processor.h 25.3 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
H
H. Peter Anvin 已提交
2 3
#ifndef _ASM_X86_PROCESSOR_H
#define _ASM_X86_PROCESSOR_H
4

5 6
#include <asm/processor-flags.h>

7 8 9
/* Forward declaration, a strange C thing */
struct task_struct;
struct mm_struct;
10
struct vm86;
11

12 13 14
#include <asm/math_emu.h>
#include <asm/segment.h>
#include <asm/types.h>
15
#include <uapi/asm/sigcontext.h>
16
#include <asm/current.h>
17
#include <asm/cpufeatures.h>
18
#include <asm/page.h>
19
#include <asm/pgtable_types.h>
20
#include <asm/percpu.h>
21 22
#include <asm/msr.h>
#include <asm/desc_defs.h>
23
#include <asm/nops.h>
24
#include <asm/special_insns.h>
25
#include <asm/fpu/types.h>
26
#include <asm/unwind_hints.h>
27

28
#include <linux/personality.h>
29
#include <linux/cache.h>
30
#include <linux/threads.h>
31
#include <linux/math64.h>
32
#include <linux/err.h>
33
#include <linux/irqflags.h>
34
#include <linux/mem_encrypt.h>
35 36 37 38 39 40 41 42

/*
 * We handle most unaligned accesses in hardware.  On the other hand
 * unaligned DMA can be quite expensive on some Nehalem processors.
 *
 * Based on this we disable the IP header alignment in network drivers.
 */
#define NET_IP_ALIGN	0
43

44
#define HBP_NUM 4
45 46 47 48 49 50 51
/*
 * Default implementation of macro that returns current
 * instruction pointer ("program counter").
 */
static inline void *current_text_addr(void)
{
	void *pc;
52 53 54

	asm volatile("mov $1f, %0; 1:":"=r" (pc));

55 56 57
	return pc;
}

58 59 60 61 62
/*
 * These alignment constraints are for performance in the vSMP case,
 * but in the task_struct case we must also meet hardware imposed
 * alignment requirements of the FPU state:
 */
63
#ifdef CONFIG_X86_VSMP
64 65
# define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
# define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
66
#else
67
# define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
68
# define ARCH_MIN_MMSTRUCT_ALIGN	0
69 70
#endif

71 72 73 74 75 76 77 78 79 80 81
enum tlb_infos {
	ENTRIES,
	NR_INFO
};

extern u16 __read_mostly tlb_lli_4k[NR_INFO];
extern u16 __read_mostly tlb_lli_2m[NR_INFO];
extern u16 __read_mostly tlb_lli_4m[NR_INFO];
extern u16 __read_mostly tlb_lld_4k[NR_INFO];
extern u16 __read_mostly tlb_lld_2m[NR_INFO];
extern u16 __read_mostly tlb_lld_4m[NR_INFO];
82
extern u16 __read_mostly tlb_lld_1g[NR_INFO];
83

84 85
/*
 *  CPU type and hardware bug flags. Kept separately for each CPU.
86
 *  Members of this structure are referenced in head_32.S, so think twice
87 88 89 90
 *  before touching them. [mj]
 */

