sched.c 227.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/stop_machine.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70 71
#include <linux/debugfs.h>
#include <linux/ctype.h>
72
#include <linux/ftrace.h>
73
#include <linux/slab.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
77
#include <asm/mutex.h>
G
Glauber Costa 已提交
78 79 80
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
81

82
#include "sched_cpupri.h"
T
Tejun Heo 已提交
83
#include "workqueue_sched.h"
84
#include "sched_autogroup.h"
85

86
#define CREATE_TRACE_POINTS
87
#include <trace/events/sched.h>
88

L
Linus Torvalds 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
108
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
109
 */
110
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
111

I
Ingo Molnar 已提交
112 113 114
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
115 116 117
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
118
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
119 120 121
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
122

123 124 125 126 127
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

128 129
static inline int rt_policy(int policy)
{
130
	if (policy == SCHED_FIFO || policy == SCHED_RR)
131 132 133 134 135 136 137 138 139
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
140
/*
I
Ingo Molnar 已提交
141
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
142
 */
I
Ingo Molnar 已提交
143 144 145 146 147
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

148
struct rt_bandwidth {
I
Ingo Molnar 已提交
149
	/* nests inside the rq lock: */
150
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
151 152 153
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

187
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
188

189 190 191 192 193
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

194 195 196
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
197 198 199 200 201 202
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

203
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
204 205 206 207 208
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

209
	raw_spin_lock(&rt_b->rt_runtime_lock);
210
	for (;;) {
211 212 213
		unsigned long delta;
		ktime_t soft, hard;

214 215 216 217 218
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
219 220 221 222 223

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
224
				HRTIMER_MODE_ABS_PINNED, 0);
225
	}
226
	raw_spin_unlock(&rt_b->rt_runtime_lock);
227 228 229 230 231 232 233 234 235
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

236
/*
237
 * sched_domains_mutex serializes calls to init_sched_domains,
238 239 240 241
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
242
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
243

244 245
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
246 247
struct cfs_rq;

P
Peter Zijlstra 已提交
248 249
static LIST_HEAD(task_groups);

250 251 252 253 254 255 256 257
struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
	raw_spinlock_t lock;
	ktime_t period;
	u64 quota;
#endif
};

S
Srivatsa Vaddagiri 已提交
258
/* task group related information */
259
struct task_group {
260
	struct cgroup_subsys_state css;
261

262
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
263 264 265 266 267
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
P
Peter Zijlstra 已提交
268 269

	atomic_t load_weight;
270 271 272 273 274 275
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

276
	struct rt_bandwidth rt_bandwidth;
277
#endif
278

279
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
280
	struct list_head list;
P
Peter Zijlstra 已提交
281 282 283 284

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
285 286 287 288

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
289 290

	struct cfs_bandwidth cfs_bandwidth;
S
Srivatsa Vaddagiri 已提交
291 292
};

293
/* task_group_lock serializes the addition/removal of task groups */
294
static DEFINE_SPINLOCK(task_group_lock);
295

296 297
#ifdef CONFIG_FAIR_GROUP_SCHED

298
# define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
299

300
/*
301 302 303 304
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
305 306 307
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
308 309
#define MIN_SHARES	(1UL <<  1)
#define MAX_SHARES	(1UL << 18)
310

311
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
312 313
#endif

S
Srivatsa Vaddagiri 已提交
314
/* Default task group.
I
Ingo Molnar 已提交
315
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
316
 */
317
struct task_group root_task_group;
S
Srivatsa Vaddagiri 已提交
318

D
Dhaval Giani 已提交
319
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
320

I
Ingo Molnar 已提交
321 322 323
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
324
	unsigned long nr_running, h_nr_running;
I
Ingo Molnar 已提交
325 326

	u64 exec_clock;
I
Ingo Molnar 已提交
327
	u64 min_vruntime;
328 329 330
#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
#endif
I
Ingo Molnar 已提交
331 332 333

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
334 335 336 337 338 339

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
340 341
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
342
	struct sched_entity *curr, *next, *last, *skip;
P
Peter Zijlstra 已提交
343

344
#ifdef	CONFIG_SCHED_DEBUG
P
Peter Zijlstra 已提交
345
	unsigned int nr_spread_over;
346
#endif
P
Peter Zijlstra 已提交
347

348
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
349 350
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
351 352
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
353 354 355 356 357 358
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
359
	int on_list;
I
Ingo Molnar 已提交
360 361
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
362 363 364

#ifdef CONFIG_SMP
	/*
365
	 * the part of load.weight contributed by tasks
366
	 */
367
	unsigned long task_weight;
368

369 370 371 372 373 374 375
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
376

377
	/*
378 379 380 381 382
	 * Maintaining per-cpu shares distribution for group scheduling
	 *
	 * load_stamp is the last time we updated the load average
	 * load_last is the last time we updated the load average and saw load
	 * load_unacc_exec_time is currently unaccounted execution time
383
	 */
P
Peter Zijlstra 已提交
384 385
	u64 load_avg;
	u64 load_period;
386
	u64 load_stamp, load_last, load_unacc_exec_time;
387

P
Peter Zijlstra 已提交
388
	unsigned long load_contribution;
389
#endif
390 391 392 393
#ifdef CONFIG_CFS_BANDWIDTH
	int runtime_enabled;
	s64 runtime_remaining;
#endif
I
Ingo Molnar 已提交
394 395
#endif
};
L
Linus Torvalds 已提交
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_CFS_BANDWIDTH
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

static inline u64 default_cfs_period(void);

static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{}
#else
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
432 433 434
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
435
	unsigned long rt_nr_running;
436
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
437 438
	struct {
		int curr; /* highest queued rt task prio */
439
#ifdef CONFIG_SMP
440
		int next; /* next highest */
441
#endif
442
	} highest_prio;
P
Peter Zijlstra 已提交
443
#endif
P
Peter Zijlstra 已提交
444
#ifdef CONFIG_SMP
445
	unsigned long rt_nr_migratory;
446
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
447
	int overloaded;
448
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
449
#endif
P
Peter Zijlstra 已提交
450
	int rt_throttled;
P
Peter Zijlstra 已提交
451
	u64 rt_time;
P
Peter Zijlstra 已提交
452
	u64 rt_runtime;
I
Ingo Molnar 已提交
453
	/* Nests inside the rq lock: */
454
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
455

456
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
457 458
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
459 460 461 462
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
463 464
};

G
Gregory Haskins 已提交
465 466 467 468
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
469 470
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
471 472 473 474 475 476
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
477
	atomic_t rto_count;
478
	struct rcu_head rcu;
479 480
	cpumask_var_t span;
	cpumask_var_t online;
481

I
Ingo Molnar 已提交
482
	/*
483 484 485
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
486
	cpumask_var_t rto_mask;
487
	struct cpupri cpupri;
G
Gregory Haskins 已提交
488 489
};

490 491 492 493
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
494 495
static struct root_domain def_root_domain;

496
#endif /* CONFIG_SMP */
G
Gregory Haskins 已提交
497

L
Linus Torvalds 已提交
498 499 500 501 502 503 504
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
505
struct rq {
506
	/* runqueue lock: */
507
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
508 509 510 511 512 513

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
514 515
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
516
	unsigned long last_load_update_tick;
517
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
518
	u64 nohz_stamp;
519
	unsigned char nohz_balance_kick;
520
#endif
521
	int skip_clock_update;
522

523 524
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
525 526 527 528
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
529 530
	struct rt_rq rt;

I
Ingo Molnar 已提交
531
#ifdef CONFIG_FAIR_GROUP_SCHED
532 533
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
534 535
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
536
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
537 538 539 540 541 542 543 544 545 546
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

547
	struct task_struct *curr, *idle, *stop;
548
	unsigned long next_balance;
L
Linus Torvalds 已提交
549
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
550

551
	u64 clock;
552
	u64 clock_task;
I
Ingo Molnar 已提交
553

L
Linus Torvalds 已提交
554 555 556
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
557
	struct root_domain *rd;
L
Linus Torvalds 已提交
558 559
	struct sched_domain *sd;

560 561
	unsigned long cpu_power;

562
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
563
	/* For active balancing */
564
	int post_schedule;
L
Linus Torvalds 已提交
565 566
	int active_balance;
	int push_cpu;
567
	struct cpu_stop_work active_balance_work;
568 569
	/* cpu of this runqueue: */
	int cpu;
570
	int online;
L
Linus Torvalds 已提交
571

572 573
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
574 575
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
576 577
#endif

578 579 580
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif
G
Glauber Costa 已提交
581 582 583
#ifdef CONFIG_PARAVIRT
	u64 prev_steal_time;
#endif
584 585 586
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	u64 prev_steal_time_rq;
#endif
587

588 589 590 591
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
592
#ifdef CONFIG_SCHED_HRTICK
593 594 595 596
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
597 598 599
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
600 601 602
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
603 604
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
605 606

	/* sys_sched_yield() stats */
607
	unsigned int yld_count;
L
Linus Torvalds 已提交
608 609

	/* schedule() stats */
610 611 612
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
613 614

	/* try_to_wake_up() stats */
615 616
	unsigned int ttwu_count;
	unsigned int ttwu_local;
L
Linus Torvalds 已提交
617
#endif
618 619 620 621

#ifdef CONFIG_SMP
	struct task_struct *wake_list;
#endif
L
Linus Torvalds 已提交
622 623
};

624
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
625

626

627
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
I
Ingo Molnar 已提交
628

629 630 631 632 633 634 635 636 637
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

638
#define rcu_dereference_check_sched_domain(p) \
639 640 641
	rcu_dereference_check((p), \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
642 643
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
644
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
645 646 647 648
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
649
#define for_each_domain(cpu, __sd) \
650
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
651 652 653 654 655

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
656
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
657

658 659 660 661 662
#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
663 664 665 666
 * We use task_subsys_state_check() and extend the RCU verification with
 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
 * task it moves into the cgroup. Therefore by holding either of those locks,
 * we pin the task to the current cgroup.
667 668 669
 */
static inline struct task_group *task_group(struct task_struct *p)
{
670
	struct task_group *tg;
671 672 673
	struct cgroup_subsys_state *css;

	css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
674 675
			lockdep_is_held(&p->pi_lock) ||
			lockdep_is_held(&task_rq(p)->lock));
676 677 678
	tg = container_of(css, struct task_group, css);

	return autogroup_task_group(p, tg);
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

705
static void update_rq_clock_task(struct rq *rq, s64 delta);
706

707
static void update_rq_clock(struct rq *rq)
708
{
709
	s64 delta;
710

711
	if (rq->skip_clock_update > 0)
712
		return;
713

714 715 716
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
717 718
}

I
Ingo Molnar 已提交
719 720 721 722 723 724 725 726 727
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
728
/**
729
 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
730
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
731 732 733 734
 *
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
735
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
736
{
737
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
738 739
}

I
Ingo Molnar 已提交
740 741 742
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
743 744 745 746

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
747
enum {
P
Peter Zijlstra 已提交
748
#include "sched_features.h"
I
Ingo Molnar 已提交
749 750
};

P
Peter Zijlstra 已提交
751 752 753 754 755
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
756
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
757 758 759 760 761 762 763 764 765
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

766
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
767 768 769 770 771 772
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
773
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
774 775 776 777
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
778 779 780
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
781
	}
L
Li Zefan 已提交
782
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
783

L
Li Zefan 已提交
784
	return 0;
P
Peter Zijlstra 已提交
785 786 787 788 789 790 791
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
792
	char *cmp;
P
Peter Zijlstra 已提交
793 794 795 796 797 798 799 800 801 802
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
803
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
804

H
Hillf Danton 已提交
805
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
806 807 808 809 810
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
811
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
812 813 814 815 816 817 818 819 820 821 822
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

823
	*ppos += cnt;
P
Peter Zijlstra 已提交
824 825 826 827

	return cnt;
}

L
Li Zefan 已提交
828 829 830 831 832
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

833
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
834 835 836 837 838
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
853

854 855 856 857 858 859
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

860 861 862 863 864 865 866 867
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
868
/*
P
Peter Zijlstra 已提交
869
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
870 871
 * default: 1s
 */
P
Peter Zijlstra 已提交
872
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
873

874 875
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
876 877 878 879 880
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
881

882 883 884 885 886 887 888
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
889
	if (sysctl_sched_rt_runtime < 0)
890 891 892 893
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
894

L
Linus Torvalds 已提交
895
#ifndef prepare_arch_switch
896 897 898 899 900 901
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

902 903 904 905 906
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

907
static inline int task_running(struct rq *rq, struct task_struct *p)
908
{
P
Peter Zijlstra 已提交
909 910 911
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
912
	return task_current(rq, p);
P
Peter Zijlstra 已提交
913
#endif
914 915
}

P
Peter Zijlstra 已提交
916
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
917
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
918
{
P
Peter Zijlstra 已提交
919 920 921 922 923 924 925 926
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->on_cpu = 1;
#endif
927 928
}

929
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930
{
P
Peter Zijlstra 已提交
931 932 933 934 935 936 937 938 939
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->on_cpu = 0;
#endif
940 941 942 943
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
944 945 946 947 948 949 950
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

951
	raw_spin_unlock_irq(&rq->lock);
952 953 954
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
955
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
956 957 958 959 960 961 962
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
P
Peter Zijlstra 已提交
963
	next->on_cpu = 1;
964 965
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966
	raw_spin_unlock_irq(&rq->lock);
967
#else
968
	raw_spin_unlock(&rq->lock);
969 970 971
#endif
}

972
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
973 974 975
{
#ifdef CONFIG_SMP
	/*
P
Peter Zijlstra 已提交
976
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
977 978 979 980
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
P
Peter Zijlstra 已提交
981
	prev->on_cpu = 0;
982 983 984
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
985
#endif
986 987
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
988

989
/*
990
 * __task_rq_lock - lock the rq @p resides on.
991
 */
992
static inline struct rq *__task_rq_lock(struct task_struct *p)
993 994
	__acquires(rq->lock)
{
995 996
	struct rq *rq;

