processor.h 23.8 KB
Newer Older
H
H. Peter Anvin 已提交
1 2
#ifndef _ASM_X86_PROCESSOR_H
#define _ASM_X86_PROCESSOR_H
3

4 5
#include <asm/processor-flags.h>

6 7 8
/* Forward declaration, a strange C thing */
struct task_struct;
struct mm_struct;
9
struct vm86;
10

11 12 13
#include <asm/math_emu.h>
#include <asm/segment.h>
#include <asm/types.h>
14
#include <uapi/asm/sigcontext.h>
15
#include <asm/current.h>
16
#include <asm/cpufeatures.h>
17
#include <asm/page.h>
18
#include <asm/pgtable_types.h>
19
#include <asm/percpu.h>
20 21
#include <asm/msr.h>
#include <asm/desc_defs.h>
22
#include <asm/nops.h>
23
#include <asm/special_insns.h>
24
#include <asm/fpu/types.h>
25

26
#include <linux/personality.h>
27
#include <linux/cache.h>
28
#include <linux/threads.h>
29
#include <linux/math64.h>
30
#include <linux/err.h>
31
#include <linux/irqflags.h>
32
#include <linux/mem_encrypt.h>
33 34 35 36 37 38 39 40

/*
 * We handle most unaligned accesses in hardware.  On the other hand
 * unaligned DMA can be quite expensive on some Nehalem processors.
 *
 * Based on this we disable the IP header alignment in network drivers.
 */
#define NET_IP_ALIGN	0
41

42
#define HBP_NUM 4
43 44 45 46 47 48 49
/*
 * Default implementation of macro that returns current
 * instruction pointer ("program counter").
 */
static inline void *current_text_addr(void)
{
	void *pc;
50 51 52

	asm volatile("mov $1f, %0; 1:":"=r" (pc));

53 54 55
	return pc;
}

56 57 58 59 60
/*
 * These alignment constraints are for performance in the vSMP case,
 * but in the task_struct case we must also meet hardware imposed
 * alignment requirements of the FPU state:
 */
61
#ifdef CONFIG_X86_VSMP
62 63
# define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
# define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
64
#else
65
# define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
66
# define ARCH_MIN_MMSTRUCT_ALIGN	0
67 68
#endif

69 70 71 72 73 74 75 76 77 78 79
enum tlb_infos {
	ENTRIES,
	NR_INFO
};

extern u16 __read_mostly tlb_lli_4k[NR_INFO];
extern u16 __read_mostly tlb_lli_2m[NR_INFO];
extern u16 __read_mostly tlb_lli_4m[NR_INFO];
extern u16 __read_mostly tlb_lld_4k[NR_INFO];
extern u16 __read_mostly tlb_lld_2m[NR_INFO];
extern u16 __read_mostly tlb_lld_4m[NR_INFO];
80
extern u16 __read_mostly tlb_lld_1g[NR_INFO];
81

82 83
/*
 *  CPU type and hardware bug flags. Kept separately for each CPU.
84
 *  Members of this structure are referenced in head_32.S, so think twice
85 86 87 88
 *  before touching them. [mj]
 */

struct cpuinfo_x86 {
89 90 91 92
	__u8			x86;		/* CPU family */
	__u8			x86_vendor;	/* CPU vendor */
	__u8			x86_model;
	__u8			x86_mask;
93
#ifdef CONFIG_X86_64
94
	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
95
	int			x86_tlbsize;
96
#endif
97 98 99 100
	__u8			x86_virt_bits;
	__u8			x86_phys_bits;
	/* CPUID returned core id bits: */
	__u8			x86_coreid_bits;
101
	__u8			cu_id;
102 103 104 105
	/* Max extended CPUID function supported: */
	__u32			extended_cpuid_level;
	/* Maximum supported CPUID level, -1=no CPUID: */
	int			cpuid_level;
106
	__u32			x86_capability[NCAPINTS + NBUGINTS];
107 108 109 110 111
	char			x86_vendor_id[16];
	char			x86_model_id[64];
	/* in KB - valid for CPUS which support this call: */
	int			x86_cache_size;
	int			x86_cache_alignment;	/* In bytes */
112 113 114
	/* Cache QoS architectural values: */
	int			x86_cache_max_rmid;	/* max index */
	int			x86_cache_occ_scale;	/* scale to bytes */
115 116 117 118 119
	int			x86_power;
	unsigned long		loops_per_jiffy;
	/* cpuid returned max cores value: */
	u16			 x86_max_cores;
	u16			apicid;
Y
Yinghai Lu 已提交
120
	u16			initial_apicid;
121 122 123 124 125
	u16			x86_clflush_size;
	/* number of cores as seen by the OS: */
	u16			booted_cores;
	/* Physical processor id: */
	u16			phys_proc_id;
126 127
	/* Logical processor id: */
	u16			logical_proc_id;
128 129 130 131
	/* Core id: */
	u16			cpu_core_id;
	/* Index into per_cpu list: */
	u16			cpu_index;
132
	u32			microcode;
133
};
134