struct cpuinfo_x86 {
91 92 93
	__u8			x86;		/* CPU family */
	__u8			x86_vendor;	/* CPU vendor */
	__u8			x86_model;
94
	__u8			x86_stepping;
95
#ifdef CONFIG_X86_64
96
	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
97
	int			x86_tlbsize;
98
#endif
99 100 101 102
	__u8			x86_virt_bits;
	__u8			x86_phys_bits;
	/* CPUID returned core id bits: */
	__u8			x86_coreid_bits;
103
	__u8			cu_id;
104 105 106 107
	/* Max extended CPUID function supported: */
	__u32			extended_cpuid_level;
	/* Maximum supported CPUID level, -1=no CPUID: */
	int			cpuid_level;
108
	__u32			x86_capability[NCAPINTS + NBUGINTS];
109 110 111
	char			x86_vendor_id[16];
	char			x86_model_id[64];
	/* in KB - valid for CPUS which support this call: */
112
	unsigned int		x86_cache_size;
113
	int			x86_cache_alignment;	/* In bytes */
114 115 116
	/* Cache QoS architectural values: */
	int			x86_cache_max_rmid;	/* max index */
	int			x86_cache_occ_scale;	/* scale to bytes */
117 118 119
	int			x86_power;
	unsigned long		loops_per_jiffy;
	/* cpuid returned max cores value: */
120 121
	u16			x86_max_cores;
	u16			x86_max_dies;
122
	u16			apicid;
Y
Yinghai Lu 已提交
123
	u16			initial_apicid;
124 125 126 127 128
	u16			x86_clflush_size;
	/* number of cores as seen by the OS: */
	u16			booted_cores;
	/* Physical processor id: */
	u16			phys_proc_id;
129 130
	/* Logical processor id: */
	u16			logical_proc_id;
131 132
	/* Core id: */
	u16			cpu_core_id;
133
	u16			cpu_die_id;
134 135
	/* Index into per_cpu list: */
	u16			cpu_index;
136
	u32			microcode;
137 138
	/* Address space bits used by the cache internally */
	u8			x86_cache_bits;
139
	unsigned		initialized : 1;
140
} __randomize_layout;
141

142 143 144 145 146 147 148 149 150 151 152
struct cpuid_regs {
	u32 eax, ebx, ecx, edx;
};

enum cpuid_regs_idx {
	CPUID_EAX = 0,
	CPUID_EBX,
	CPUID_ECX,
	CPUID_EDX,
};

153 154 155 156 157 158 159 160 161 162
#define X86_VENDOR_INTEL	0
#define X86_VENDOR_CYRIX	1
#define X86_VENDOR_AMD		2
#define X86_VENDOR_UMC		3
#define X86_VENDOR_CENTAUR	5
#define X86_VENDOR_TRANSMETA	7
#define X86_VENDOR_NSC		8
#define X86_VENDOR_NUM		9

#define X86_VENDOR_UNKNOWN	0xff
163

164 165 166
/*
 * capabilities of CPUs
 */
167 168 169
extern struct cpuinfo_x86	boot_cpu_data;
extern struct cpuinfo_x86	new_cpu_data;

170
extern struct x86_hw_tss	doublefault_tss;
171 172
extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
173 174

#ifdef CONFIG_SMP
175
DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
176 177
#define cpu_data(cpu)		per_cpu(cpu_info, cpu)
#else
178
#define cpu_info		boot_cpu_data
179 180 181
#define cpu_data(cpu)		boot_cpu_data
#endif

182 183
extern const struct seq_operations cpuinfo_op;

184 185 186
#define cache_line_size()	(boot_cpu_data.x86_cache_alignment)

extern void cpu_detect(struct cpuinfo_x86 *c);
187

188
static inline unsigned long long l1tf_pfn_limit(void)
189
{
190
	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
191 192
}

193
extern void early_cpu_init(void);
194 195
extern void identify_boot_cpu(void);
extern void identify_secondary_cpu(struct cpuinfo_x86 *);
196
extern void print_cpu_info(struct cpuinfo_x86 *);
197
void print_cpu_msr(struct cpuinfo_x86 *);
198

199 200 201 202 203 204 205 206
#ifdef CONFIG_X86_32
extern int have_cpuid_p(void);
#else
static inline int have_cpuid_p(void)
{
	return 1;
}
#endif
207
static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
208
				unsigned int *ecx, unsigned int *edx)
209 210
{
	/* ecx is often an input as well as an output. */
211
	asm volatile("cpuid"
212 213 214 215
	    : "=a" (*eax),
	      "=b" (*ebx),
	      "=c" (*ecx),
	      "=d" (*edx)
216 217
	    : "0" (*eax), "2" (*ecx)
	    : "memory");
218 219
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#define native_cpuid_reg(reg)					\
static inline unsigned int native_cpuid_##reg(unsigned int op)	\
{								\
	unsigned int eax = op, ebx, ecx = 0, edx;		\
								\
	native_cpuid(&eax, &ebx, &ecx, &edx);			\
								\
	return reg;						\
}