997 998
	lockdep_assert_held(&p->pi_lock);

999
	for (;;) {
1000
		rq = task_rq(p);
1001
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
1002
		if (likely(rq == task_rq(p)))
1003
			return rq;
1004
		raw_spin_unlock(&rq->lock);
1005 1006 1007
	}
}

L
Linus Torvalds 已提交
1008
/*
1009
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
1010
 */
1011
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1012
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
1013 1014
	__acquires(rq->lock)
{
1015
	struct rq *rq;
L
Linus Torvalds 已提交
1016

1017
	for (;;) {
1018
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
1019
		rq = task_rq(p);
1020
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
1021
		if (likely(rq == task_rq(p)))
1022
			return rq;
1023 1024
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
1025 1026 1027
	}
}

A
Alexey Dobriyan 已提交
1028
static void __task_rq_unlock(struct rq *rq)
1029 1030
	__releases(rq->lock)
{
1031
	raw_spin_unlock(&rq->lock);
1032 1033
}

1034 1035
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
1036
	__releases(rq->lock)
1037
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
1038
{
1039 1040
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
1041 1042 1043
}

/*
1044
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1045
 */
A
Alexey Dobriyan 已提交
1046
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1047 1048
	__acquires(rq->lock)
{
1049
	struct rq *rq;
L
Linus Torvalds 已提交
1050 1051 1052

	local_irq_disable();
	rq = this_rq();
1053
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1054 1055 1056 1057

	return rq;
}

P
Peter Zijlstra 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1079
	if (!cpu_active(cpu_of(rq)))
1080
		return 0;
P
Peter Zijlstra 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1100
	raw_spin_lock(&rq->lock);
1101
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1102
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1103
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1104 1105 1106 1107

	return HRTIMER_NORESTART;
}

1108
#ifdef CONFIG_SMP
1109 1110 1111 1112
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1113
{
1114
	struct rq *rq = arg;
1115

1116
	raw_spin_lock(&rq->lock);
1117 1118
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1119
	raw_spin_unlock(&rq->lock);
1120 1121
}

1122 1123 1124 1125 1126 1127
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1128
{
1129 1130
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1131

1132
	hrtimer_set_expires(timer, time);
1133 1134 1135 1136

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1137
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1138 1139
		rq->hrtick_csd_pending = 1;
	}
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1154
		hrtick_clear(cpu_rq(cpu));
1155 1156 1157 1158 1159 1160
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1161
static __init void init_hrtick(void)
1162 1163 1164
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1165 1166 1167 1168 1169 1170 1171 1172
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1173
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1174
			HRTIMER_MODE_REL_PINNED, 0);
1175
}
1176

A
Andrew Morton 已提交
1177
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1178 1179
{
}
1180
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1181

1182
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1183
{
1184 1185
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1186

1187 1188 1189 1190
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1191

1192 1193
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1194
}
A
Andrew Morton 已提交
1195
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1196 1197 1198 1199 1200 1201 1202 1203
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1204 1205 1206
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1207
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1208

I
Ingo Molnar 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1222
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1223 1224 1225
{
	int cpu;

1226
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1227

1228
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1229 1230
		return;

1231
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1248
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1249 1250
		return;
	resched_task(cpu_curr(cpu));
1251
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1252
}
1253 1254

#ifdef CONFIG_NO_HZ
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

1269
	rcu_read_lock();
1270
	for_each_domain(cpu, sd) {
1271 1272 1273 1274 1275 1276
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
1277
	}
1278 1279
unlock:
	rcu_read_unlock();
1280 1281
	return cpu;
}
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1314
	set_tsk_need_resched(rq->idle);
1315 1316 1317 1318 1319 1320

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1321

1322
#endif /* CONFIG_NO_HZ */
1323

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
1334 1335 1336 1337 1338 1339
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1351
#else /* !CONFIG_SMP */
1352
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1353
{
1354
	assert_raw_spin_locked(&task_rq(p)->lock);
1355
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1356
}
1357 1358 1359 1360

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1361 1362 1363 1364

static void sched_avg_update(struct rq *rq)
{
}
1365
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1366

1367 1368 1369 1370 1371 1372 1373 1374
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1375 1376 1377
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1378
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1379

1380 1381 1382
/*
 * delta *= weight / lw
 */
1383
static unsigned long
1384 1385 1386 1387 1388
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1389 1390 1391 1392 1393 1394 1395 1396 1397
	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;
1398

1399
	if (!lw->inv_weight) {
1400 1401 1402
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1403
			lw->inv_weight = 1;
1404 1405
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
1406
		else
1407
			lw->inv_weight = WMULT_CONST / w;
1408
	}
1409 1410 1411 1412

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1413
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1414
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1415 1416
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1417
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1418

1419
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1420 1421
}

1422
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1423 1424
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1425
	lw->inv_weight = 0;
1426 1427
}

1428
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1429 1430
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1431
	lw->inv_weight = 0;
1432 1433
}

P
Peter Zijlstra 已提交
1434 1435 1436 1437 1438 1439
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

1440 1441 1442 1443
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1444
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1445 1446 1447 1448
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1449 1450
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1460 1461 1462
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1463 1464
 */
static const int prio_to_weight[40] = {
1465 1466 1467 1468 1469 1470 1471 1472
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1473 1474
};

1475 1476 1477 1478 1479 1480 1481
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1482
static const u32 prio_to_wmult[40] = {
1483 1484 1485 1486 1487 1488 1489 1490
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1491
};
1492

1493 1494 1495 1496 1497 1498 1499 1500
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1501 1502
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1503 1504
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1505 1506
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1507 1508
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1509 1510
#endif

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1521
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1522
typedef int (*tg_visitor)(struct task_group *, void *);
1523 1524 1525 1526 1527

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1528
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1529 1530
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1531
	int ret;
1532 1533 1534 1535

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1536 1537 1538
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1539 1540 1541 1542 1543 1544 1545
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1546 1547 1548
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1549 1550 1551 1552 1553

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1554
out_unlock:
1555
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1556 1557

	return ret;
1558 1559
}

P
Peter Zijlstra 已提交
1560 1561 1562
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1563
}
P
Peter Zijlstra 已提交
1564 1565 1566
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1606 1607
static unsigned long power_of(int cpu)
{
1608
	return cpu_rq(cpu)->cpu_power;
1609 1610
}

P
Peter Zijlstra 已提交
1611 1612 1613 1614 1615
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1616
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1617

1618
	if (nr_running)
1619
		return rq->load.weight / nr_running;
P
Peter Zijlstra 已提交
1620

1621
	return 0;
P
Peter Zijlstra 已提交
1622 1623
}

1624 1625
#ifdef CONFIG_PREEMPT

1626 1627
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1628
/*
1629 1630 1631 1632 1633 1634
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1635
 */
1636 1637 1638 1639 1640
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1641
	raw_spin_unlock(&this_rq->lock);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1656 1657 1658 1659 1660 1661
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1662
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1663
		if (busiest < this_rq) {
1664 1665 1666 1667
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1668 1669
			ret = 1;
		} else
1670 1671
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1672 1673 1674 1675
	}
	return ret;
}

1676 1677 1678 1679 1680 1681 1682 1683 1684
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1685
		raw_spin_unlock(&this_rq->lock);
1686 1687 1688 1689 1690 1691
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1692 1693 1694
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1695
	raw_spin_unlock(&busiest->lock);
1696 1697
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

1774 1775
#endif

1776
static void calc_load_account_idle(struct rq *this_rq);
1777
static void update_sysctl(void);
1778
static int get_update_sysctl_factor(void);
1779
static void update_cpu_load(struct rq *this_rq);
1780

P
Peter Zijlstra 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1794

1795
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1796

1797
#define sched_class_highest (&stop_sched_class)
1798 1799
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1800

1801 1802
#include "sched_stats.h"

1803
static void inc_nr_running(struct rq *rq)
1804 1805 1806 1807
{
	rq->nr_running++;
}

1808
static void dec_nr_running(struct rq *rq)
1809 1810 1811 1812
{
	rq->nr_running--;
}

1813 1814
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
1815 1816 1817
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
1818 1819 1820 1821
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
1822
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
1823
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
1824 1825
		return;
	}
1826

1827
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
1828
	load->inv_weight = prio_to_wmult[prio];
1829 1830
}

1831
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1832
{
1833
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1834
	sched_info_queued(p);
1835
	p->sched_class->enqueue_task(rq, p, flags);
1836 1837
}

1838
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1839
{
1840
	update_rq_clock(rq);
1841
	sched_info_dequeued(p);
1842
	p->sched_class->dequeue_task(rq, p, flags);
1843 1844
}

1845 1846 1847
/*
 * activate_task - move a task to the runqueue.
 */
1848
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1849 1850 1851 1852
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1853
	enqueue_task(rq, p, flags);
1854 1855 1856 1857 1858
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1859
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1860 1861 1862 1863
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1864
	dequeue_task(rq, p, flags);
1865 1866
}

1867 1868
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

1869 1870 1871 1872 1873 1874 1875
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
1876 1877 1878
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
1879
 */
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
1934 1935 1936
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
1937
#endif /* CONFIG_64BIT */
1938

1939 1940 1941 1942
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
1943 1944 1945
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
1946
	s64 delta;
1947 1948 1949 1950 1951 1952 1953 1954
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
1955 1956 1957
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

1958
	irq_time_write_begin();
1959 1960 1961 1962 1963 1964 1965
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
1966
		__this_cpu_add(cpu_hardirq_time, delta);
1967
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1968
		__this_cpu_add(cpu_softirq_time, delta);
1969

1970
	irq_time_write_end();
1971 1972
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
1973
EXPORT_SYMBOL_GPL(account_system_vtime);
1974

G
Glauber Costa 已提交
1975 1976 1977 1978
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
1979
{
G
Glauber Costa 已提交
1980 1981
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
1982

G
Glauber Costa 已提交
1983 1984 1985 1986
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

1987
static void update_rq_clock_task(struct rq *rq, s64 delta)
1988
{
1989 1990 1991 1992 1993 1994 1995 1996
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1997
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_branch((&paravirt_steal_rq_enabled))) {
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

2039 2040
	rq->clock_task += delta;

2041 2042 2043 2044
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
2045 2046
}

2047
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
static int irqtime_account_hi_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

2078
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2079

2080 2081
#define sched_clock_irqtime	(0)

2082
#endif
2083

2084 2085 2086
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
2087
#include "sched_autogroup.c"
2088
#include "sched_stoptask.c"
2089 2090 2091 2092
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

2123
/*
I
Ingo Molnar 已提交
2124
 * __normal_prio - return the priority that is based on the static prio
2125 2126 2127
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2128
	return p->static_prio;
2129 2130
}

2131 2132 2133 2134 2135 2136 2137
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2138
static inline int normal_prio(struct task_struct *p)
2139 2140 2141
{
	int prio;

2142
	if (task_has_rt_policy(p))
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2156
static int effective_prio(struct task_struct *p)
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2169 2170 2171 2172
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2173
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2174 2175 2176 2177
{
	return cpu_curr(task_cpu(p)) == p;
}

2178 2179
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
2180
				       int oldprio)
2181 2182 2183
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
2184 2185 2186 2187
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
2188 2189
}

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
2211
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2212 2213 2214
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
2215
#ifdef CONFIG_SMP
2216 2217 2218
/*
 * Is this task likely cache-hot:
 */
2219
static int
2220 2221 2222 2223
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2224 2225 2226
	if (p->sched_class != &fair_sched_class)
		return 0;

2227 2228 2229
	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

2230 2231 2232
	/*
	 * Buddy candidates are cache hot:
	 */
2233
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2234 2235
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2236 2237
		return 1;

2238 2239 2240 2241 2242
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2243 2244 2245 2246 2247
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2248
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2249
{
2250 2251 2252 2253 2254
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2255 2256
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2257 2258

#ifdef CONFIG_LOCKDEP
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
2269 2270 2271
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
2272 2273
#endif

2274
	trace_sched_migrate_task(p, new_cpu);
2275

2276 2277
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
2278
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2279
	}
I
Ingo Molnar 已提交
2280 2281

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2282 2283
}

2284
struct migration_arg {
2285
	struct task_struct *task;
L
Linus Torvalds 已提交
2286
	int dest_cpu;
2287
};
L
Linus Torvalds 已提交
2288

2289 2290
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2291 2292 2293
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2294 2295 2296 2297 2298 2299 2300
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2301 2302 2303 2304 2305 2306
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2307
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2308 2309
{
	unsigned long flags;
I
Ingo Molnar 已提交
2310
	int running, on_rq;
R
Roland McGrath 已提交
2311
	unsigned long ncsw;
2312
	struct rq *rq;
L
Linus Torvalds 已提交
2313

2314 2315 2316 2317 2318 2319 2320 2321
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2322

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2334 2335 2336
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2337
			cpu_relax();
R
Roland McGrath 已提交
2338
		}
2339

2340 2341 2342 2343 2344 2345
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2346
		trace_sched_wait_task(p);
2347
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
2348
		on_rq = p->on_rq;
R
Roland McGrath 已提交
2349
		ncsw = 0;
2350
		if (!match_state || p->state == match_state)
2351
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2352
		task_rq_unlock(rq, p, &flags);
2353

R
Roland McGrath 已提交
2354 2355 2356 2357 2358 2359
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2370

2371 2372 2373 2374 2375
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2376
		 * So if it was still runnable (but just not actively
2377 2378 2379 2380
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
2381 2382 2383 2384
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2385 2386
			continue;
		}
2387

2388 2389 2390 2391 2392 2393 2394
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2395 2396

	return ncsw;
L
Linus Torvalds 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
2406
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
2407 2408 2409 2410 2411
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2412
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2422
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2423
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2424