135 136 137 138 139 140 141 142 143 144 145
struct cpuid_regs {
	u32 eax, ebx, ecx, edx;
};

enum cpuid_regs_idx {
	CPUID_EAX = 0,
	CPUID_EBX,
	CPUID_ECX,
	CPUID_EDX,
};

146 147 148 149 150 151 152 153 154 155
#define X86_VENDOR_INTEL	0
#define X86_VENDOR_CYRIX	1
#define X86_VENDOR_AMD		2
#define X86_VENDOR_UMC		3
#define X86_VENDOR_CENTAUR	5
#define X86_VENDOR_TRANSMETA	7
#define X86_VENDOR_NSC		8
#define X86_VENDOR_NUM		9

#define X86_VENDOR_UNKNOWN	0xff
156

157 158 159
/*
 * capabilities of CPUs
 */
160 161 162 163
extern struct cpuinfo_x86	boot_cpu_data;
extern struct cpuinfo_x86	new_cpu_data;

extern struct tss_struct	doublefault_tss;
164 165
extern __u32			cpu_caps_cleared[NCAPINTS];
extern __u32			cpu_caps_set[NCAPINTS];
166 167

#ifdef CONFIG_SMP
168
DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
169 170
#define cpu_data(cpu)		per_cpu(cpu_info, cpu)
#else
171
#define cpu_info		boot_cpu_data
172 173 174
#define cpu_data(cpu)		boot_cpu_data
#endif

175 176
extern const struct seq_operations cpuinfo_op;

177 178 179
#define cache_line_size()	(boot_cpu_data.x86_cache_alignment)

extern void cpu_detect(struct cpuinfo_x86 *c);
180

181
extern void early_cpu_init(void);
182 183
extern void identify_boot_cpu(void);
extern void identify_secondary_cpu(struct cpuinfo_x86 *);
184
extern void print_cpu_info(struct cpuinfo_x86 *);
185
void print_cpu_msr(struct cpuinfo_x86 *);
186
extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
187 188 189
extern u32 get_scattered_cpuid_leaf(unsigned int level,
				    unsigned int sub_leaf,
				    enum cpuid_regs_idx reg);
190
extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
191
extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
192

193
extern void detect_extended_topology(struct cpuinfo_x86 *c);
194 195
extern void detect_ht(struct cpuinfo_x86 *c);

196 197 198 199 200 201 202 203
#ifdef CONFIG_X86_32
extern int have_cpuid_p(void);
#else
static inline int have_cpuid_p(void)
{
	return 1;
}
#endif
204
static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
205
				unsigned int *ecx, unsigned int *edx)
206 207
{
	/* ecx is often an input as well as an output. */
208
	asm volatile("cpuid"
209 210 211 212
	    : "=a" (*eax),
	      "=b" (*ebx),
	      "=c" (*ecx),
	      "=d" (*edx)
213 214
	    : "0" (*eax), "2" (*ecx)
	    : "memory");
215 216
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
#define native_cpuid_reg(reg)					\
static inline unsigned int native_cpuid_##reg(unsigned int op)	\
{								\
	unsigned int eax = op, ebx, ecx = 0, edx;		\
								\
	native_cpuid(&eax, &ebx, &ecx, &edx);			\
								\
	return reg;						\
}

/*
 * Native CPUID functions returning a single datum.
 */
native_cpuid_reg(eax)
native_cpuid_reg(ebx)
native_cpuid_reg(ecx)
native_cpuid_reg(edx)

235 236 237 238 239 240 241 242
/*
 * Friendlier CR3 helpers.
 */
static inline unsigned long read_cr3_pa(void)
{
	return __read_cr3() & CR3_ADDR_MASK;
}

243 244 245 246 247
static inline unsigned long native_read_cr3_pa(void)
{
	return __native_read_cr3() & CR3_ADDR_MASK;
}