/*
 * Native CPUID functions returning a single datum.
 */
native_cpuid_reg(eax)
native_cpuid_reg(ebx)
native_cpuid_reg(ecx)
native_cpuid_reg(edx)

238 239 240 241 242 243 244 245
/*
 * Friendlier CR3 helpers.
 */
static inline unsigned long read_cr3_pa(void)
{
	return __read_cr3() & CR3_ADDR_MASK;
}

246 247 248 249 250
static inline unsigned long native_read_cr3_pa(void)
{
	return __native_read_cr3() & CR3_ADDR_MASK;
}

251 252
static inline void load_cr3(pgd_t *pgdir)
{
253
	write_cr3(__sme_pa(pgdir));
254
}
255

256 257 258 259 260
/*
 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
 * unrelated to the task-switch mechanism:
 */
261 262 263
#ifdef CONFIG_X86_32
/* This is the TSS defined by the hardware. */
struct x86_hw_tss {
264 265 266
	unsigned short		back_link, __blh;
	unsigned long		sp0;
	unsigned short		ss0, __ss0h;
267
	unsigned long		sp1;
268 269

	/*
270 271 272 273 274 275
	 * We don't use ring 1, so ss1 is a convenient scratch space in
	 * the same cacheline as sp0.  We use ss1 to cache the value in
	 * MSR_IA32_SYSENTER_CS.  When we context switch
	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
	 * written matches ss1, and, if it's not, then we wrmsr the new
	 * value and update ss1.
276
	 *
277 278 279 280
	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
	 * that we set it to zero in vm86 tasks to avoid corrupting the
	 * stack if we were to go through the sysenter path from vm86
	 * mode.
281 282 283 284
	 */
	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */

	unsigned short		__ss1h;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	unsigned long		sp2;
	unsigned short		ss2, __ss2h;
	unsigned long		__cr3;
	unsigned long		ip;
	unsigned long		flags;
	unsigned long		ax;
	unsigned long		cx;
	unsigned long		dx;
	unsigned long		bx;
	unsigned long		sp;
	unsigned long		bp;
	unsigned long		si;
	unsigned long		di;
	unsigned short		es, __esh;
	unsigned short		cs, __csh;
	unsigned short		ss, __ssh;
	unsigned short		ds, __dsh;
	unsigned short		fs, __fsh;
	unsigned short		gs, __gsh;
	unsigned short		ldt, __ldth;
	unsigned short		trace;
	unsigned short		io_bitmap_base;

308 309 310
} __attribute__((packed));
#else
struct x86_hw_tss {
311 312
	u32			reserved1;
	u64			sp0;
313 314 315 316 317

	/*
	 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
	 * Linux does not use ring 1, so sp1 is not otherwise needed.
	 */
318
	u64			sp1;
319

320 321 322 323 324 325 326 327
	u64			sp2;
	u64			reserved2;
	u64			ist[7];
	u32			reserved3;
	u32			reserved4;
	u16			reserved5;
	u16			io_bitmap_base;

328
} __attribute__((packed));
329 330 331
#endif

/*
332
 * IO-bitmap sizes:
333
 */
334 335 336
#define IO_BITMAP_BITS			65536
#define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
#define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
337
#define IO_BITMAP_OFFSET		(offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
338
#define INVALID_IO_BITMAP_OFFSET	0x8000
339

340
struct entry_stack {
341 342 343
	unsigned long		words[64];
};

344 345
struct entry_stack_page {
	struct entry_stack stack;
346
} __aligned(PAGE_SIZE);
347

348
struct tss_struct {
349
	/*
350 351 352
	 * The fixed hardware portion.  This must not cross a page boundary
	 * at risk of violating the SDM's advice and potentially triggering
	 * errata.
353 354
	 */
	struct x86_hw_tss	x86_tss;
355 356 357 358 359 360 361

	/*
	 * The extra 1 is there because the CPU will access an
	 * additional byte beyond the end of the IO permission
	 * bitmap. The extra byte must be all 1 bits, and must
	 * be within the limit.
	 */
362
	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];
363
} __aligned(PAGE_SIZE);
364