2425
#ifdef CONFIG_SMP
2426
/*
2427
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2428
 */
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2445 2446 2447 2448 2449 2450 2451 2452 2453
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
2454 2455 2456 2457 2458
	}

	return dest_cpu;
}

2459
/*
2460
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2461
 */
2462
static inline
2463
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2464
{
2465
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2478
		     !cpu_online(cpu)))
2479
		cpu = select_fallback_rq(task_cpu(p), p);
2480 2481

	return cpu;
2482
}
2483 2484 2485 2486 2487 2488

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2489 2490
#endif

P
Peter Zijlstra 已提交
2491
static void
2492
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
2493
{
P
Peter Zijlstra 已提交
2494
#ifdef CONFIG_SCHEDSTATS
2495 2496
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
2507
		rcu_read_lock();
P
Peter Zijlstra 已提交
2508 2509 2510 2511 2512 2513
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
2514
		rcu_read_unlock();
P
Peter Zijlstra 已提交
2515
	}
2516 2517 2518 2519

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
2520 2521 2522
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
2523
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2524 2525

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
2526
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
2527 2528 2529 2530 2531 2532

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
2533
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
2534
	p->on_rq = 1;
2535 2536 2537 2538

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
2539 2540
}

2541 2542 2543
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
2544
static void
2545
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
2546
{
2547
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
2548 2549 2550 2551 2552 2553 2554
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

2555
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

2601
#ifdef CONFIG_SMP
2602
static void sched_ttwu_do_pending(struct task_struct *list)
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
{
	struct rq *rq = this_rq();

	raw_spin_lock(&rq->lock);

	while (list) {
		struct task_struct *p = list;
		list = list->wake_entry;
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
#ifdef CONFIG_HOTPLUG_CPU

static void sched_ttwu_pending(void)
{
	struct rq *rq = this_rq();
	struct task_struct *list = xchg(&rq->wake_list, NULL);

	if (!list)
		return;

	sched_ttwu_do_pending(list);
}

#endif /* CONFIG_HOTPLUG_CPU */

2632 2633
void scheduler_ipi(void)
{
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	struct rq *rq = this_rq();
	struct task_struct *list = xchg(&rq->wake_list, NULL);

	if (!list)
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
	sched_ttwu_do_pending(list);
	irq_exit();
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	struct task_struct *next = rq->wake_list;

	for (;;) {
		struct task_struct *old = next;

		p->wake_entry = next;
		next = cmpxchg(&rq->wake_list, old, p);
		if (next == old)
			break;
	}

	if (!next)
		smp_send_reschedule(cpu);
}
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
#endif /* CONFIG_SMP */
2695

2696 2697 2698 2699
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

2700
#if defined(CONFIG_SMP)
2701
	if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2702
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
2703 2704 2705 2706 2707
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

2708 2709 2710
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
2711 2712 2713
}

/**
L
Linus Torvalds 已提交
2714
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
2715
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
2716
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
2717
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2718 2719 2720 2721 2722 2723 2724
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
2725 2726
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
2727
 */
2728 2729
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
2730 2731
{
	unsigned long flags;
2732
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2733

2734
	smp_wmb();
2735
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2736
	if (!(p->state & state))
L
Linus Torvalds 已提交
2737 2738
		goto out;

2739
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2740 2741
	cpu = task_cpu(p);

2742 2743
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2744 2745

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
2746
	/*
2747 2748
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
2749
	 */
2750 2751 2752
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
2753 2754 2755 2756 2757
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
2758
		 */
2759
		if (ttwu_activate_remote(p, wake_flags))
2760
			goto stat;
2761
#else
2762
		cpu_relax();
2763
#endif
2764
	}
2765
	/*
2766
	 * Pairs with the smp_wmb() in finish_lock_switch().
2767
	 */
2768
	smp_rmb();
L
Linus Torvalds 已提交
2769

2770
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2771
	p->state = TASK_WAKING;
2772

2773
	if (p->sched_class->task_waking)
2774
		p->sched_class->task_waking(p);
2775

2776
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2777 2778
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2779
		set_task_cpu(p, cpu);
2780
	}
L
Linus Torvalds 已提交
2781 2782
#endif /* CONFIG_SMP */

2783 2784
	ttwu_queue(p, cpu);
stat:
2785
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2786
out:
2787
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2788 2789 2790 2791

	return success;
}

T
Tejun Heo 已提交
2792 2793 2794 2795
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2796
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2797
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2798
 * the current task.
T
Tejun Heo 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

2808 2809 2810 2811 2812 2813
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
2814
	if (!(p->state & TASK_NORMAL))
2815
		goto out;
T
Tejun Heo 已提交
2816

P
Peter Zijlstra 已提交
2817
	if (!p->on_rq)
P
Peter Zijlstra 已提交
2818 2819
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2820
	ttwu_do_wakeup(rq, p, 0);
2821
	ttwu_stat(p, smp_processor_id(), 0);
2822 2823
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2824 2825
}

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2837
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2838
{
2839
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2840 2841 2842
}
EXPORT_SYMBOL(wake_up_process);

2843
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849 2850
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2851 2852 2853 2854 2855
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
2856 2857 2858
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2859 2860
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2861
	p->se.prev_sum_exec_runtime	= 0;
2862
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2863
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2864
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2865 2866

#ifdef CONFIG_SCHEDSTATS
2867
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2868
#endif
N
Nick Piggin 已提交
2869

P
Peter Zijlstra 已提交
2870
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2871

2872 2873 2874
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2875 2876 2877 2878 2879
}

/*
 * fork()/clone()-time setup:
 */
2880
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
2881
{
2882
	unsigned long flags;
I
Ingo Molnar 已提交
2883 2884 2885
	int cpu = get_cpu();

	__sched_fork(p);
2886
	/*
2887
	 * We mark the process as running here. This guarantees that
2888 2889 2890
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2891
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2892

2893 2894 2895 2896 2897
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2898 2899 2900 2901
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2902
		if (task_has_rt_policy(p)) {
2903
			p->policy = SCHED_NORMAL;
2904
			p->static_prio = NICE_TO_PRIO(0);
2905 2906 2907 2908 2909 2910
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2911

2912 2913 2914 2915 2916 2917
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2918

H
Hiroshi Shimamoto 已提交
2919 2920
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2921

P
Peter Zijlstra 已提交
2922 2923 2924
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2925 2926 2927 2928 2929 2930 2931
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2932
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2933
	set_task_cpu(p, cpu);
2934
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2935

2936
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2937
	if (likely(sched_info_on()))
2938
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2939
#endif
P
Peter Zijlstra 已提交
2940 2941
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2942
#endif
2943
#ifdef CONFIG_PREEMPT_COUNT
2944
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2945
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2946
#endif
2947
#ifdef CONFIG_SMP
2948
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2949
#endif
2950

N
Nick Piggin 已提交
2951
	put_cpu();
L
Linus Torvalds 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2961
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2962 2963
{
	unsigned long flags;
I
Ingo Molnar 已提交
2964
	struct rq *rq;
2965

2966
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2967 2968 2969 2970 2971 2972
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2973
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2974 2975
#endif

2976
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2977
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2978
	p->on_rq = 1;
2979
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2980
	check_preempt_curr(rq, p, WF_FORK);
2981
#ifdef CONFIG_SMP
2982 2983
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2984
#endif
2985
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2986 2987
}

2988 2989 2990
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2991
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2992
 * @notifier: notifier struct to register
2993 2994 2995 2996 2997 2998 2999 3000 3001
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
3002
 * @notifier: notifier struct to unregister
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

3032
#else /* !CONFIG_PREEMPT_NOTIFIERS */
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

3044
#endif /* CONFIG_PREEMPT_NOTIFIERS */
3045

3046 3047 3048
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
3049
 * @prev: the current task that is being switched out
3050 3051 3052 3053 3054 3055 3056 3057 3058
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
3059 3060 3061
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
3062
{
3063 3064
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
3065
	fire_sched_out_preempt_notifiers(prev, next);
3066 3067
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
3068
	trace_sched_switch(prev, next);
3069 3070
}

L
Linus Torvalds 已提交
3071 3072
/**
 * finish_task_switch - clean up after a task-switch
3073
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
3074 3075
 * @prev: the thread we just switched away from.
 *
3076 3077 3078 3079
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
3080 3081
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
3082
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
3083 3084 3085
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
3086
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
3087 3088 3089
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
3090
	long prev_state;
L
Linus Torvalds 已提交
3091 3092 3093 3094 3095

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
3096
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
3097 3098
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
3099
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
3100 3101 3102 3103 3104
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
3105
	prev_state = prev->state;
3106
	finish_arch_switch(prev);
3107 3108 3109
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3110
	perf_event_task_sched_in(current);
3111 3112 3113
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3114
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
3115

3116
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
3117 3118
	if (mm)
		mmdrop(mm);
3119
	if (unlikely(prev_state == TASK_DEAD)) {
3120 3121 3122
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
3123
		 */
3124
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
3125
		put_task_struct(prev);
3126
	}
L
Linus Torvalds 已提交
3127 3128
}

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

3144
		raw_spin_lock_irqsave(&rq->lock, flags);
3145 3146
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
3147
		raw_spin_unlock_irqrestore(&rq->lock, flags);
3148 3149 3150 3151 3152 3153

		rq->post_schedule = 0;
	}
}

#else
3154

3155 3156 3157 3158 3159 3160
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
3161 3162
}

3163 3164
#endif

L
Linus Torvalds 已提交
3165 3166 3167 3168
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
3169
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
3170 3171
	__releases(rq->lock)
{
3172 3173
	struct rq *rq = this_rq();

3174
	finish_task_switch(rq, prev);
3175

3176 3177 3178 3179 3180
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
3181

3182 3183 3184 3185
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
3186
	if (current->set_child_tid)
3187
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
3188 3189 3190 3191 3192 3193
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
3194
static inline void
3195
context_switch(struct rq *rq, struct task_struct *prev,
3196
	       struct task_struct *next)
L
Linus Torvalds 已提交
3197
{
I
Ingo Molnar 已提交
3198
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
3199

3200
	prepare_task_switch(rq, prev, next);
3201

I
Ingo Molnar 已提交
3202 3203
	mm = next->mm;
	oldmm = prev->active_mm;
3204 3205 3206 3207 3208
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
3209
	arch_start_context_switch(prev);
3210

3211
	if (!mm) {
L
Linus Torvalds 已提交
3212 3213 3214 3215 3216 3217
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

3218
	if (!prev->mm) {
L
Linus Torvalds 已提交
3219 3220 3221
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
3222 3223 3224 3225 3226 3227 3228
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
3229
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3230
#endif
L
Linus Torvalds 已提交
3231 3232 3233 3234

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
3235 3236 3237 3238 3239 3240 3241
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
3259
}
L
Linus Torvalds 已提交
3260 3261

unsigned long nr_uninterruptible(void)
3262
{
L
Linus Torvalds 已提交
3263
	unsigned long i, sum = 0;
3264

3265
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3266
		sum += cpu_rq(i)->nr_uninterruptible;
3267 3268

	/*
L
Linus Torvalds 已提交
3269 3270
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
3271
	 */
L
Linus Torvalds 已提交
3272 3273
	if (unlikely((long)sum < 0))
		sum = 0;
3274

L
Linus Torvalds 已提交
3275
	return sum;
3276 3277
}

L
Linus Torvalds 已提交
3278
unsigned long long nr_context_switches(void)
3279
{
3280 3281
	int i;
	unsigned long long sum = 0;
3282

3283
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3284
		sum += cpu_rq(i)->nr_switches;
3285

L
Linus Torvalds 已提交
3286 3287
	return sum;
}
3288

L
Linus Torvalds 已提交
3289 3290 3291
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3292

3293
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3294
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3295

L
Linus Torvalds 已提交
3296 3297
	return sum;
}
3298

3299
unsigned long nr_iowait_cpu(int cpu)
3300
{
3301
	struct rq *this = cpu_rq(cpu);
3302 3303
	return atomic_read(&this->nr_iowait);
}
3304

3305 3306 3307 3308 3309
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3310

3311

3312 3313 3314 3315 3316
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3317

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

3333 3334 3335 3336 3337 3338 3339 3340 3341
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
3493 3494 3495 3496 3497 3498 3499 3500 3501
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
3502 3503 3504 3505

static void calc_global_nohz(unsigned long ticks)
{
}
3506 3507
#endif

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3521 3522 3523
}

/*
3524 3525
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3526
 */
3527
void calc_global_load(unsigned long ticks)
3528
{
3529
	long active;
L
Linus Torvalds 已提交
3530

3531 3532 3533
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
3534
		return;
L
Linus Torvalds 已提交
3535

3536 3537
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3538

3539 3540 3541
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3542

3543 3544
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3545

3546
/*
3547 3548
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3549 3550 3551
 */
static void calc_load_account_active(struct rq *this_rq)
{
3552
	long delta;
3553

3554 3555
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3556

3557 3558 3559
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3560
		atomic_long_add(delta, &calc_load_tasks);
3561 3562

	this_rq->calc_load_update += LOAD_FREQ;
3563 3564
}

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

3632
/*
I
Ingo Molnar 已提交
3633
 * Update rq->cpu_load[] statistics. This function is usually called every
3634 3635
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
3636
 */
I
Ingo Molnar 已提交
3637
static void update_cpu_load(struct rq *this_rq)
3638
{
3639
	unsigned long this_load = this_rq->load.weight;
3640 3641
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
3642
	int i, scale;
3643

I
Ingo Molnar 已提交
3644
	this_rq->nr_load_updates++;
3645

3646 3647 3648 3649 3650 3651 3652
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
3653
	/* Update our load: */
3654 3655
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
3656
		unsigned long old_load, new_load;
3657

I
Ingo Molnar 已提交
3658
		/* scale is effectively 1 << i now, and >> i divides by scale */
3659

I
Ingo Molnar 已提交
3660
		old_load = this_rq->cpu_load[i];
3661
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
3662
		new_load = this_load;
I
Ingo Molnar 已提交
3663 3664 3665 3666 3667 3668
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
3669 3670 3671
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
3672
	}
3673 3674

	sched_avg_update(this_rq);
3675 3676 3677 3678 3679
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
3680