248 249
static inline void load_cr3(pgd_t *pgdir)
{
250
	write_cr3(__sme_pa(pgdir));
251
}
252

253 254 255
#ifdef CONFIG_X86_32
/* This is the TSS defined by the hardware. */
struct x86_hw_tss {
256 257 258
	unsigned short		back_link, __blh;
	unsigned long		sp0;
	unsigned short		ss0, __ss0h;
259
	unsigned long		sp1;
260 261

	/*
262 263 264 265 266 267
	 * We don't use ring 1, so ss1 is a convenient scratch space in
	 * the same cacheline as sp0.  We use ss1 to cache the value in
	 * MSR_IA32_SYSENTER_CS.  When we context switch
	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
	 * written matches ss1, and, if it's not, then we wrmsr the new
	 * value and update ss1.
268
	 *
269 270 271 272
	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
	 * that we set it to zero in vm86 tasks to avoid corrupting the
	 * stack if we were to go through the sysenter path from vm86
	 * mode.
273 274 275 276
	 */
	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */

	unsigned short		__ss1h;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	unsigned long		sp2;
	unsigned short		ss2, __ss2h;
	unsigned long		__cr3;
	unsigned long		ip;
	unsigned long		flags;
	unsigned long		ax;
	unsigned long		cx;
	unsigned long		dx;
	unsigned long		bx;
	unsigned long		sp;
	unsigned long		bp;
	unsigned long		si;
	unsigned long		di;
	unsigned short		es, __esh;
	unsigned short		cs, __csh;
	unsigned short		ss, __ssh;
	unsigned short		ds, __dsh;
	unsigned short		fs, __fsh;
	unsigned short		gs, __gsh;
	unsigned short		ldt, __ldth;
	unsigned short		trace;
	unsigned short		io_bitmap_base;

300 301 302
} __attribute__((packed));
#else
struct x86_hw_tss {
303 304 305 306 307 308 309 310 311 312 313
	u32			reserved1;
	u64			sp0;
	u64			sp1;
	u64			sp2;
	u64			reserved2;
	u64			ist[7];
	u32			reserved3;
	u32			reserved4;
	u16			reserved5;
	u16			io_bitmap_base;

314
} __attribute__((packed));
315 316 317
#endif

/*
318
 * IO-bitmap sizes:
319
 */
320 321 322 323 324
#define IO_BITMAP_BITS			65536
#define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
#define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
#define IO_BITMAP_OFFSET		offsetof(struct tss_struct, io_bitmap)
#define INVALID_IO_BITMAP_OFFSET	0x8000
325 326

struct tss_struct {
327 328 329 330
	/*
	 * The hardware state:
	 */
	struct x86_hw_tss	x86_tss;
331 332 333 334 335 336 337

	/*
	 * The extra 1 is there because the CPU will access an
	 * additional byte beyond the end of the IO permission
	 * bitmap. The extra byte must be all 1 bits, and must
	 * be within the limit.
	 */
338 339
	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];

340
#ifdef CONFIG_X86_32
341
	/*
342
	 * Space for the temporary SYSENTER stack.
343
	 */
344
	unsigned long		SYSENTER_stack_canary;
345
	unsigned long		SYSENTER_stack[64];
346
#endif
347

348
} ____cacheline_aligned;
349

350
DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
351

352 353 354 355 356 357 358 359 360 361
/*
 * sizeof(unsigned long) coming from an extra "long" at the end
 * of the iobitmap.
 *
 * -1? seg base+limit should be pointing to the address of the
 * last valid byte
 */
#define __KERNEL_TSS_LIMIT	\
	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)

362 363 364 365
#ifdef CONFIG_X86_32
DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
#endif

366 367 368
/*
 * Save the original ist values for checking stack pointers during debugging
 */
369
struct orig_ist {
370
	unsigned long		ist[7];
371 372
};

373
#ifdef CONFIG_X86_64
374
DECLARE_PER_CPU(struct orig_ist, orig_ist);
375

376 377 378 379 380 381 382 383 384 385 386 387 388
union irq_stack_union {
	char irq_stack[IRQ_STACK_SIZE];
	/*
	 * GCC hardcodes the stack canary as %gs:40.  Since the
	 * irq_stack is the object at %gs:0, we reserve the bottom
	 * 48 bytes of the irq stack for the canary.
	 */
	struct {
		char gs_base[40];
		unsigned long stack_canary;
	};
};