365
DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
366

367 368 369 370 371 372 373 374 375 376
/*
 * sizeof(unsigned long) coming from an extra "long" at the end
 * of the iobitmap.
 *
 * -1? seg base+limit should be pointing to the address of the
 * last valid byte
 */
#define __KERNEL_TSS_LIMIT	\
	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)

377 378
#ifdef CONFIG_X86_32
DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
379
#else
380 381
/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
382 383
#endif

384 385 386
/*
 * Save the original ist values for checking stack pointers during debugging
 */
387
struct orig_ist {
388
	unsigned long		ist[7];
389 390
};

391
#ifdef CONFIG_X86_64
392
DECLARE_PER_CPU(struct orig_ist, orig_ist);
393

394 395 396 397 398 399 400 401 402 403 404 405 406
union irq_stack_union {
	char irq_stack[IRQ_STACK_SIZE];
	/*
	 * GCC hardcodes the stack canary as %gs:40.  Since the
	 * irq_stack is the object at %gs:0, we reserve the bottom
	 * 48 bytes of the irq stack for the canary.
	 */
	struct {
		char gs_base[40];
		unsigned long stack_canary;
	};
};

407
DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
408 409
DECLARE_INIT_PER_CPU(irq_stack_union);

410 411 412 413 414
static inline unsigned long cpu_kernelmode_gs_base(int cpu)
{
	return (unsigned long)per_cpu(irq_stack_union.gs_base, cpu);
}

415
DECLARE_PER_CPU(char *, irq_stack_ptr);
416 417
DECLARE_PER_CPU(unsigned int, irq_count);
extern asmlinkage void ignore_sysret(void);
418 419 420 421 422

#if IS_ENABLED(CONFIG_KVM)
/* Save actual FS/GS selectors and bases to current->thread */
void save_fsgs_for_kvm(void);
#endif
423
#else	/* X86_64 */
424
#ifdef CONFIG_STACKPROTECTOR
425 426 427 428 429 430 431 432 433 434
/*
 * Make sure stack canary segment base is cached-aligned:
 *   "For Intel Atom processors, avoid non zero segment base address
 *    that is not aligned to cache line boundary at all cost."
 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
 */
struct stack_canary {
	char __pad[20];		/* canary at %gs:20 */
	unsigned long canary;
};
435
DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
436
#endif
437 438 439 440 441 442 443 444 445
/*
 * per-CPU IRQ handling stacks
 */
struct irq_stack {
	u32                     stack[THREAD_SIZE/sizeof(u32)];
} __aligned(THREAD_SIZE);

DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
446
#endif	/* X86_64 */
447

448
extern unsigned int fpu_kernel_xstate_size;
449
extern unsigned int fpu_user_xstate_size;
450

451 452
struct perf_event;

453 454 455 456
typedef struct {
	unsigned long		seg;
} mm_segment_t;

457
struct thread_struct {
458 459
	/* Cached TLS descriptors: */
	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
460
#ifdef CONFIG_X86_32
461
	unsigned long		sp0;
462
#endif
463
	unsigned long		sp;
464
#ifdef CONFIG_X86_32
465
	unsigned long		sysenter_cs;
466
#else
467 468 469 470
	unsigned short		es;
	unsigned short		ds;
	unsigned short		fsindex;
	unsigned short		gsindex;
471
#endif
472

473
#ifdef CONFIG_X86_64
474 475 476 477 478 479 480 481 482
	unsigned long		fsbase;
	unsigned long		gsbase;
#else
	/*
	 * XXX: this could presumably be unsigned short.  Alternatively,
	 * 32-bit kernels could be taught to use fsindex instead.
	 */
	unsigned long fs;
	unsigned long gs;
483
#endif
484