3681
	calc_load_account_active(this_rq);
3682 3683
}

I
Ingo Molnar 已提交
3684
#ifdef CONFIG_SMP
3685

3686
/*
P
Peter Zijlstra 已提交
3687 3688
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3689
 */
P
Peter Zijlstra 已提交
3690
void sched_exec(void)
3691
{
P
Peter Zijlstra 已提交
3692
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3693
	unsigned long flags;
3694
	int dest_cpu;
3695

3696
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3697
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3698 3699
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3700

3701
	if (likely(cpu_active(dest_cpu))) {
3702
		struct migration_arg arg = { p, dest_cpu };
3703

3704 3705
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3706 3707
		return;
	}
3708
unlock:
3709
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3710
}
I
Ingo Molnar 已提交
3711

L
Linus Torvalds 已提交
3712 3713 3714 3715 3716 3717 3718
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3719
 * Return any ns on the sched_clock that have not yet been accounted in
3720
 * @p in case that task is currently running.
3721 3722
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3723
 */
3724 3725 3726 3727 3728 3729
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
3730
		ns = rq->clock_task - p->se.exec_start;
3731 3732 3733 3734 3735 3736 3737
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3738
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3739 3740
{
	unsigned long flags;
3741
	struct rq *rq;
3742
	u64 ns = 0;
3743

3744
	rq = task_rq_lock(p, &flags);
3745
	ns = do_task_delta_exec(p, rq);
3746
	task_rq_unlock(rq, p, &flags);
3747

3748 3749
	return ns;
}
3750

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3764
	task_rq_unlock(rq, p, &flags);
3765 3766 3767

	return ns;
}
3768

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3788
	task_rq_unlock(rq, p, &flags);
3789

L
Linus Torvalds 已提交
3790 3791 3792 3793 3794 3795 3796
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3797
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3798
 */
3799 3800
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3801 3802 3803 3804
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3805
	/* Add user time to process. */
L
Linus Torvalds 已提交
3806
	p->utime = cputime_add(p->utime, cputime);
3807
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3808
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3809 3810 3811 3812 3813 3814 3815

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3816 3817

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3818 3819
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3820 3821
}

3822 3823 3824 3825
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3826
 * @cputime_scaled: cputime scaled by cpu frequency
3827
 */
3828 3829
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3830 3831 3832 3833 3834 3835
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3836
	/* Add guest time to process. */
3837
	p->utime = cputime_add(p->utime, cputime);
3838
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3839
	account_group_user_time(p, cputime);
3840 3841
	p->gtime = cputime_add(p->gtime, cputime);

3842
	/* Add guest time to cpustat. */
3843 3844 3845 3846 3847 3848 3849
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3850 3851
}

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
	cputime64_t tmp = cputime_to_cputime64(cputime);

	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
3878 3879 3880 3881 3882
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3883
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3884 3885
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3886
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3887 3888
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3889
	cputime64_t *target_cputime64;
L
Linus Torvalds 已提交
3890

3891
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3892
		account_guest_time(p, cputime, cputime_scaled);
3893 3894
		return;
	}
3895

L
Linus Torvalds 已提交
3896
	if (hardirq_count() - hardirq_offset)
3897
		target_cputime64 = &cpustat->irq;
3898
	else if (in_serving_softirq())
3899
		target_cputime64 = &cpustat->softirq;
L
Linus Torvalds 已提交
3900
	else
3901
		target_cputime64 = &cpustat->system;
3902

3903
	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
L
Linus Torvalds 已提交
3904 3905
}

3906
/*
L
Linus Torvalds 已提交
3907
 * Account for involuntary wait time.
3908
 * @cputime: the cpu time spent in involuntary wait
3909
 */
3910
void account_steal_time(cputime_t cputime)
3911
{
3912 3913 3914 3915
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3916 3917
}

L
Linus Torvalds 已提交
3918
/*
3919 3920
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3921
 */
3922
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3923 3924
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3925
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3926
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3927

3928 3929 3930 3931
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3932 3933
}

G
Glauber Costa 已提交
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_branch(&paravirt_steal_enabled)) {
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

3953 3954
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

G
Glauber Costa 已提交
3984 3985 3986
	if (steal_account_process_tick())
		return;

3987 3988 3989 3990
	if (irqtime_account_hi_update()) {
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	} else if (irqtime_account_si_update()) {
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3991 3992 3993 3994 3995 3996 3997 3998
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->softirq);
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->system);
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
4019
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
4020 4021 4022
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
4023
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4024 4025 4026 4027 4028 4029 4030 4031

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
4032
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4033 4034
	struct rq *rq = this_rq();

4035 4036 4037 4038 4039
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
4040 4041 4042
	if (steal_account_process_tick())
		return;

4043
	if (user_tick)
4044
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4045
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4046
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4047 4048
				    one_jiffy_scaled);
	else
4049
		account_idle_time(cputime_one_jiffy);
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
4068 4069 4070 4071 4072 4073

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

4074
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4075 4076
}

4077 4078
#endif

4079 4080 4081 4082
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4083
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4084
{
4085 4086
	*ut = p->utime;
	*st = p->stime;
4087 4088
}

4089
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4090
{
4091 4092 4093 4094 4095 4096
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
4097 4098
}
#else
4099 4100

#ifndef nsecs_to_cputime
4101
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
4102 4103
#endif

4104
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4105
{
4106
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4107 4108 4109 4110

	/*
	 * Use CFS's precise accounting:
	 */
4111
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4112 4113

	if (total) {
4114
		u64 temp = rtime;
4115

4116
		temp *= utime;
4117
		do_div(temp, total);
4118 4119 4120
		utime = (cputime_t)temp;
	} else
		utime = rtime;
4121

4122 4123 4124
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
4125
	p->prev_utime = max(p->prev_utime, utime);
4126
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4127

4128 4129
	*ut = p->prev_utime;
	*st = p->prev_stime;
4130 4131
}

4132 4133 4134 4135
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4136
{
4137 4138 4139
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
4140

4141
	thread_group_cputime(p, &cputime);
4142

4143 4144
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4145

4146
	if (total) {
4147
		u64 temp = rtime;
4148

4149
		temp *= cputime.utime;
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
4161 4162 4163
}
#endif

4164 4165 4166 4167 4168 4169 4170 4171
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4172
	struct task_struct *curr = rq->curr;
4173 4174

	sched_clock_tick();
I
Ingo Molnar 已提交
4175

4176
	raw_spin_lock(&rq->lock);
4177
	update_rq_clock(rq);
4178
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
4179
	curr->sched_class->task_tick(rq, curr, 0);
4180
	raw_spin_unlock(&rq->lock);
4181

4182
	perf_event_task_tick();
4183

4184
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4185 4186
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4187
#endif
L
Linus Torvalds 已提交
4188 4189
}

4190
notrace unsigned long get_parent_ip(unsigned long addr)
4191 4192 4193 4194 4195 4196 4197 4198
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4199

4200 4201 4202
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

4203
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4204
{
4205
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4206 4207 4208
	/*
	 * Underflow?
	 */
4209 4210
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4211
#endif
L
Linus Torvalds 已提交
4212
	preempt_count() += val;
4213
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4214 4215 4216
	/*
	 * Spinlock count overflowing soon?
	 */
4217 4218
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4219 4220 4221
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4222 4223 4224
}
EXPORT_SYMBOL(add_preempt_count);

4225
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4226
{
4227
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4228 4229 4230
	/*
	 * Underflow?
	 */
4231
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4232
		return;
L
Linus Torvalds 已提交
4233 4234 4235
	/*
	 * Is the spinlock portion underflowing?
	 */
4236 4237 4238
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4239
#endif
4240

4241 4242
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4243 4244 4245 4246 4247 4248 4249
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4250
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4251
 */
I
Ingo Molnar 已提交
4252
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4253
{
4254 4255
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
4256 4257
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
4258

I
Ingo Molnar 已提交
4259
	debug_show_held_locks(prev);
4260
	print_modules();
I
Ingo Molnar 已提交
4261 4262
	if (irqs_disabled())
		print_irqtrace_events(prev);
4263 4264 4265 4266 4267

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4268
}
L
Linus Torvalds 已提交
4269

I
Ingo Molnar 已提交
4270 4271 4272 4273 4274
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4275
	/*
I
Ingo Molnar 已提交
4276
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4277 4278 4279
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4280
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4281 4282
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4283 4284
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4285
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4286 4287
}

P
Peter Zijlstra 已提交
4288
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
4289
{
4290
	if (prev->on_rq || rq->skip_clock_update < 0)
4291
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
4292
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
4293 4294
}

I
Ingo Molnar 已提交
4295 4296 4297 4298
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4299
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4300
{
4301
	const struct sched_class *class;
I
Ingo Molnar 已提交
4302
	struct task_struct *p;
L
Linus Torvalds 已提交
4303 4304

	/*
I
Ingo Molnar 已提交
4305 4306
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4307
	 */
4308
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
4309
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4310 4311
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4312 4313
	}

4314
	for_each_class(class) {
4315
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4316 4317 4318
		if (p)
			return p;
	}
4319 4320

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
4321
}
L
Linus Torvalds 已提交
4322

I
Ingo Molnar 已提交
4323 4324 4325
/*
 * schedule() is the main scheduler function.
 */
4326
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
4327 4328
{
	struct task_struct *prev, *next;
4329
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4330
	struct rq *rq;
4331
	int cpu;
I
Ingo Molnar 已提交
4332

4333 4334
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
4335 4336
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
4337
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
4338 4339 4340
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
4341

4342
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4343
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4344

4345
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
4346

4347
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
4348
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
4349
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
4350
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
4351
		} else {
4352 4353 4354
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
4355
			/*
4356 4357 4358
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
4359 4360 4361 4362 4363 4364 4365 4366
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
P
Peter Zijlstra 已提交
4367

4368
			/*
4369 4370
			 * If we are going to sleep and we have plugged IO
			 * queued, make sure to submit it to avoid deadlocks.
4371 4372 4373
			 */
			if (blk_needs_flush_plug(prev)) {
				raw_spin_unlock(&rq->lock);
4374
				blk_schedule_flush_plug(prev);
4375 4376
				raw_spin_lock(&rq->lock);
			}
T
Tejun Heo 已提交
4377
		}
I
Ingo Molnar 已提交
4378
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4379 4380
	}

4381
	pre_schedule(rq, prev);
4382

I
Ingo Molnar 已提交
4383
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4384 4385
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4386
	put_prev_task(rq, prev);
4387
	next = pick_next_task(rq);
4388 4389
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
4390 4391 4392 4393 4394 4395

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4396
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4397
		/*
4398 4399 4400 4401
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
4402 4403 4404
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4405
	} else
4406
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
4407

4408
	post_schedule(rq);
L
Linus Torvalds 已提交
4409 4410

	preempt_enable_no_resched();
4411
	if (need_resched())
L
Linus Torvalds 已提交
4412 4413 4414 4415
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

4416
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4417

4418 4419 4420
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
4421
		return false;
4422 4423

	/*
4424 4425 4426 4427
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
4428
	 */
4429
	barrier();
4430

4431
	return owner->on_cpu;
4432
}
4433

4434 4435 4436 4437 4438 4439 4440 4441
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
4442

4443
	rcu_read_lock();
4444 4445
	while (owner_running(lock, owner)) {
		if (need_resched())
4446
			break;
4447

4448
		arch_mutex_cpu_relax();
4449
	}
4450
	rcu_read_unlock();
4451

4452
	/*
4453 4454 4455
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
4456
	 */
4457
	return lock->owner == NULL;
4458 4459 4460
}
#endif

L
Linus Torvalds 已提交
4461 4462
#ifdef CONFIG_PREEMPT
/*
4463
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4464
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4465 4466
 * occur there and call schedule directly.
 */
4467
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
4468 4469
{
	struct thread_info *ti = current_thread_info();
4470

L
Linus Torvalds 已提交
4471 4472
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4473
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4474
	 */
N
Nick Piggin 已提交
4475
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4476 4477
		return;

4478
	do {
4479
		add_preempt_count_notrace(PREEMPT_ACTIVE);
4480
		schedule();
4481
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4482

4483 4484 4485 4486 4487
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4488
	} while (need_resched());
L
Linus Torvalds 已提交
4489 4490 4491 4492
}
EXPORT_SYMBOL(preempt_schedule);

/*
4493
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4494 4495 4496 4497 4498 4499 4500
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4501

4502
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4503 4504
	BUG_ON(ti->preempt_count || !irqs_disabled());

4505 4506 4507 4508 4509 4510
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4511

4512 4513 4514 4515 4516
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4517
	} while (need_resched());
L
Linus Torvalds 已提交
4518 4519 4520 4521
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
4522
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
4523
			  void *key)
L
Linus Torvalds 已提交
4524
{
P
Peter Zijlstra 已提交
4525
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
4526 4527 4528 4529
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4530 4531
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4532 4533 4534
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4535
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4536 4537
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4538
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
4539
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
4540
{
4541
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4542

4543
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4544 4545
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
4546
		if (curr->func(curr, mode, wake_flags, key) &&
4547
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4557
 * @key: is directly passed to the wakeup function
4558 4559 4560
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4561
 */
4562
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4563
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4576
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4577 4578 4579
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
4580
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
4581

4582 4583 4584 4585
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
4586
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4587

L
Linus Torvalds 已提交
4588
/**
4589
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4590 4591 4592
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4593
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
4594 4595 4596 4597 4598 4599 4600
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
4601 4602 4603
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
4604
 */
4605 4606
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4607 4608
{
	unsigned long flags;
P
Peter Zijlstra 已提交
4609
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
4610 4611 4612 4613 4614

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
4615
		wake_flags = 0;
L
Linus Torvalds 已提交
4616 4617