389
DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
390 391
DECLARE_INIT_PER_CPU(irq_stack_union);

392
DECLARE_PER_CPU(char *, irq_stack_ptr);
393 394
DECLARE_PER_CPU(unsigned int, irq_count);
extern asmlinkage void ignore_sysret(void);
395 396
#else	/* X86_64 */
#ifdef CONFIG_CC_STACKPROTECTOR
397 398 399 400 401 402 403 404 405 406
/*
 * Make sure stack canary segment base is cached-aligned:
 *   "For Intel Atom processors, avoid non zero segment base address
 *    that is not aligned to cache line boundary at all cost."
 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
 */
struct stack_canary {
	char __pad[20];		/* canary at %gs:20 */
	unsigned long canary;
};
407
DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
408
#endif
409 410 411 412 413 414 415 416 417
/*
 * per-CPU IRQ handling stacks
 */
struct irq_stack {
	u32                     stack[THREAD_SIZE/sizeof(u32)];
} __aligned(THREAD_SIZE);

DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
418
#endif	/* X86_64 */
419

420
extern unsigned int fpu_kernel_xstate_size;
421
extern unsigned int fpu_user_xstate_size;
422

423 424
struct perf_event;

425 426 427 428
typedef struct {
	unsigned long		seg;
} mm_segment_t;

429
struct thread_struct {
430 431 432 433
	/* Cached TLS descriptors: */
	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
	unsigned long		sp0;
	unsigned long		sp;
434
#ifdef CONFIG_X86_32
435
	unsigned long		sysenter_cs;
436
#else
437 438 439 440
	unsigned short		es;
	unsigned short		ds;
	unsigned short		fsindex;
	unsigned short		gsindex;
441
#endif
442 443 444

	u32			status;		/* thread synchronous flags */

445
#ifdef CONFIG_X86_64
446 447 448 449 450 451 452 453 454
	unsigned long		fsbase;
	unsigned long		gsbase;
#else
	/*
	 * XXX: this could presumably be unsigned short.  Alternatively,
	 * 32-bit kernels could be taught to use fsindex instead.
	 */
	unsigned long fs;
	unsigned long gs;
455
#endif
456

457 458 459 460
	/* Save middle states of ptrace breakpoints */
	struct perf_event	*ptrace_bps[HBP_NUM];
	/* Debug status used for traps, single steps, etc... */
	unsigned long           debugreg6;
461 462
	/* Keep track of the exact dr7 value set by the user */
	unsigned long           ptrace_dr7;
463 464
	/* Fault info: */
	unsigned long		cr2;
465
	unsigned long		trap_nr;
466
	unsigned long		error_code;
467
#ifdef CONFIG_VM86
468
	/* Virtual 86 mode info */
469
	struct vm86		*vm86;
470
#endif
471 472 473 474 475
	/* IO permissions: */
	unsigned long		*io_bitmap_ptr;
	unsigned long		iopl;
	/* Max allowed port in the bitmap, in bytes: */
	unsigned		io_bitmap_max;
476

477 478
	mm_segment_t		addr_limit;

479
	unsigned int		sig_on_uaccess_err:1;
480 481
	unsigned int		uaccess_err:1;	/* uaccess failed */

482 483 484 485 486 487
	/* Floating point and extended processor state */
	struct fpu		fpu;
	/*
	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
	 * the end.
	 */
488 489
};

490 491 492 493 494 495 496 497 498
/*
 * Thread-synchronous status.
 *
 * This is different from the flags in that nobody else
 * ever touches our thread-synchronous status, so we don't
 * have to worry about atomic accesses.
 */
#define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/

499 500 501 502 503 504 505
/*
 * Set IOPL bits in EFLAGS from given mask
 */
static inline void native_set_iopl_mask(unsigned mask)
{
#ifdef CONFIG_X86_32
	unsigned int reg;
506

507 508 509 510 511 512 513 514
	asm volatile ("pushfl;"
		      "popl %0;"
		      "andl %1, %0;"
		      "orl %2, %0;"
		      "pushl %0;"
		      "popfl"
		      : "=&r" (reg)
		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
515 516 517
#endif
}

518 519
static inline void
native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
520 521 522
{
	tss->x86_tss.sp0 = thread->sp0;
#ifdef CONFIG_X86_32
523
	/* Only happens when SEP is enabled, no need to test "SEP"arately: */
524 525 526 527 528 529
	if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
		tss->x86_tss.ss1 = thread->sysenter_cs;
		wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
	}
#endif
}
530