485 486 487 488
	/* Save middle states of ptrace breakpoints */
	struct perf_event	*ptrace_bps[HBP_NUM];
	/* Debug status used for traps, single steps, etc... */
	unsigned long           debugreg6;
489 490
	/* Keep track of the exact dr7 value set by the user */
	unsigned long           ptrace_dr7;
491 492
	/* Fault info: */
	unsigned long		cr2;
493
	unsigned long		trap_nr;
494
	unsigned long		error_code;
495
#ifdef CONFIG_VM86
496
	/* Virtual 86 mode info */
497
	struct vm86		*vm86;
498
#endif
499 500 501 502 503
	/* IO permissions: */
	unsigned long		*io_bitmap_ptr;
	unsigned long		iopl;
	/* Max allowed port in the bitmap, in bytes: */
	unsigned		io_bitmap_max;
504

505 506
	mm_segment_t		addr_limit;

507
	unsigned int		sig_on_uaccess_err:1;
508 509
	unsigned int		uaccess_err:1;	/* uaccess failed */

510 511 512 513 514 515
	/* Floating point and extended processor state */
	struct fpu		fpu;
	/*
	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
	 * the end.
	 */
516 517
};

518 519 520 521 522 523 524 525
/* Whitelist the FPU state from the task_struct for hardened usercopy. */
static inline void arch_thread_struct_whitelist(unsigned long *offset,
						unsigned long *size)
{
	*offset = offsetof(struct thread_struct, fpu.state);
	*size = fpu_kernel_xstate_size;
}

526 527 528 529 530 531 532 533 534
/*
 * Thread-synchronous status.
 *
 * This is different from the flags in that nobody else
 * ever touches our thread-synchronous status, so we don't
 * have to worry about atomic accesses.
 */
#define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/

535 536 537 538 539 540 541
/*
 * Set IOPL bits in EFLAGS from given mask
 */
static inline void native_set_iopl_mask(unsigned mask)
{
#ifdef CONFIG_X86_32
	unsigned int reg;
542

543 544 545 546 547 548 549 550
	asm volatile ("pushfl;"
		      "popl %0;"
		      "andl %1, %0;"
		      "orl %2, %0;"
		      "pushl %0;"
		      "popfl"
		      : "=&r" (reg)
		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
551 552 553
#endif
}

554
static inline void
555
native_load_sp0(unsigned long sp0)
556
{
557
	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
558
}
559

560 561 562 563 564 565 566
static inline void native_swapgs(void)
{
#ifdef CONFIG_X86_64
	asm volatile("swapgs" ::: "memory");
#endif
}

567
static inline unsigned long current_top_of_stack(void)
568
{
569 570 571 572 573
	/*
	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
	 *  and around vm86 mode and sp0 on x86_64 is special because of the
	 *  entry trampoline.
	 */
574
	return this_cpu_read_stable(cpu_current_top_of_stack);
575 576
}

577 578 579 580 581 582
static inline bool on_thread_stack(void)
{
	return (unsigned long)(current_top_of_stack() -
			       current_stack_pointer) < THREAD_SIZE;
}

583 584 585
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
586
#define __cpuid			native_cpuid
587

588
static inline void load_sp0(unsigned long sp0)
589
{
590
	native_load_sp0(sp0);
591 592
}

593
#define set_iopl_mask native_set_iopl_mask
594 595
#endif /* CONFIG_PARAVIRT */

596 597 598 599
/* Free all resources held by a thread. */
extern void release_thread(struct task_struct *);

unsigned long get_wchan(struct task_struct *p);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

/*
 * Generic CPUID function
 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
 * resulting in stale register contents being returned.
 */
static inline void cpuid(unsigned int op,
			 unsigned int *eax, unsigned int *ebx,
			 unsigned int *ecx, unsigned int *edx)
{
	*eax = op;
	*ecx = 0;
	__cpuid(eax, ebx, ecx, edx);
}

/* Some CPUID calls want 'count' to be placed in ecx */
static inline void cpuid_count(unsigned int op, int count,
			       unsigned int *eax, unsigned int *ebx,
			       unsigned int *ecx, unsigned int *edx)
{
	*eax = op;
	*ecx = count;
	__cpuid(eax, ebx, ecx, edx);
}

/*
 * CPUID functions returning a single datum
 */
static inline unsigned int cpuid_eax(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
633