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
4618
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
4619 4620
	spin_unlock_irqrestore(&q->lock, flags);
}
4621 4622 4623 4624 4625 4626 4627 4628 4629
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4630 4631
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4632 4633 4634 4635 4636 4637 4638 4639
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4640 4641 4642
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4643
 */
4644
void complete(struct completion *x)
L
Linus Torvalds 已提交
4645 4646 4647 4648 4649
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4650
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4651 4652 4653 4654
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4655 4656 4657 4658 4659
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4660 4661 4662
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4663
 */
4664
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4670
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4671 4672 4673 4674
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4675 4676
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4677 4678 4679 4680
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
4681
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
4682
		do {
4683
			if (signal_pending_state(state, current)) {
4684 4685
				timeout = -ERESTARTSYS;
				break;
4686 4687
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4688 4689 4690
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4691
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4692
		__remove_wait_queue(&x->wait, &wait);
4693 4694
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4695 4696
	}
	x->done--;
4697
	return timeout ?: 1;
L
Linus Torvalds 已提交
4698 4699
}

4700 4701
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4702 4703 4704 4705
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4706
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4707
	spin_unlock_irq(&x->wait.lock);
4708 4709
	return timeout;
}
L
Linus Torvalds 已提交
4710

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4721
void __sched wait_for_completion(struct completion *x)
4722 4723
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4724
}
4725
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4726

4727 4728 4729 4730 4731 4732 4733 4734 4735
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4736
unsigned long __sched
4737
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4738
{
4739
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4740
}
4741
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4742

4743 4744 4745 4746 4747 4748 4749
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4750
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4751
{
4752 4753 4754 4755
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4756
}
4757
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4758

4759 4760 4761 4762 4763 4764 4765 4766
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4767
long __sched
4768 4769
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4770
{
4771
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4772
}
4773
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4774

4775 4776 4777 4778 4779 4780 4781
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4782 4783 4784 4785 4786 4787 4788 4789 4790
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4791 4792 4793 4794 4795 4796 4797 4798 4799
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
 */
4800
long __sched
4801 4802 4803 4804 4805 4806 4807
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4822
	unsigned long flags;
4823 4824
	int ret = 1;

4825
	spin_lock_irqsave(&x->wait.lock, flags);
4826 4827 4828 4829
	if (!x->done)
		ret = 0;
	else
		x->done--;
4830
	spin_unlock_irqrestore(&x->wait.lock, flags);
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4845
	unsigned long flags;
4846 4847
	int ret = 1;

4848
	spin_lock_irqsave(&x->wait.lock, flags);
4849 4850
	if (!x->done)
		ret = 0;
4851
	spin_unlock_irqrestore(&x->wait.lock, flags);
4852 4853 4854 4855
	return ret;
}
EXPORT_SYMBOL(completion_done);

4856 4857
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4858
{
I
Ingo Molnar 已提交
4859 4860 4861 4862
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4863

4864
	__set_current_state(state);
L
Linus Torvalds 已提交
4865

4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4880 4881 4882
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4883
long __sched
I
Ingo Molnar 已提交
4884
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4885
{
4886
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4887 4888 4889
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4890
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4891
{
4892
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4893 4894 4895
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4896
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4897
{
4898
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4899 4900 4901
}
EXPORT_SYMBOL(sleep_on_timeout);

4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4914
void rt_mutex_setprio(struct task_struct *p, int prio)
4915
{
4916
	int oldprio, on_rq, running;
4917
	struct rq *rq;
4918
	const struct sched_class *prev_class;
4919 4920 4921

	BUG_ON(prio < 0 || prio > MAX_PRIO);

4922
	rq = __task_rq_lock(p);
4923

4924
	trace_sched_pi_setprio(p, prio);
4925
	oldprio = p->prio;
4926
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
4927
	on_rq = p->on_rq;
4928
	running = task_current(rq, p);
4929
	if (on_rq)
4930
		dequeue_task(rq, p, 0);
4931 4932
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4933 4934 4935 4936 4937 4938

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4939 4940
	p->prio = prio;

4941 4942
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4943
	if (on_rq)
4944
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4945

P
Peter Zijlstra 已提交
4946
	check_class_changed(rq, p, prev_class, oldprio);
4947
	__task_rq_unlock(rq);
4948 4949 4950 4951
}

#endif

4952
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4953
{
I
Ingo Molnar 已提交
4954
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4955
	unsigned long flags;
4956
	struct rq *rq;
L
Linus Torvalds 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4969
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4970
	 */
4971
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4972 4973 4974
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
4975
	on_rq = p->on_rq;
4976
	if (on_rq)
4977
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4978 4979

	p->static_prio = NICE_TO_PRIO(nice);
4980
	set_load_weight(p);
4981 4982 4983
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4984

I
Ingo Molnar 已提交
4985
	if (on_rq) {
4986
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4987
		/*
4988 4989
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4990
		 */
4991
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4992 4993 4994
			resched_task(rq->curr);
	}
out_unlock:
4995
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4996 4997 4998
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4999 5000 5001 5002 5003
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5004
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5005
{
5006 5007
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5008

5009
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
5010 5011 5012
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5022
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5023
{
5024
	long nice, retval;
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029 5030

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5031 5032
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5033 5034 5035
	if (increment > 40)
		increment = 40;

5036
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5037 5038 5039 5040 5041
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5042 5043 5044
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5063
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5064 5065 5066 5067 5068 5069 5070 5071
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5072
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5073 5074 5075
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5076
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5091
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5092 5093 5094 5095 5096 5097 5098 5099
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5100
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5101
{
5102
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5103 5104 5105
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5106 5107
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5108 5109 5110
{
	p->policy = policy;
	p->rt_priority = prio;
5111 5112 5113
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5114 5115 5116 5117
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
5118
	set_load_weight(p);
L
Linus Torvalds 已提交
5119 5120
}

5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
5131 5132 5133 5134 5135
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
5136 5137 5138 5139
	rcu_read_unlock();
	return match;
}

5140
static int __sched_setscheduler(struct task_struct *p, int policy,
5141
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5142
{
5143
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5144
	unsigned long flags;
5145
	const struct sched_class *prev_class;
5146
	struct rq *rq;
5147
	int reset_on_fork;
L
Linus Torvalds 已提交
5148

5149 5150
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5151 5152
recheck:
	/* double check policy once rq lock held */
5153 5154
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
5155
		policy = oldpolicy = p->policy;
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
5166 5167
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5168 5169
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5170 5171
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5172
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5173
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5174
		return -EINVAL;
5175
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5176 5177
		return -EINVAL;

5178 5179 5180
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5181
	if (user && !capable(CAP_SYS_NICE)) {
5182
		if (rt_policy(policy)) {
5183 5184
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
5195

I
Ingo Molnar 已提交
5196
		/*
5197 5198
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
5199
		 */
5200 5201 5202 5203
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
5204

5205
		/* can't change other user's priorities */
5206
		if (!check_same_owner(p))
5207
			return -EPERM;
5208 5209 5210 5211

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
5212
	}
L
Linus Torvalds 已提交
5213

5214
	if (user) {
5215
		retval = security_task_setscheduler(p);
5216 5217 5218 5219
		if (retval)
			return retval;
	}

5220 5221 5222
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
5223
	 *
L
Lucas De Marchi 已提交
5224
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
5225 5226
	 * runqueue lock must be held.
	 */
5227
	rq = task_rq_lock(p, &flags);
5228

5229 5230 5231 5232
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
5233
		task_rq_unlock(rq, p, &flags);
5234 5235 5236
		return -EINVAL;
	}

5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

5248 5249 5250 5251 5252 5253 5254
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5255 5256
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
5257
			task_rq_unlock(rq, p, &flags);
5258 5259 5260 5261 5262
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
5263 5264 5265
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5266
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
5267 5268
		goto recheck;
	}
P
Peter Zijlstra 已提交
5269
	on_rq = p->on_rq;
5270
	running = task_current(rq, p);
5271
	if (on_rq)
5272
		deactivate_task(rq, p, 0);
5273 5274
	if (running)
		p->sched_class->put_prev_task(rq, p);
5275

5276 5277
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
5278
	oldprio = p->prio;
5279
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
5280
	__setscheduler(rq, p, policy, param->sched_priority);
5281

5282 5283
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
5284
	if (on_rq)
I
Ingo Molnar 已提交
5285
		activate_task(rq, p, 0);
5286

P
Peter Zijlstra 已提交
5287
	check_class_changed(rq, p, prev_class, oldprio);
5288
	task_rq_unlock(rq, p, &flags);
5289

5290 5291
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5292 5293
	return 0;
}
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
5304
		       const struct sched_param *param)
5305 5306 5307
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5308 5309
EXPORT_SYMBOL_GPL(sched_setscheduler);

5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5322
			       const struct sched_param *param)
5323 5324 5325 5326
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5327 5328
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5329 5330 5331
{
	struct sched_param lparam;
	struct task_struct *p;
5332
	int retval;
L
Linus Torvalds 已提交
5333 5334 5335 5336 5337

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5338 5339 5340

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5341
	p = find_process_by_pid(pid);
5342 5343 5344
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5345

L
Linus Torvalds 已提交
5346 5347 5348 5349 5350 5351 5352 5353 5354
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5355 5356
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5357
{
5358 5359 5360 5361
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5362 5363 5364 5365 5366 5367 5368 5369
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5370
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5371 5372 5373 5374 5375 5376 5377 5378
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5379
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5380
{
5381
	struct task_struct *p;
5382
	int retval;
L
Linus Torvalds 已提交
5383 5384

	if (pid < 0)
5385
		return -EINVAL;
L
Linus Torvalds 已提交
5386 5387

	retval = -ESRCH;
5388
	rcu_read_lock();
L
Linus Torvalds 已提交
5389 5390 5391 5392
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
5393 5394
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
5395
	}
5396
	rcu_read_unlock();
L
Linus Torvalds 已提交
5397 5398 5399 5400
	return retval;
}

/**
5401
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
5402 5403 5404
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5405
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5406 5407
{
	struct sched_param lp;
5408
	struct task_struct *p;
5409
	int retval;
L
Linus Torvalds 已提交
5410 5411

	if (!param || pid < 0)
5412
		return -EINVAL;
L
Linus Torvalds 已提交
5413

5414
	rcu_read_lock();
L
Linus Torvalds 已提交
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
5425
	rcu_read_unlock();
L
Linus Torvalds 已提交
5426 5427 5428 5429 5430 5431 5432 5433 5434

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
5435
	rcu_read_unlock();
L
Linus Torvalds 已提交
5436 5437 5438
	return retval;
}

5439
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5440
{
5441
	cpumask_var_t cpus_allowed, new_mask;
5442 5443
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5444

5445
	get_online_cpus();
5446
	rcu_read_lock();
L
Linus Torvalds 已提交
5447 5448 5449

	p = find_process_by_pid(pid);
	if (!p) {
5450
		rcu_read_unlock();
5451
		put_online_cpus();
L
Linus Torvalds 已提交
5452 5453 5454
		return -ESRCH;
	}

5455
	/* Prevent p going away */
L
Linus Torvalds 已提交
5456
	get_task_struct(p);
5457
	rcu_read_unlock();
L
Linus Torvalds 已提交
5458

5459 5460 5461 5462 5463 5464 5465 5466
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5467
	retval = -EPERM;
5468
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
5469 5470
		goto out_unlock;

5471
	retval = security_task_setscheduler(p);
5472 5473 5474
	if (retval)
		goto out_unlock;

5475 5476
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
5477
again:
5478
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5479

P
Paul Menage 已提交
5480
	if (!retval) {
5481 5482
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5483 5484 5485 5486 5487
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5488
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5489 5490 5491
			goto again;
		}
	}
L
Linus Torvalds 已提交
5492
out_unlock:
5493 5494 5495 5496
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5497
	put_task_struct(p);
5498
	put_online_cpus();
L
Linus Torvalds 已提交
5499 5500 5501 5502
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5503
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5504
{
5505 5506 5507 5508 5509
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5510 5511 5512 5513 5514 5515 5516 5517 5518
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5519 5520
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5521
{
5522
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5523 5524
	int retval;

5525 5526
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5527

5528 5529 5530 5531 5532
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5533 5534
}

5535
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5536
{
5537
	struct task_struct *p;
5538
	unsigned long flags;
L
Linus Torvalds 已提交
5539 5540
	int retval;

5541
	get_online_cpus();
5542
	rcu_read_lock();
L
Linus Torvalds 已提交
5543 5544 5545 5546 5547 5548

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5549 5550 5551 5552
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5553
	raw_spin_lock_irqsave(&p->pi_lock, flags);
5554
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5555
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5556 5557

out_unlock:
5558
	rcu_read_unlock();
5559
	put_online_cpus();
L
Linus Torvalds 已提交
5560

5561
	return retval;
L
Linus Torvalds 已提交
5562 5563 5564 5565 5566 5567 5568 5569
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5570 5571
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5572 5573
{
	int ret;
5574
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5575

A
Anton Blanchard 已提交
5576
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5577 5578
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
5579 5580
		return -EINVAL;

5581 5582
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5583

5584 5585
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
5586
		size_t retlen = min_t(size_t, len, cpumask_size());
5587 5588

		if (copy_to_user(user_mask_ptr, mask, retlen))
5589 5590
			ret = -EFAULT;
		else
5591
			ret = retlen;
5592 5593
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5594

5595
	return ret;
L
Linus Torvalds 已提交
5596 5597 5598 5599 5600
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5601 5602
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5603
 */
5604
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5605
{
5606
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5607

5608
	schedstat_inc(rq, yld_count);
5609
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5610 5611 5612 5613 5614 5615

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5616
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5617
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
5618 5619 5620 5621 5622 5623 5624
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
5625 5626 5627 5628 5629
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
5630
static void __cond_resched(void)
L
Linus Torvalds 已提交
5631
{
5632 5633 5634
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5635 5636
}