531 532 533 534 535 536 537
static inline void native_swapgs(void)
{
#ifdef CONFIG_X86_64
	asm volatile("swapgs" ::: "memory");
#endif
}

538
static inline unsigned long current_top_of_stack(void)
539
{
540
#ifdef CONFIG_X86_64
541
	return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
542 543 544 545
#else
	/* sp0 on x86_32 is special in and around vm86 mode. */
	return this_cpu_read_stable(cpu_current_top_of_stack);
#endif
546 547
}

548 549 550
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
551
#define __cpuid			native_cpuid
552

553 554
static inline void load_sp0(struct tss_struct *tss,
			    struct thread_struct *thread)
555 556 557 558
{
	native_load_sp0(tss, thread);
}

559
#define set_iopl_mask native_set_iopl_mask
560 561
#endif /* CONFIG_PARAVIRT */

562 563 564 565
/* Free all resources held by a thread. */
extern void release_thread(struct task_struct *);

unsigned long get_wchan(struct task_struct *p);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

/*
 * Generic CPUID function
 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
 * resulting in stale register contents being returned.
 */
static inline void cpuid(unsigned int op,
			 unsigned int *eax, unsigned int *ebx,
			 unsigned int *ecx, unsigned int *edx)
{
	*eax = op;
	*ecx = 0;
	__cpuid(eax, ebx, ecx, edx);
}

/* Some CPUID calls want 'count' to be placed in ecx */
static inline void cpuid_count(unsigned int op, int count,
			       unsigned int *eax, unsigned int *ebx,
			       unsigned int *ecx, unsigned int *edx)
{
	*eax = op;
	*ecx = count;
	__cpuid(eax, ebx, ecx, edx);
}

/*
 * CPUID functions returning a single datum
 */
static inline unsigned int cpuid_eax(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
599

600 601
	return eax;
}
602

603 604 605 606 607
static inline unsigned int cpuid_ebx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
608

609 610
	return ebx;
}
611

612 613 614 615 616
static inline unsigned int cpuid_ecx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
617

618 619
	return ecx;
}
620

621 622 623 624 625
static inline unsigned int cpuid_edx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
626

627 628 629
	return edx;
}

630
/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
631
static __always_inline void rep_nop(void)
632
{
633
	asm volatile("rep; nop" ::: "memory");
634 635
}

636
static __always_inline void cpu_relax(void)
637 638 639 640
{
	rep_nop();
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654
/*
 * This function forces the icache and prefetched instruction stream to
 * catch up with reality in two very specific cases:
 *
 *  a) Text was modified using one virtual address and is about to be executed
 *     from the same physical page at a different virtual address.
 *
 *  b) Text was modified on a different CPU, may subsequently be
 *     executed on this CPU, and you want to make sure the new version
 *     gets executed.  This generally means you're calling this in a IPI.
 *
 * If you're calling this for a different reason, you're probably doing
 * it wrong.
 */
655 656
static inline void sync_core(void)
{
657
	/*
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	 * There are quite a few ways to do this.  IRET-to-self is nice
	 * because it works on every CPU, at any CPL (so it's compatible
	 * with paravirtualization), and it never exits to a hypervisor.
	 * The only down sides are that it's a bit slow (it seems to be
	 * a bit more than 2x slower than the fastest options) and that
	 * it unmasks NMIs.  The "push %cs" is needed because, in
	 * paravirtual environments, __KERNEL_CS may not be a valid CS
	 * value when we do IRET directly.
	 *
	 * In case NMI unmasking or performance ever becomes a problem,
	 * the next best option appears to be MOV-to-CR2 and an
	 * unconditional jump.  That sequence also works on all CPUs,
	 * but it will fault at CPL3 (i.e. Xen PV and lguest).
	 *
	 * CPUID is the conventional way, but it's nasty: it doesn't
	 * exist on some 486-like CPUs, and it usually exits to a
	 * hypervisor.
	 *
	 * Like all of Linux's memory ordering operations, this is a
	 * compiler barrier as well.
678
	 */
679 680 681 682 683 684 685 686 687 688
	register void *__sp asm(_ASM_SP);