634 635
	return eax;
}
636

637 638 639 640 641
static inline unsigned int cpuid_ebx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
642

643 644
	return ebx;
}
645

646 647 648 649 650
static inline unsigned int cpuid_ecx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
651

652 653
	return ecx;
}
654

655 656 657 658 659
static inline unsigned int cpuid_edx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
660

661 662 663
	return edx;
}

664
/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
665
static __always_inline void rep_nop(void)
666
{
667
	asm volatile("rep; nop" ::: "memory");
668 669
}

670
static __always_inline void cpu_relax(void)
671 672 673 674
{
	rep_nop();
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688
/*
 * This function forces the icache and prefetched instruction stream to
 * catch up with reality in two very specific cases:
 *
 *  a) Text was modified using one virtual address and is about to be executed
 *     from the same physical page at a different virtual address.
 *
 *  b) Text was modified on a different CPU, may subsequently be
 *     executed on this CPU, and you want to make sure the new version
 *     gets executed.  This generally means you're calling this in a IPI.
 *
 * If you're calling this for a different reason, you're probably doing
 * it wrong.
 */
689 690
static inline void sync_core(void)
{
691
	/*
692 693 694 695 696 697 698 699 700 701 702 703
	 * There are quite a few ways to do this.  IRET-to-self is nice
	 * because it works on every CPU, at any CPL (so it's compatible
	 * with paravirtualization), and it never exits to a hypervisor.
	 * The only down sides are that it's a bit slow (it seems to be
	 * a bit more than 2x slower than the fastest options) and that
	 * it unmasks NMIs.  The "push %cs" is needed because, in
	 * paravirtual environments, __KERNEL_CS may not be a valid CS
	 * value when we do IRET directly.
	 *
	 * In case NMI unmasking or performance ever becomes a problem,
	 * the next best option appears to be MOV-to-CR2 and an
	 * unconditional jump.  That sequence also works on all CPUs,
704
	 * but it will fault at CPL3 (i.e. Xen PV).
705 706 707 708 709 710 711
	 *
	 * CPUID is the conventional way, but it's nasty: it doesn't
	 * exist on some 486-like CPUs, and it usually exits to a
	 * hypervisor.
	 *
	 * Like all of Linux's memory ordering operations, this is a
	 * compiler barrier as well.
712
	 */
713 714 715 716 717 718 719
#ifdef CONFIG_X86_32
	asm volatile (
		"pushfl\n\t"
		"pushl %%cs\n\t"
		"pushl $1f\n\t"
		"iret\n\t"
		"1:"
720
		: ASM_CALL_CONSTRAINT : : "memory");
721
#else
722 723 724
	unsigned int tmp;

	asm volatile (
725
		UNWIND_HINT_SAVE
726 727 728 729 730 731 732 733 734
		"mov %%ss, %0\n\t"
		"pushq %q0\n\t"
		"pushq %%rsp\n\t"
		"addq $8, (%%rsp)\n\t"
		"pushfq\n\t"
		"mov %%cs, %0\n\t"
		"pushq %q0\n\t"
		"pushq $1f\n\t"
		"iretq\n\t"
735
		UNWIND_HINT_RESTORE
736
		"1:"
737
		: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
738
#endif
739 740 741
}

extern void select_idle_routine(const struct cpuinfo_x86 *c);
742
extern void amd_e400_c1e_apic_setup(void);
743

744
extern unsigned long		boot_option_idle_override;
745

746
enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
747
			 IDLE_POLL};
748

749 750 751
extern void enable_sep_cpu(void);
extern int sysenter_setup(void);

752
void early_trap_pf_init(void);
753

754
/* Defined in head.S */
755
extern struct desc_ptr		early_gdt_descr;
756

757
extern void switch_to_new_gdt(int);
758
extern void load_direct_gdt(int);
759
extern void load_fixmap_gdt(int);
760
extern void load_percpu_segment(int);
761 762
extern void cpu_init(void);

763 764
static inline unsigned long get_debugctlmsr(void)
{
P
Peter Zijlstra 已提交
765
	unsigned long debugctlmsr = 0;
766 767 768 769 770 771 772