5637
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5638
{
P
Peter Zijlstra 已提交
5639
	if (should_resched()) {
L
Linus Torvalds 已提交
5640 5641 5642 5643 5644
		__cond_resched();
		return 1;
	}
	return 0;
}
5645
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5646 5647

/*
5648
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5649 5650
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5651
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5652 5653 5654
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5655
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5656
{
P
Peter Zijlstra 已提交
5657
	int resched = should_resched();
J
Jan Kara 已提交
5658 5659
	int ret = 0;

5660 5661
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5662
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5663
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5664
		if (resched)
N
Nick Piggin 已提交
5665 5666 5667
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5668
		ret = 1;
L
Linus Torvalds 已提交
5669 5670
		spin_lock(lock);
	}
J
Jan Kara 已提交
5671
	return ret;
L
Linus Torvalds 已提交
5672
}
5673
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5674

5675
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5676 5677 5678
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5679
	if (should_resched()) {
5680
		local_bh_enable();
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685 5686
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5687
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5688 5689 5690 5691

/**
 * yield - yield the current processor to other threads.
 *
5692
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5693 5694 5695 5696 5697 5698 5699 5700 5701
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5702 5703 5704 5705
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5706 5707
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5742
	if (yielded) {
5743
		schedstat_inc(rq, yld_count);
5744 5745 5746 5747 5748 5749 5750
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5763
/*
I
Ingo Molnar 已提交
5764
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5765 5766 5767 5768
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5769
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5770

5771
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5772
	atomic_inc(&rq->nr_iowait);
5773
	blk_flush_plug(current);
5774
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5775
	schedule();
5776
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5777
	atomic_dec(&rq->nr_iowait);
5778
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5779 5780 5781 5782 5783
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5784
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5785 5786
	long ret;

5787
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5788
	atomic_inc(&rq->nr_iowait);
5789
	blk_flush_plug(current);
5790
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5791
	ret = schedule_timeout(timeout);
5792
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5793
	atomic_dec(&rq->nr_iowait);
5794
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5805
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5806 5807 5808 5809 5810 5811 5812 5813 5814
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5815
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5816
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5830
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5831 5832 5833 5834 5835 5836 5837 5838 5839
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5840
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5841
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5855
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5856
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5857
{
5858
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5859
	unsigned int time_slice;
5860 5861
	unsigned long flags;
	struct rq *rq;
5862
	int retval;
L
Linus Torvalds 已提交
5863 5864 5865
	struct timespec t;

	if (pid < 0)
5866
		return -EINVAL;
L
Linus Torvalds 已提交
5867 5868

	retval = -ESRCH;
5869
	rcu_read_lock();
L
Linus Torvalds 已提交
5870 5871 5872 5873 5874 5875 5876 5877
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5878 5879
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
5880
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
5881

5882
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5883
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5884 5885
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5886

L
Linus Torvalds 已提交
5887
out_unlock:
5888
	rcu_read_unlock();
L
Linus Torvalds 已提交
5889 5890 5891
	return retval;
}

5892
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5893

5894
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5895 5896
{
	unsigned long free = 0;
5897
	unsigned state;
L
Linus Torvalds 已提交
5898 5899

	state = p->state ? __ffs(p->state) + 1 : 0;
5900
	printk(KERN_INFO "%-15.15s %c", p->comm,
5901
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5902
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5903
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5904
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5905
	else
P
Peter Zijlstra 已提交
5906
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5907 5908
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5909
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5910
	else
P
Peter Zijlstra 已提交
5911
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5912 5913
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5914
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5915
#endif
P
Peter Zijlstra 已提交
5916
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5917 5918
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5919

5920
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5921 5922
}

I
Ingo Molnar 已提交
5923
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5924
{
5925
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5926

5927
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5928 5929
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5930
#else
P
Peter Zijlstra 已提交
5931 5932
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5933 5934 5935 5936 5937
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5938
		 * console might take a lot of time:
L
Linus Torvalds 已提交
5939 5940
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5941
		if (!state_filter || (p->state & state_filter))
5942
			sched_show_task(p);
L
Linus Torvalds 已提交
5943 5944
	} while_each_thread(g, p);

5945 5946
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5947 5948 5949
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5950
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5951 5952 5953
	/*
	 * Only show locks if all tasks are dumped:
	 */
5954
	if (!state_filter)
I
Ingo Molnar 已提交
5955
		debug_show_all_locks();
L
Linus Torvalds 已提交
5956 5957
}

I
Ingo Molnar 已提交
5958 5959
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5960
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5961 5962
}

5963 5964 5965 5966 5967 5968 5969 5970
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5971
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5972
{
5973
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5974 5975
	unsigned long flags;

5976
	raw_spin_lock_irqsave(&rq->lock, flags);
5977

I
Ingo Molnar 已提交
5978
	__sched_fork(idle);
5979
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5980 5981
	idle->se.exec_start = sched_clock();

5982
	do_set_cpus_allowed(idle, cpumask_of(cpu));
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5994
	__set_task_cpu(idle, cpu);
5995
	rcu_read_unlock();
L
Linus Torvalds 已提交
5996 5997

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
5998 5999
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
6000
#endif
6001
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6002 6003

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
6004
	task_thread_info(idle)->preempt_count = 0;
J
Jonathan Corbet 已提交
6005

I
Ingo Molnar 已提交
6006 6007 6008 6009
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6010
	ftrace_graph_init_idle_task(idle, cpu);
L
Linus Torvalds 已提交
6011 6012 6013 6014 6015 6016 6017
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6018
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6019
 */
6020
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6021

I
Ingo Molnar 已提交
6022 6023 6024 6025 6026 6027 6028 6029 6030
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
6031
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
6032
{
6033
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
6048

6049 6050
	return factor;
}
I
Ingo Molnar 已提交
6051

6052 6053 6054
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
6055

6056 6057 6058 6059 6060 6061 6062
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
6063

6064 6065 6066
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
6067 6068
}

L
Linus Torvalds 已提交
6069
#ifdef CONFIG_SMP
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
	else {
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
	}
}

L
Linus Torvalds 已提交
6080 6081 6082
/*
 * This is how migration works:
 *
6083 6084 6085 6086 6087 6088
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
6089
 *    it and puts it into the right queue.
6090 6091
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
6092 6093 6094 6095 6096 6097 6098 6099
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6100
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6101 6102
 * call is not atomic; no spinlocks may be held.
 */
6103
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6104 6105
{
	unsigned long flags;
6106
	struct rq *rq;
6107
	unsigned int dest_cpu;
6108
	int ret = 0;
L
Linus Torvalds 已提交
6109 6110

	rq = task_rq_lock(p, &flags);
6111

6112 6113 6114
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

6115
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
6116 6117 6118 6119
		ret = -EINVAL;
		goto out;
	}

6120
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6121 6122 6123 6124
		ret = -EINVAL;
		goto out;
	}

6125
	do_set_cpus_allowed(p, new_mask);
6126

L
Linus Torvalds 已提交
6127
	/* Can the task run on the task's current CPU? If so, we're done */
6128
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6129 6130
		goto out;

6131
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6132
	if (p->on_rq) {
6133
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
6134
		/* Need help from migration thread: drop lock and wait. */
6135
		task_rq_unlock(rq, p, &flags);
6136
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
6137 6138 6139 6140
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
6141
	task_rq_unlock(rq, p, &flags);
6142

L
Linus Torvalds 已提交
6143 6144
	return ret;
}
6145
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6146 6147

/*
I
Ingo Molnar 已提交
6148
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6149 6150 6151 6152 6153 6154
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6155 6156
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6157
 */
6158
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6159
{
6160
	struct rq *rq_dest, *rq_src;
6161
	int ret = 0;
L
Linus Torvalds 已提交
6162

6163
	if (unlikely(!cpu_active(dest_cpu)))
6164
		return ret;
L
Linus Torvalds 已提交
6165 6166 6167 6168

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

6169
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
6170 6171 6172
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6173
		goto done;
L
Linus Torvalds 已提交
6174
	/* Affinity changed (again). */
6175
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6176
		goto fail;
L
Linus Torvalds 已提交
6177

6178 6179 6180 6181
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
6182
	if (p->on_rq) {
6183
		deactivate_task(rq_src, p, 0);
6184
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6185
		activate_task(rq_dest, p, 0);
6186
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6187
	}
L
Linus Torvalds 已提交
6188
done:
6189
	ret = 1;
L
Linus Torvalds 已提交
6190
fail:
L
Linus Torvalds 已提交
6191
	double_rq_unlock(rq_src, rq_dest);
6192
	raw_spin_unlock(&p->pi_lock);
6193
	return ret;
L
Linus Torvalds 已提交
6194 6195 6196
}

/*
6197 6198 6199
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
6200
 */
6201
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
6202
{
6203
	struct migration_arg *arg = data;
6204

6205 6206 6207 6208
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
6209
	local_irq_disable();
6210
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6211
	local_irq_enable();
L
Linus Torvalds 已提交
6212
	return 0;
6213 6214
}

L
Linus Torvalds 已提交
6215
#ifdef CONFIG_HOTPLUG_CPU
6216

6217
/*
6218 6219
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
6220
 */
6221
void idle_task_exit(void)
L
Linus Torvalds 已提交
6222
{
6223
	struct mm_struct *mm = current->active_mm;
6224

6225
	BUG_ON(cpu_online(smp_processor_id()));
6226

6227 6228 6229
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
6230 6231 6232 6233 6234 6235 6236 6237 6238
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6239
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6240
{
6241
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
6242 6243 6244 6245 6246

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
6247
/*
6248
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
6249
 */
6250
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
6251
{
6252 6253
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
6254 6255
}

6256
/*
6257 6258 6259 6260 6261 6262
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
6263
 */
6264
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
6265
{
6266
	struct rq *rq = cpu_rq(dead_cpu);
6267 6268
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
6269 6270

	/*
6271 6272 6273 6274 6275 6276 6277
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
6278
	 */
6279
	rq->stop = NULL;
6280

I
Ingo Molnar 已提交
6281
	for ( ; ; ) {
6282 6283 6284 6285 6286
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
6287
			break;
6288

6289
		next = pick_next_task(rq);
6290
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
6291
		next->sched_class->put_prev_task(rq, next);
6292

6293 6294 6295 6296 6297 6298 6299
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
6300
	}
6301

6302
	rq->stop = stop;
6303
}
6304

L
Linus Torvalds 已提交
6305 6306
#endif /* CONFIG_HOTPLUG_CPU */

6307 6308 6309
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6310 6311
	{
		.procname	= "sched_domain",
6312
		.mode		= 0555,
6313
	},
6314
	{}
6315 6316 6317
};

static struct ctl_table sd_ctl_root[] = {
6318 6319
	{
		.procname	= "kernel",
6320
		.mode		= 0555,
6321 6322
		.child		= sd_ctl_dir,
	},
6323
	{}
6324 6325 6326 6327 6328
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6329
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6330 6331 6332 6333

	return entry;
}

6334 6335
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6336
	struct ctl_table *entry;
6337

6338 6339 6340
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6341
	 * will always be set. In the lowest directory the names are
6342 6343 6344
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6345 6346
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6347 6348 6349
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6350 6351 6352 6353 6354

	kfree(*tablep);
	*tablep = NULL;
}

6355
static void
6356
set_table_entry(struct ctl_table *entry,
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6370
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6371

6372 6373 6374
	if (table == NULL)
		return NULL;

6375
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6376
		sizeof(long), 0644, proc_doulongvec_minmax);
6377
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6378
		sizeof(long), 0644, proc_doulongvec_minmax);
6379
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6380
		sizeof(int), 0644, proc_dointvec_minmax);
6381
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6382
		sizeof(int), 0644, proc_dointvec_minmax);
6383
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6384
		sizeof(int), 0644, proc_dointvec_minmax);
6385
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6386
		sizeof(int), 0644, proc_dointvec_minmax);
6387
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6388
		sizeof(int), 0644, proc_dointvec_minmax);
6389
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6390
		sizeof(int), 0644, proc_dointvec_minmax);
6391
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6392
		sizeof(int), 0644, proc_dointvec_minmax);
6393
	set_table_entry(&table[9], "cache_nice_tries",
6394 6395
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6396
	set_table_entry(&table[10], "flags", &sd->flags,
6397
		sizeof(int), 0644, proc_dointvec_minmax);
6398 6399 6400
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6401 6402 6403 6404

	return table;
}

6405
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6406 6407 6408 6409 6410 6411 6412 6413 6414
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6415 6416
	if (table == NULL)
		return NULL;
6417 6418 6419 6420 6421

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6422
		entry->mode = 0555;
6423 6424 6425 6426 6427 6428 6429 6430
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6431
static void register_sched_domain_sysctl(void)
6432
{
6433
	int i, cpu_num = num_possible_cpus();
6434 6435 6436
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6437 6438 6439
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6440 6441 6442
	if (entry == NULL)
		return;

6443
	for_each_possible_cpu(i) {
6444 6445
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6446
		entry->mode = 0555;
6447
		entry->child = sd_alloc_ctl_cpu_table(i);
6448
		entry++;
6449
	}
6450 6451

	WARN_ON(sd_sysctl_header);
6452 6453
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6454

6455
/* may be called multiple times per register */
6456 6457
static void unregister_sched_domain_sysctl(void)
{
6458 6459
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6460
	sd_sysctl_header = NULL;
6461 6462
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6463
}
6464
#else
6465 6466 6467 6468
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6469 6470 6471 6472
{
}
#endif

6473 6474 6475 6476 6477
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6478
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6498
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6499 6500 6501 6502
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6503 6504 6505 6506
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6507 6508
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6509
{
6510
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6511
	unsigned long flags;
6512
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6513

6514
	switch (action & ~CPU_TASKS_FROZEN) {
6515

L
Linus Torvalds 已提交
6516
	case CPU_UP_PREPARE:
6517
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
6518
		break;
6519