#ifdef CONFIG_X86_32
	asm volatile (
		"pushfl\n\t"
		"pushl %%cs\n\t"
		"pushl $1f\n\t"
		"iret\n\t"
		"1:"
		: "+r" (__sp) : : "memory");
689
#else
690 691 692 693 694 695 696 697 698 699 700 701 702 703
	unsigned int tmp;

	asm volatile (
		"mov %%ss, %0\n\t"
		"pushq %q0\n\t"
		"pushq %%rsp\n\t"
		"addq $8, (%%rsp)\n\t"
		"pushfq\n\t"
		"mov %%cs, %0\n\t"
		"pushq %q0\n\t"
		"pushq $1f\n\t"
		"iretq\n\t"
		"1:"
		: "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
704
#endif
705 706 707
}

extern void select_idle_routine(const struct cpuinfo_x86 *c);
708
extern void amd_e400_c1e_apic_setup(void);
709

710
extern unsigned long		boot_option_idle_override;
711

712
enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
713
			 IDLE_POLL};
714

715 716 717
extern void enable_sep_cpu(void);
extern int sysenter_setup(void);

718
extern void early_trap_init(void);
719
void early_trap_pf_init(void);
720

721
/* Defined in head.S */
722
extern struct desc_ptr		early_gdt_descr;
723 724

extern void cpu_set_gdt(int);
725
extern void switch_to_new_gdt(int);
726
extern void load_direct_gdt(int);
727
extern void load_fixmap_gdt(int);
728
extern void load_percpu_segment(int);
729 730
extern void cpu_init(void);

731 732
static inline unsigned long get_debugctlmsr(void)
{
P
Peter Zijlstra 已提交
733
	unsigned long debugctlmsr = 0;
734 735 736 737 738 739 740

#ifndef CONFIG_X86_DEBUGCTLMSR
	if (boot_cpu_data.x86 < 6)
		return 0;
#endif
	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);

P
Peter Zijlstra 已提交
741
	return debugctlmsr;
742 743
}

744 745 746 747 748 749 750 751 752
static inline void update_debugctlmsr(unsigned long debugctlmsr)
{
#ifndef CONFIG_X86_DEBUGCTLMSR
	if (boot_cpu_data.x86 < 6)
		return;
#endif
	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
}

753 754
extern void set_task_blockstep(struct task_struct *task, bool on);

755 756
/* Boot loader type from the setup header: */
extern int			bootloader_type;
757
extern int			bootloader_version;
758

759
extern char			ignore_fpu_irq;
760 761 762 763 764

#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
#define ARCH_HAS_PREFETCHW
#define ARCH_HAS_SPINLOCK_PREFETCH

765
#ifdef CONFIG_X86_32
766
# define BASE_PREFETCH		""
767
# define ARCH_HAS_PREFETCH
768
#else
769
# define BASE_PREFETCH		"prefetcht0 %P1"
770 771
#endif

772 773 774 775 776 777
/*
 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
 *
 * It's not worth to care about 3dnow prefetches for the K6
 * because they are microcoded there and very slow.
 */
778 779
static inline void prefetch(const void *x)
{
780
	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
781
			  X86_FEATURE_XMM,
782
			  "m" (*(const char *)x));
783 784
}

785 786 787 788 789
/*
 * 3dnow prefetch to get an exclusive cache line.
 * Useful for spinlocks to avoid one state transition in the
 * cache coherency protocol:
 */
790 791
static inline void prefetchw(const void *x)
{
792 793 794
	alternative_input(BASE_PREFETCH, "prefetchw %P1",
			  X86_FEATURE_3DNOWPREFETCH,
			  "m" (*(const char *)x));
795 796
}

797 798 799 800 801
static inline void spin_lock_prefetch(const void *x)
{
	prefetchw(x);
}

802 803 804
#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
			   TOP_OF_KERNEL_STACK_PADDING)

805 806 807 808
#ifdef CONFIG_X86_32
/*
 * User space process size: 3GB (default).
 */
809
#define IA32_PAGE_OFFSET	PAGE_OFFSET
810
#define TASK_SIZE		PAGE_OFFSET
811
#define TASK_SIZE_MAX		TASK_SIZE
812
#define DEFAULT_MAP_WINDOW	TASK_SIZE
813 814 815 816
#define STACK_TOP		TASK_SIZE
#define STACK_TOP_MAX		STACK_TOP