#ifndef CONFIG_X86_DEBUGCTLMSR
	if (boot_cpu_data.x86 < 6)
		return 0;
#endif
	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);

P
Peter Zijlstra 已提交
773
	return debugctlmsr;
774 775
}

776 777 778 779 780 781 782 783 784
static inline void update_debugctlmsr(unsigned long debugctlmsr)
{
#ifndef CONFIG_X86_DEBUGCTLMSR
	if (boot_cpu_data.x86 < 6)
		return;
#endif
	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
}

785 786
extern void set_task_blockstep(struct task_struct *task, bool on);

787 788
/* Boot loader type from the setup header: */
extern int			bootloader_type;
789
extern int			bootloader_version;
790

791
extern char			ignore_fpu_irq;
792 793 794 795 796

#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
#define ARCH_HAS_PREFETCHW
#define ARCH_HAS_SPINLOCK_PREFETCH

797
#ifdef CONFIG_X86_32
798
# define BASE_PREFETCH		""
799
# define ARCH_HAS_PREFETCH
800
#else
801
# define BASE_PREFETCH		"prefetcht0 %P1"
802 803
#endif

804 805 806 807 808 809
/*
 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
 *
 * It's not worth to care about 3dnow prefetches for the K6
 * because they are microcoded there and very slow.
 */
810 811
static inline void prefetch(const void *x)
{
812
	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
813
			  X86_FEATURE_XMM,
814
			  "m" (*(const char *)x));
815 816
}

817 818 819 820 821
/*
 * 3dnow prefetch to get an exclusive cache line.
 * Useful for spinlocks to avoid one state transition in the
 * cache coherency protocol:
 */
822 823
static inline void prefetchw(const void *x)
{
824 825 826
	alternative_input(BASE_PREFETCH, "prefetchw %P1",
			  X86_FEATURE_3DNOWPREFETCH,
			  "m" (*(const char *)x));
827 828
}

829 830 831 832 833
static inline void spin_lock_prefetch(const void *x)
{
	prefetchw(x);
}

834 835 836
#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
			   TOP_OF_KERNEL_STACK_PADDING)

837 838
#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))

839 840 841 842 843 844 845
#define task_pt_regs(task) \
({									\
	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
	((struct pt_regs *)__ptr) - 1;					\
})

846 847 848 849
#ifdef CONFIG_X86_32
/*
 * User space process size: 3GB (default).
 */
850
#define IA32_PAGE_OFFSET	PAGE_OFFSET
851
#define TASK_SIZE		PAGE_OFFSET
852
#define TASK_SIZE_LOW		TASK_SIZE
853
#define TASK_SIZE_MAX		TASK_SIZE
854
#define DEFAULT_MAP_WINDOW	TASK_SIZE
855 856 857 858
#define STACK_TOP		TASK_SIZE
#define STACK_TOP_MAX		STACK_TOP

#define INIT_THREAD  {							  \
859
	.sp0			= TOP_OF_INIT_STACK,			  \
860 861
	.sysenter_cs		= __KERNEL_CS,				  \
	.io_bitmap_ptr		= NULL,					  \
862
	.addr_limit		= KERNEL_DS,				  \
863 864
}

865
#define KSTK_ESP(task)		(task_pt_regs(task)->sp)
866 867 868

#else
/*
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
 * User space process size.  This is the first address outside the user range.
 * There are a few constraints that determine this:
 *
 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
 * address, then that syscall will enter the kernel with a
 * non-canonical return address, and SYSRET will explode dangerously.
 * We avoid this particular problem by preventing anything executable
 * from being mapped at the maximum canonical address.
 *
 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
 * CPUs malfunction if they execute code from the highest canonical page.
 * They'll speculate right off the end of the canonical space, and
 * bad things happen.  This is worked around in the same way as the
 * Intel problem.
 *
 * With page table isolation enabled, we map the LDT in ... [stay tuned]
885
 */
886
#define TASK_SIZE_MAX	((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
887