L
Linus Torvalds 已提交
6520
	case CPU_ONLINE:
6521
		/* Update our root-domain */
6522
		raw_spin_lock_irqsave(&rq->lock, flags);
6523
		if (rq->rd) {
6524
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6525 6526

			set_rq_online(rq);
6527
		}
6528
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6529
		break;
6530

L
Linus Torvalds 已提交
6531
#ifdef CONFIG_HOTPLUG_CPU
6532
	case CPU_DYING:
6533
		sched_ttwu_pending();
G
Gregory Haskins 已提交
6534
		/* Update our root-domain */
6535
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6536
		if (rq->rd) {
6537
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6538
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6539
		}
6540 6541
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
6542
		raw_spin_unlock_irqrestore(&rq->lock, flags);
6543 6544 6545

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
6546
		break;
L
Linus Torvalds 已提交
6547 6548
#endif
	}
6549 6550 6551

	update_max_interval();

L
Linus Torvalds 已提交
6552 6553 6554
	return NOTIFY_OK;
}

6555 6556 6557
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6558
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6559
 */
6560
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6561
	.notifier_call = migration_call,
6562
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
6563 6564
};

6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

6590
static int __init migration_init(void)
L
Linus Torvalds 已提交
6591 6592
{
	void *cpu = (void *)(long)smp_processor_id();
6593
	int err;
6594

6595
	/* Initialize migration for the boot CPU */
6596 6597
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6598 6599
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6600

6601 6602 6603 6604
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

6605
	return 0;
L
Linus Torvalds 已提交
6606
}
6607
early_initcall(migration_init);
L
Linus Torvalds 已提交
6608 6609 6610
#endif

#ifdef CONFIG_SMP
6611

6612 6613
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

6614
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6615

6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6626
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6627
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6628
{
I
Ingo Molnar 已提交
6629
	struct sched_group *group = sd->groups;
6630
	char str[256];
L
Linus Torvalds 已提交
6631

R
Rusty Russell 已提交
6632
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6633
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6634 6635 6636 6637

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6638
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6639
		if (sd->parent)
P
Peter Zijlstra 已提交
6640 6641
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6642
		return -1;
N
Nick Piggin 已提交
6643 6644
	}

P
Peter Zijlstra 已提交
6645
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6646

6647
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6648 6649
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6650
	}
6651
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6652 6653
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6654
	}
L
Linus Torvalds 已提交
6655

I
Ingo Molnar 已提交
6656
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6657
	do {
I
Ingo Molnar 已提交
6658
		if (!group) {
P
Peter Zijlstra 已提交
6659 6660
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6661 6662 6663
			break;
		}

6664
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
6665 6666 6667
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6668 6669
			break;
		}
L
Linus Torvalds 已提交
6670

6671
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6672 6673
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6674 6675
			break;
		}
L
Linus Torvalds 已提交
6676

6677
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6678 6679
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6680 6681
			break;
		}
L
Linus Torvalds 已提交
6682

6683
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6684

R
Rusty Russell 已提交
6685
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6686

P
Peter Zijlstra 已提交
6687
		printk(KERN_CONT " %s", str);
6688
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
6689
			printk(KERN_CONT " (cpu_power = %d)",
6690
				group->sgp->power);
6691
		}
L
Linus Torvalds 已提交
6692

I
Ingo Molnar 已提交
6693 6694
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6695
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6696

6697
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6698
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6699

6700 6701
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6702 6703
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6704 6705
	return 0;
}
L
Linus Torvalds 已提交
6706

I
Ingo Molnar 已提交
6707 6708 6709
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6710

6711 6712 6713
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6714 6715 6716 6717
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6718

I
Ingo Molnar 已提交
6719 6720 6721
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
6722
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
6723
			break;
L
Linus Torvalds 已提交
6724 6725
		level++;
		sd = sd->parent;
6726
		if (!sd)
I
Ingo Molnar 已提交
6727 6728
			break;
	}
L
Linus Torvalds 已提交
6729
}
6730
#else /* !CONFIG_SCHED_DEBUG */
6731
# define sched_domain_debug(sd, cpu) do { } while (0)
6732
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6733

6734
static int sd_degenerate(struct sched_domain *sd)
6735
{
6736
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6737 6738 6739 6740 6741 6742
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6743 6744 6745
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6746 6747 6748 6749 6750
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6751
	if (sd->flags & (SD_WAKE_AFFINE))
6752 6753 6754 6755 6756
		return 0;

	return 1;
}

6757 6758
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6759 6760 6761 6762 6763 6764
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6765
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6766 6767 6768 6769 6770 6771 6772
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6773 6774 6775
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6776 6777
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6778 6779 6780 6781 6782 6783 6784
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6785
static void free_rootdomain(struct rcu_head *rcu)
6786
{
6787
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6788

6789
	cpupri_cleanup(&rd->cpupri);
6790 6791 6792 6793 6794 6795
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6796 6797
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6798
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6799 6800
	unsigned long flags;

6801
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6802 6803

	if (rq->rd) {
I
Ingo Molnar 已提交
6804
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6805

6806
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6807
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6808

6809
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6810

I
Ingo Molnar 已提交
6811 6812 6813 6814 6815 6816 6817
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6818 6819 6820 6821 6822
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6823
	cpumask_set_cpu(rq->cpu, rd->span);
6824
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6825
		set_rq_online(rq);
G
Gregory Haskins 已提交
6826

6827
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6828 6829

	if (old_rd)
6830
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
6831 6832
}

6833
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6834 6835 6836
{
	memset(rd, 0, sizeof(*rd));

6837
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6838
		goto out;
6839
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6840
		goto free_span;
6841
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6842
		goto free_online;
6843

6844
	if (cpupri_init(&rd->cpupri) != 0)
6845
		goto free_rto_mask;
6846
	return 0;
6847

6848 6849
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6850 6851 6852 6853
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6854
out:
6855
	return -ENOMEM;
G
Gregory Haskins 已提交
6856 6857 6858 6859
}

static void init_defrootdomain(void)
{
6860
	init_rootdomain(&def_root_domain);
6861

G
Gregory Haskins 已提交
6862 6863 6864
	atomic_set(&def_root_domain.refcount, 1);
}

6865
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6866 6867 6868 6869 6870 6871 6872
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6873
	if (init_rootdomain(rd) != 0) {
6874 6875 6876
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6877 6878 6879 6880

	return rd;
}

6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

6900 6901 6902
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6903 6904 6905 6906 6907 6908 6909 6910

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6911
		kfree(sd->groups->sgp);
6912
		kfree(sd->groups);
6913
	}
6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

L
Linus Torvalds 已提交
6928
/*
I
Ingo Molnar 已提交
6929
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6930 6931
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6932 6933
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6934
{
6935
	struct rq *rq = cpu_rq(cpu);
6936 6937 6938
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6939
	for (tmp = sd; tmp; ) {
6940 6941 6942
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6943

6944
		if (sd_parent_degenerate(tmp, parent)) {
6945
			tmp->parent = parent->parent;
6946 6947
			if (parent->parent)
				parent->parent->child = tmp;
6948
			destroy_sched_domain(parent, cpu);
6949 6950
		} else
			tmp = tmp->parent;
6951 6952
	}

6953
	if (sd && sd_degenerate(sd)) {
6954
		tmp = sd;
6955
		sd = sd->parent;
6956
		destroy_sched_domain(tmp, cpu);
6957 6958 6959
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6960

6961
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6962

G
Gregory Haskins 已提交
6963
	rq_attach_root(rq, rd);
6964
	tmp = rq->sd;
N
Nick Piggin 已提交
6965
	rcu_assign_pointer(rq->sd, sd);
6966
	destroy_sched_domains(tmp, cpu);
L
Linus Torvalds 已提交
6967 6968 6969
}

/* cpus with isolated domains */
6970
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6971 6972 6973 6974

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6975
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6976
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6977 6978 6979
	return 1;
}

I
Ingo Molnar 已提交
6980
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6981

6982
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6983

6984
#ifdef CONFIG_NUMA
6985

6986 6987 6988 6989 6990
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6991
 * Find the next node to include in a given scheduling domain. Simply
6992 6993 6994 6995
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6996
static int find_next_best_node(int node, nodemask_t *used_nodes)
6997
{
6998
	int i, n, val, min_val, best_node = -1;
6999 7000 7001

	min_val = INT_MAX;

7002
	for (i = 0; i < nr_node_ids; i++) {
7003
		/* Start at @node */
7004
		n = (node + i) % nr_node_ids;
7005 7006 7007 7008 7009

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7010
		if (node_isset(n, *used_nodes))
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7022 7023
	if (best_node != -1)
		node_set(best_node, *used_nodes);
7024 7025 7026 7027 7028 7029
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7030
 * @span: resulting cpumask
7031
 *
I
Ingo Molnar 已提交
7032
 * Given a node, construct a good cpumask for its sched_domain to span. It
7033 7034 7035
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7036
static void sched_domain_node_span(int node, struct cpumask *span)
7037
{
7038
	nodemask_t used_nodes;
7039
	int i;
7040

7041
	cpumask_clear(span);
7042
	nodes_clear(used_nodes);
7043

7044
	cpumask_or(span, span, cpumask_of_node(node));
7045
	node_set(node, used_nodes);
7046 7047

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7048
		int next_node = find_next_best_node(node, &used_nodes);
7049 7050
		if (next_node < 0)
			break;
7051
		cpumask_or(span, span, cpumask_of_node(next_node));
7052 7053
	}
}
7054 7055 7056 7057 7058 7059 7060 7061 7062

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
7063 7064 7065 7066 7067

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
7068
#endif /* CONFIG_NUMA */
7069

7070 7071 7072 7073 7074
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

7075
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7076

7077 7078 7079
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
7080
	struct sched_group_power **__percpu sgp;
7081 7082
};

7083
struct s_data {
7084
	struct sched_domain ** __percpu sd;
7085 7086 7087
	struct root_domain	*rd;
};

7088 7089
enum s_alloc {
	sa_rootdomain,
7090
	sa_sd,
7091
	sa_sd_storage,
7092 7093 7094
	sa_none,
};

7095 7096 7097
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7098 7099
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

7100 7101
#define SDTL_OVERLAP	0x01

7102
struct sched_domain_topology_level {
7103 7104
	sched_domain_init_f init;
	sched_domain_mask_f mask;
7105
	int		    flags;
7106
	struct sd_data      data;
7107 7108
};

7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
				GFP_KERNEL, cpu_to_node(i));

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

7167
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
7168
{
7169 7170
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
7171

7172 7173
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
7174

7175
	if (sg) {
7176
		*sg = *per_cpu_ptr(sdd->sg, cpu);
7177
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7178
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7179
	}
7180 7181

	return cpu;
7182 7183
}

7184
/*
7185 7186 7187
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
7188 7189
 *
 * Assumes the sched_domain tree is fully constructed
7190
 */
7191 7192
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
7193
{
7194 7195 7196
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
7197
	struct cpumask *covered;
7198
	int i;
7199

7200 7201 7202 7203 7204 7205
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

7206 7207 7208
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

7209
	cpumask_clear(covered);
7210

7211 7212 7213 7214
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
7215

7216 7217
		if (cpumask_test_cpu(i, covered))
			continue;
7218

7219
		cpumask_clear(sched_group_cpus(sg));
7220
		sg->sgp->power = 0;
7221

7222 7223 7224
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
7225

7226 7227 7228
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
7229

7230 7231 7232 7233 7234 7235 7236
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
7237 7238

	return 0;
7239
}
7240

7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
7253
	struct sched_group *sg = sd->groups;
7254

7255 7256 7257 7258 7259 7260
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
7261

7262 7263
	if (cpu != group_first_cpu(sg))
		return;
7264

7265
	update_group_power(sd, cpu);
7266 7267
}

7268 7269 7270 7271 7272
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7273 7274 7275 7276 7277 7278
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7279 7280 7281 7282 7283 7284 7285 7286 7287
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
7301 7302 7303
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
7304

7305
static int default_relax_domain_level = -1;
7306
int sched_domain_level_max;
7307 7308 7309

static int __init setup_relax_domain_level(char *str)
{
7310 7311 7312
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
7313
	if (val < sched_domain_level_max)
7314 7315
		default_relax_domain_level = val;

7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
7334
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7335 7336
	} else {
		/* turn on idle balance on this domain */
7337
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7338 7339 7340
	}
}

7341 7342 7343
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

7344 7345 7346 7347 7348
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
7349 7350
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
7351 7352
	case sa_sd:
		free_percpu(d->sd); /* fall through */
7353
	case sa_sd_storage:
7354
		__sdt_free(cpu_map); /* fall through */
7355 7356 7357 7358
	case sa_none:
		break;
	}
}
7359

7360 7361 7362
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
7363 7364
	memset(d, 0, sizeof(*d));

7365 7366
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
7367 7368 7369
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
7370
	d->rd = alloc_rootdomain();
7371
	if (!d->rd)
7372
		return sa_sd;
7373 7374
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
7375

7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

7388
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7389
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
7390 7391

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7392
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
7393 7394
}

7395 7396
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
7397
{
7398
	return topology_thread_cpumask(cpu);
7399
}
7400
#endif
7401

7402 7403 7404
/*
 * Topology list, bottom-up.
 */
7405
static struct sched_domain_topology_level default_topology[] = {
7406 7407
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
7408
#endif
7409
#ifdef CONFIG_SCHED_MC
7410
	{ sd_init_MC, cpu_coregroup_mask, },
7411
#endif
7412 7413 7414 7415 7416
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
7417
	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7418
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
7419
#endif
7420 7421 7422 7423 7424
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

7441 7442 7443 7444
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

7445 7446 7447
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
7448
			struct sched_group_power *sgp;
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
7463 7464 7465 7466 7467 7468 7469

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
7485 7486 7487
			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
			if (sd && (sd->flags & SD_OVERLAP))
				free_sched_groups(sd->groups, 0);
7488
			kfree(*per_cpu_ptr(sdd->sg, j));
7489
			kfree(*per_cpu_ptr(sdd->sgp, j));
7490 7491 7492
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
7493
		free_percpu(sdd->sgp);
7494 7495 7496
	}
}