#define INIT_THREAD  {							  \
817
	.sp0			= TOP_OF_INIT_STACK,			  \
818 819
	.sysenter_cs		= __KERNEL_CS,				  \
	.io_bitmap_ptr		= NULL,					  \
820
	.addr_limit		= KERNEL_DS,				  \
821 822 823
}

/*
824
 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
825
 * This is necessary to guarantee that the entire "struct pt_regs"
826
 * is accessible even if the CPU haven't stored the SS/ESP registers
827 828 829 830 831 832
 * on the stack (interrupt gate does not save these registers
 * when switching to the same priv ring).
 * Therefore beware: accessing the ss/esp fields of the
 * "struct pt_regs" is possible, but they may contain the
 * completely wrong values.
 */
833 834 835 836 837
#define task_pt_regs(task) \
({									\
	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
	((struct pt_regs *)__ptr) - 1;					\
838 839
})

840
#define KSTK_ESP(task)		(task_pt_regs(task)->sp)
841 842 843

#else
/*
844 845 846 847 848 849 850
 * User space process size. 47bits minus one guard page.  The guard
 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
 * the highest possible canonical userspace address, then that
 * syscall will enter the kernel with a non-canonical return
 * address, and SYSRET will explode dangerously.  We avoid this
 * particular problem by preventing anything from being mapped
 * at the maximum canonical address.
851
 */
852
#define TASK_SIZE_MAX	((1UL << 47) - PAGE_SIZE)
853

854 855
#define DEFAULT_MAP_WINDOW	TASK_SIZE_MAX

856 857 858
/* This decides where the kernel will search for a free chunk of vm
 * space during mmap's.
 */
859 860
#define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
					0xc0000000 : 0xFFFFe000)
861

862
#define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
863
					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
864
#define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
865
					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
866

867
#define STACK_TOP		TASK_SIZE
868
#define STACK_TOP_MAX		TASK_SIZE_MAX
869

870 871 872
#define INIT_THREAD  {						\
	.sp0			= TOP_OF_INIT_STACK,		\
	.addr_limit		= KERNEL_DS,			\
873 874
}

875
#define task_pt_regs(tsk)	((struct pt_regs *)(tsk)->thread.sp0 - 1)
876
extern unsigned long KSTK_ESP(struct task_struct *task);
877

878 879
#endif /* CONFIG_X86_64 */

I
Ingo Molnar 已提交
880 881 882
extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
					       unsigned long new_sp);

883 884
/*
 * This decides where the kernel will search for a free chunk of vm
885 886
 * space during mmap's.
 */
887 888
#define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
#define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE)
889

890
#define KSTK_EIP(task)		(task_pt_regs(task)->ip)
891

892 893 894 895 896 897 898
/* Get/set a process' ability to use the timestamp counter instruction */
#define GET_TSC_CTL(adr)	get_tsc_mode((adr))
#define SET_TSC_CTL(val)	set_tsc_mode((val))

extern int get_tsc_mode(unsigned long adr);
extern int set_tsc_mode(unsigned int val);

899 900
DECLARE_PER_CPU(u64, msr_misc_features_shadow);

901
/* Register/unregister a process' MPX related resource */
902 903
#define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
#define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
904 905

#ifdef CONFIG_X86_INTEL_MPX
906 907
extern int mpx_enable_management(void);
extern int mpx_disable_management(void);
908
#else
909
static inline int mpx_enable_management(void)
910 911 912
{
	return -EINVAL;
}
913
static inline int mpx_disable_management(void)
914 915 916 917 918
{
	return -EINVAL;
}
#endif /* CONFIG_X86_INTEL_MPX */

919
#ifdef CONFIG_CPU_SUP_AMD
920
extern u16 amd_get_nb_id(int cpu);
921
extern u32 amd_get_nodes_per_socket(void);
922 923 924 925
#else
static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
#endif
926

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
{
	uint32_t base, eax, signature[3];

	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);

		if (!memcmp(sig, signature, 12) &&
		    (leaves == 0 || ((eax - base) >= leaves)))
			return base;
	}

	return 0;
}

942 943 944 945
extern unsigned long arch_align_stack(unsigned long sp);
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);

void default_idle(void);
946 947 948 949 950
#ifdef	CONFIG_XEN
bool xen_set_default_idle(void);
#else
#define xen_set_default_idle 0
#endif
951 952

void stop_this_cpu(void *dummy);
953
void df_debug(struct pt_regs *regs, long error_code);
H
H. Peter Anvin 已提交
954
#endif /* _ASM_X86_PROCESSOR_H */