888
#define DEFAULT_MAP_WINDOW	((1UL << 47) - PAGE_SIZE)
889 890 891 892

/* This decides where the kernel will search for a free chunk of vm
 * space during mmap's.
 */
893 894
#define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
					0xc0000000 : 0xFFFFe000)
895

896 897
#define TASK_SIZE_LOW		(test_thread_flag(TIF_ADDR32) ? \
					IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
898
#define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
899
					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
900
#define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
901
					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
902

903
#define STACK_TOP		TASK_SIZE_LOW
904
#define STACK_TOP_MAX		TASK_SIZE_MAX
905

906 907
#define INIT_THREAD  {						\
	.addr_limit		= KERNEL_DS,			\
908 909
}

910
extern unsigned long KSTK_ESP(struct task_struct *task);
911

912 913
#endif /* CONFIG_X86_64 */

I
Ingo Molnar 已提交
914 915 916
extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
					       unsigned long new_sp);

917 918
/*
 * This decides where the kernel will search for a free chunk of vm
919 920
 * space during mmap's.
 */
921
#define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
922
#define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
923

924
#define KSTK_EIP(task)		(task_pt_regs(task)->ip)
925

926 927 928 929 930 931 932
/* Get/set a process' ability to use the timestamp counter instruction */
#define GET_TSC_CTL(adr)	get_tsc_mode((adr))
#define SET_TSC_CTL(val)	set_tsc_mode((val))

extern int get_tsc_mode(unsigned long adr);
extern int set_tsc_mode(unsigned int val);

933 934
DECLARE_PER_CPU(u64, msr_misc_features_shadow);

935
/* Register/unregister a process' MPX related resource */
936 937
#define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
#define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
938 939

#ifdef CONFIG_X86_INTEL_MPX
940 941
extern int mpx_enable_management(void);
extern int mpx_disable_management(void);
942
#else
943
static inline int mpx_enable_management(void)
944 945 946
{
	return -EINVAL;
}
947
static inline int mpx_disable_management(void)
948 949 950 951 952
{
	return -EINVAL;
}
#endif /* CONFIG_X86_INTEL_MPX */

953
#ifdef CONFIG_CPU_SUP_AMD
954
extern u16 amd_get_nb_id(int cpu);
955
extern u32 amd_get_nodes_per_socket(void);
956 957 958 959
#else
static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
#endif
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
{
	uint32_t base, eax, signature[3];

	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);

		if (!memcmp(sig, signature, 12) &&
		    (leaves == 0 || ((eax - base) >= leaves)))
			return base;
	}

	return 0;
}

976 977
extern unsigned long arch_align_stack(unsigned long sp);
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
978
extern void free_kernel_image_pages(void *begin, void *end);
979 980

void default_idle(void);
981 982 983 984 985
#ifdef	CONFIG_XEN
bool xen_set_default_idle(void);
#else
#define xen_set_default_idle 0
#endif
986 987

void stop_this_cpu(void *dummy);
988
void df_debug(struct pt_regs *regs, long error_code);
989
void microcode_check(void);
990 991 992 993 994 995 996 997 998 999 1000 1001

enum l1tf_mitigations {
	L1TF_MITIGATION_OFF,
	L1TF_MITIGATION_FLUSH_NOWARN,
	L1TF_MITIGATION_FLUSH,
	L1TF_MITIGATION_FLUSH_NOSMT,
	L1TF_MITIGATION_FULL,
	L1TF_MITIGATION_FULL_FORCE
};

extern enum l1tf_mitigations l1tf_mitigation;

1002 1003 1004
enum mds_mitigations {
	MDS_MITIGATION_OFF,
	MDS_MITIGATION_FULL,
1005
	MDS_MITIGATION_VMWERV,
1006 1007
};

1008 1009 1010 1011 1012 1013 1014
enum taa_mitigations {
	TAA_MITIGATION_OFF,
	TAA_MITIGATION_UCODE_NEEDED,
	TAA_MITIGATION_VERW,
	TAA_MITIGATION_TSX_DISABLED,
};

H
H. Peter Anvin 已提交
1015
#endif /* _ASM_X86_PROCESSOR_H */