8.3f %%",
				     "of all cache refs", ratio);
		else
			print_metric(ctxp, NULL, NULL, "of all cache refs", 0);
769
	} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) {
770
		print_stalled_cycles_frontend(cpu, evsel, avg, out);
771
	} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_BACKEND)) {
772
		print_stalled_cycles_backend(cpu, evsel, avg, out);
773 774 775 776 777
	} else if (perf_evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) {
		total = avg_stats(&runtime_nsecs_stats[cpu]);

		if (total) {
			ratio = avg / total;
778
			print_metric(ctxp, NULL, "%8.3f", "GHz", ratio);
779
		} else {
780
			print_metric(ctxp, NULL, NULL, "Ghz", 0);
781 782 783 784
		}
	} else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX)) {
		total = avg_stats(&runtime_cycles_stats[ctx][cpu]);
		if (total)
785 786 787 788 789 790
			print_metric(ctxp, NULL,
					"%7.2f%%", "transactional cycles",
					100.0 * (avg / total));
		else
			print_metric(ctxp, NULL, NULL, "transactional cycles",
				     0);
791 792 793 794 795 796
	} else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX_CP)) {
		total = avg_stats(&runtime_cycles_stats[ctx][cpu]);
		total2 = avg_stats(&runtime_cycles_in_tx_stats[ctx][cpu]);
		if (total2 < avg)
			total2 = avg;
		if (total)
797
			print_metric(ctxp, NULL, "%7.2f%%", "aborted cycles",
798
				100.0 * ((total2-avg) / total));
799 800 801
		else
			print_metric(ctxp, NULL, NULL, "aborted cycles", 0);
	} else if (perf_stat_evsel__is(evsel, TRANSACTION_START)) {
802 803
		total = avg_stats(&runtime_cycles_in_tx_stats[ctx][cpu]);

804
		if (avg)
805 806
			ratio = total / avg;

807 808 809 810 811 812 813
		if (runtime_cycles_in_tx_stats[ctx][cpu].n != 0)
			print_metric(ctxp, NULL, "%8.0f",
				     "cycles / transaction", ratio);
		else
			print_metric(ctxp, NULL, NULL, "cycles / transaction",
				     0);
	} else if (perf_stat_evsel__is(evsel, ELISION_START)) {
814 815
		total = avg_stats(&runtime_cycles_in_tx_stats[ctx][cpu]);

816
		if (avg)
817 818
			ratio = total / avg;

819
		print_metric(ctxp, NULL, "%8.0f", "cycles / elision", ratio);
820 821
	} else if (perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK) ||
		   perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK)) {
822
		if ((ratio = avg_stats(&walltime_nsecs_stats)) != 0)
823 824
			print_metric(ctxp, NULL, "%8.3f", "CPUs utilized",
				     avg / ratio);
825
		else
826
			print_metric(ctxp, NULL, NULL, "CPUs utilized", 0);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	} else if (perf_stat_evsel__is(evsel, TOPDOWN_FETCH_BUBBLES)) {
		double fe_bound = td_fe_bound(ctx, cpu);

		if (fe_bound > 0.2)
			color = PERF_COLOR_RED;
		print_metric(ctxp, color, "%8.1f%%", "frontend bound",
				fe_bound * 100.);
	} else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_RETIRED)) {
		double retiring = td_retiring(ctx, cpu);

		if (retiring > 0.7)
			color = PERF_COLOR_GREEN;
		print_metric(ctxp, color, "%8.1f%%", "retiring",
				retiring * 100.);
	} else if (perf_stat_evsel__is(evsel, TOPDOWN_RECOVERY_BUBBLES)) {
		double bad_spec = td_bad_spec(ctx, cpu);

		if (bad_spec > 0.1)
			color = PERF_COLOR_RED;
		print_metric(ctxp, color, "%8.1f%%", "bad speculation",
				bad_spec * 100.);
	} else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_ISSUED)) {
		double be_bound = td_be_bound(ctx, cpu);
		const char *name = "backend bound";
		static int have_recovery_bubbles = -1;

		/* In case the CPU does not support topdown-recovery-bubbles */
		if (have_recovery_bubbles < 0)
			have_recovery_bubbles = pmu_have_event("cpu",
					"topdown-recovery-bubbles");
		if (!have_recovery_bubbles)
			name = "backend bound/bad spec";

		if (be_bound > 0.2)
			color = PERF_COLOR_RED;
		if (td_total_slots(ctx, cpu) > 0)
			print_metric(ctxp, color, "%8.1f%%", name,
					be_bound * 100.);
		else
			print_metric(ctxp, NULL, NULL, name, 0);
867
	} else if (evsel->metric_expr) {
868 869
		generic_metric(evsel->metric_expr, evsel->metric_events, evsel->name,
				evsel->metric_name, avg, cpu, ctx, out);
870 871
	} else if (runtime_nsecs_stats[cpu].n != 0) {
		char unit = 'M';
872
		char unit_buf[10];
873 874 875 876 877 878 879 880 881

		total = avg_stats(&runtime_nsecs_stats[cpu]);

		if (total)
			ratio = 1000.0 * avg / total;
		if (ratio < 0.001) {
			ratio *= 1000;
			unit = 'K';
		}
882 883
		snprintf(unit_buf, sizeof(unit_buf), "%c/sec", unit);
		print_metric(ctxp, NULL, "%8.3f", unit_buf, ratio);
884 885
	} else if (perf_stat_evsel__is(evsel, SMI_NUM)) {
		print_smi_cost(cpu, evsel, out);
886
	} else {
887
		num = 0;
888
	}
889 890 891 892 893 894 895 896 897 898 899 900 901 902

	if ((me = metricgroup__lookup(metric_events, evsel, false)) != NULL) {
		struct metric_expr *mexp;

		list_for_each_entry (mexp, &me->head, nd) {
			if (num++ > 0)
				out->new_line(ctxp);
			generic_metric(mexp->metric_expr, mexp->metric_events,
					evsel->name, mexp->metric_name,
					avg, cpu, ctx, out);
		}
	}
	if (num == 0)
		print_metric(ctxp, NULL, NULL, NULL, 0);
903
}