7497 7498
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
7499
		struct sched_domain_attr *attr, struct sched_domain *child,
7500 7501
		int cpu)
{
7502
	struct sched_domain *sd = tl->init(tl, cpu);
7503
	if (!sd)
7504
		return child;
7505 7506 7507

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7508 7509 7510
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7511
		child->parent = sd;
7512
	}
7513
	sd->child = child;
7514 7515 7516 7517

	return sd;
}

7518 7519 7520 7521
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
7522 7523
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
7524 7525
{
	enum s_alloc alloc_state = sa_none;
7526
	struct sched_domain *sd;
7527
	struct s_data d;
7528
	int i, ret = -ENOMEM;
7529

7530 7531 7532
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
7533

7534
	/* Set up domains for cpus specified by the cpu_map. */
7535
	for_each_cpu(i, cpu_map) {
7536 7537
		struct sched_domain_topology_level *tl;

7538
		sd = NULL;
7539
		for (tl = sched_domain_topology; tl->init; tl++) {
7540
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7541 7542
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
7543 7544
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
7545
		}
7546

7547 7548 7549
		while (sd->child)
			sd = sd->child;

7550
		*per_cpu_ptr(d.sd, i) = sd;
7551 7552 7553 7554 7555 7556
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7557 7558 7559 7560 7561 7562 7563
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
7564
		}
7565
	}
7566

L
Linus Torvalds 已提交
7567
	/* Calculate CPU power for physical packages and nodes */
7568 7569 7570
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
7571

7572 7573
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
7574
			init_sched_groups_power(i, sd);
7575
		}
7576
	}
7577

L
Linus Torvalds 已提交
7578
	/* Attach the domains */
7579
	rcu_read_lock();
7580
	for_each_cpu(i, cpu_map) {
7581
		sd = *per_cpu_ptr(d.sd, i);
7582
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7583
	}
7584
	rcu_read_unlock();
7585

7586
	ret = 0;
7587
error:
7588
	__free_domain_allocs(&d, alloc_state, cpu_map);
7589
	return ret;
L
Linus Torvalds 已提交
7590
}
P
Paul Jackson 已提交
7591

7592
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7593
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7594 7595
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7596 7597 7598

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7599 7600
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7601
 */
7602
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7603

7604 7605 7606 7607 7608 7609
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7610
{
7611
	return 0;
7612 7613
}

7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7639
/*
I
Ingo Molnar 已提交
7640
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7641 7642
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7643
 */
7644
static int init_sched_domains(const struct cpumask *cpu_map)
7645
{
7646 7647
	int err;

7648
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7649
	ndoms_cur = 1;
7650
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7651
	if (!doms_cur)
7652 7653
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7654
	dattr_cur = NULL;
7655
	err = build_sched_domains(doms_cur[0], NULL);
7656
	register_sched_domain_sysctl();
7657 7658

	return err;
7659 7660 7661 7662 7663 7664
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7665
static void detach_destroy_domains(const struct cpumask *cpu_map)
7666 7667 7668
{
	int i;

7669
	rcu_read_lock();
7670
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7671
		cpu_attach_domain(NULL, &def_root_domain, i);
7672
	rcu_read_unlock();
7673 7674
}

7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7691 7692
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7693
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7694 7695 7696
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7697
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7698 7699 7700
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7701 7702 7703
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7704 7705 7706 7707 7708 7709
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7710
 *
7711
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7712 7713
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7714
 *
P
Paul Jackson 已提交
7715 7716
 * Call with hotplug lock held
 */
7717
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7718
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7719
{
7720
	int i, j, n;
7721
	int new_topology;
P
Paul Jackson 已提交
7722

7723
	mutex_lock(&sched_domains_mutex);
7724

7725 7726 7727
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7728 7729 7730
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7731
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7732 7733 7734

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7735
		for (j = 0; j < n && !new_topology; j++) {
7736
			if (cpumask_equal(doms_cur[i], doms_new[j])
7737
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7738 7739 7740
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7741
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7742 7743 7744 7745
match1:
		;
	}

7746 7747
	if (doms_new == NULL) {
		ndoms_cur = 0;
7748
		doms_new = &fallback_doms;
7749
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7750
		WARN_ON_ONCE(dattr_new);
7751 7752
	}

P
Paul Jackson 已提交
7753 7754
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7755
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7756
			if (cpumask_equal(doms_new[i], doms_cur[j])
7757
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7758 7759 7760
				goto match2;
		}
		/* no match - add a new doms_new */
7761
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7762 7763 7764 7765 7766
match2:
		;
	}

	/* Remember the new sched domains */
7767 7768
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7769
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7770
	doms_cur = doms_new;
7771
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7772
	ndoms_cur = ndoms_new;
7773 7774

	register_sched_domain_sysctl();
7775

7776
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7777 7778
}

7779
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7780
static void reinit_sched_domains(void)
7781
{
7782
	get_online_cpus();
7783 7784 7785 7786

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7787
	rebuild_sched_domains();
7788
	put_online_cpus();
7789 7790 7791 7792
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7793
	unsigned int level = 0;
7794

7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7806 7807 7808
		return -EINVAL;

	if (smt)
7809
		sched_smt_power_savings = level;
7810
	else
7811
		sched_mc_power_savings = level;
7812

7813
	reinit_sched_domains();
7814

7815
	return count;
7816 7817 7818
}

#ifdef CONFIG_SCHED_MC
7819
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7820
					   struct sysdev_class_attribute *attr,
7821
					   char *page)
7822 7823 7824
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7825
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7826
					    struct sysdev_class_attribute *attr,
7827
					    const char *buf, size_t count)
7828 7829 7830
{
	return sched_power_savings_store(buf, count, 0);
}
7831 7832 7833
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7834 7835 7836
#endif

#ifdef CONFIG_SCHED_SMT
7837
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7838
					    struct sysdev_class_attribute *attr,
7839
					    char *page)
7840 7841 7842
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7843
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7844
					     struct sysdev_class_attribute *attr,
7845
					     const char *buf, size_t count)
7846 7847 7848
{
	return sched_power_savings_store(buf, count, 1);
}
7849 7850
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7851 7852 7853
		   sched_smt_power_savings_store);
#endif

7854
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7870
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7871

L
Linus Torvalds 已提交
7872
/*
7873 7874 7875
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
7876
 */
7877 7878
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7879
{
7880
	switch (action & ~CPU_TASKS_FROZEN) {
7881
	case CPU_ONLINE:
7882
	case CPU_DOWN_FAILED:
7883
		cpuset_update_active_cpus();
7884
		return NOTIFY_OK;
7885 7886 7887 7888
	default:
		return NOTIFY_DONE;
	}
}
7889

7890 7891
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7892 7893 7894 7895 7896
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
7897 7898 7899 7900 7901 7902 7903
	default:
		return NOTIFY_DONE;
	}
}

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7904
{
P
Peter Zijlstra 已提交
7905 7906
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7907 7908
	switch (action) {
	case CPU_DOWN_PREPARE:
7909
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7910
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7911 7912 7913
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7914
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7915
	case CPU_ONLINE:
7916
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7917
		enable_runtime(cpu_rq(cpu));
7918 7919
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7920 7921 7922 7923 7924 7925 7926
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7927 7928 7929
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7930
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7931

7932
	get_online_cpus();
7933
	mutex_lock(&sched_domains_mutex);
7934
	init_sched_domains(cpu_active_mask);
7935 7936 7937
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7938
	mutex_unlock(&sched_domains_mutex);
7939
	put_online_cpus();
7940

7941 7942
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7943 7944 7945 7946

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7947
	init_hrtick();
7948 7949

	/* Move init over to a non-isolated CPU */
7950
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7951
		BUG();
I
Ingo Molnar 已提交
7952
	sched_init_granularity();
7953
	free_cpumask_var(non_isolated_cpus);
7954

7955
	init_sched_rt_class();
L
Linus Torvalds 已提交
7956 7957 7958 7959
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7960
	sched_init_granularity();
L
Linus Torvalds 已提交
7961 7962 7963
}
#endif /* CONFIG_SMP */

7964 7965
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7966 7967 7968 7969 7970 7971 7972
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7973
static void init_cfs_rq(struct cfs_rq *cfs_rq)
I
Ingo Molnar 已提交
7974 7975
{
	cfs_rq->tasks_timeline = RB_ROOT;
7976
	INIT_LIST_HEAD(&cfs_rq->tasks);
P
Peter Zijlstra 已提交
7977
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
P
Peter Zijlstra 已提交
7978 7979 7980
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
I
Ingo Molnar 已提交
7981 7982
}

P
Peter Zijlstra 已提交
7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7996
#if defined CONFIG_SMP
7997 7998
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7999 8000
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8001
	plist_head_init(&rt_rq->pushable_tasks);
P
Peter Zijlstra 已提交
8002 8003 8004 8005
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8006
	rt_rq->rt_runtime = 0;
8007
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8008 8009
}

P
Peter Zijlstra 已提交
8010
#ifdef CONFIG_FAIR_GROUP_SCHED
8011
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8012
				struct sched_entity *se, int cpu,
8013
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8014
{
8015
	struct rq *rq = cpu_rq(cpu);
8016

P
Peter Zijlstra 已提交
8017
	cfs_rq->tg = tg;
8018 8019 8020 8021 8022
	cfs_rq->rq = rq;
#ifdef CONFIG_SMP
	/* allow initial update_cfs_load() to truncate */
	cfs_rq->load_stamp = 1;
#endif
8023
	init_cfs_rq_runtime(cfs_rq);
P
Peter Zijlstra 已提交
8024

8025
	tg->cfs_rq[cpu] = cfs_rq;
P
Peter Zijlstra 已提交
8026
	tg->se[cpu] = se;
8027

8028
	/* se could be NULL for root_task_group */
D
Dhaval Giani 已提交
8029 8030 8031
	if (!se)
		return;

8032 8033 8034 8035 8036
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8037
	se->my_q = cfs_rq;
8038
	update_load_set(&se->load, 0);
8039
	se->parent = parent;
P
Peter Zijlstra 已提交
8040
}
8041
#endif
P
Peter Zijlstra 已提交
8042

8043
#ifdef CONFIG_RT_GROUP_SCHED
8044
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8045
		struct sched_rt_entity *rt_se, int cpu,
8046
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8047
{
8048 8049
	struct rq *rq = cpu_rq(cpu);

8050 8051 8052
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
P
Peter Zijlstra 已提交
8053 8054
	rt_rq->tg = tg;

8055
	tg->rt_rq[cpu] = rt_rq;
P
Peter Zijlstra 已提交
8056
	tg->rt_se[cpu] = rt_se;
8057

D
Dhaval Giani 已提交
8058 8059 8060
	if (!rt_se)
		return;

8061 8062 8063 8064 8065
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8066
	rt_se->my_q = rt_rq;
8067
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8068 8069 8070 8071
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8072 8073
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8074
	int i, j;
8075 8076 8077 8078 8079 8080 8081
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8082
#endif
8083
#ifdef CONFIG_CPUMASK_OFFSTACK
8084
	alloc_size += num_possible_cpus() * cpumask_size();
8085 8086
#endif
	if (alloc_size) {
8087
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8088 8089

#ifdef CONFIG_FAIR_GROUP_SCHED
8090
		root_task_group.se = (struct sched_entity **)ptr;
8091 8092
		ptr += nr_cpu_ids * sizeof(void **);

8093
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8094
		ptr += nr_cpu_ids * sizeof(void **);
8095

8096
#endif /* CONFIG_FAIR_GROUP_SCHED */
8097
#ifdef CONFIG_RT_GROUP_SCHED
8098
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8099 8100
		ptr += nr_cpu_ids * sizeof(void **);

8101
		root_task_group.rt_rq = (struct rt_rq **)ptr;
8102 8103
		ptr += nr_cpu_ids * sizeof(void **);

8104
#endif /* CONFIG_RT_GROUP_SCHED */
8105 8106 8107 8108 8109 8110
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
8111
	}
I
Ingo Molnar 已提交
8112

G
Gregory Haskins 已提交
8113 8114 8115 8116
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8117 8118 8119 8120
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
8121
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8122
			global_rt_period(), global_rt_runtime());
8123
#endif /* CONFIG_RT_GROUP_SCHED */
8124

D
Dhaval Giani 已提交
8125
#ifdef CONFIG_CGROUP_SCHED
8126 8127
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
8128
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
8129
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
8130

8131
	for_each_possible_cpu(i) {
8132
		struct rq *rq;
L
Linus Torvalds 已提交
8133 8134

		rq = cpu_rq(i);
8135
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8136
		rq->nr_running = 0;
8137 8138
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
8139
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
8140
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8141
#ifdef CONFIG_FAIR_GROUP_SCHED
8142
		root_task_group.shares = root_task_group_load;
P
Peter Zijlstra 已提交
8143
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8144
		/*
8145
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
8146 8147 8148 8149
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
8150
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
8151 8152 8153
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
8154
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
8155 8156 8157
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
8158
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
8159
		 *
8160 8161
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
8162
		 */
8163
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8164
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
8165 8166 8167
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8168
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8169
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8170
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
8171
#endif
L
Linus Torvalds 已提交
8172

I
Ingo Molnar 已提交
8173 8174
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
8175 8176 8177

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
8178
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8179
		rq->sd = NULL;
G
Gregory Haskins 已提交
8180
		rq->rd = NULL;
8181
		rq->cpu_power = SCHED_POWER_SCALE;
8182
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
8183
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8184
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8185
		rq->push_cpu = 0;
8186
		rq->cpu = i;
8187
		rq->online = 0;
8188 8189
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
8190
		rq_attach_root(rq, &def_root_domain);
8191 8192 8193 8194
#ifdef CONFIG_NO_HZ
		rq->nohz_balance_kick = 0;
		init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
#endif
L
Linus Torvalds 已提交
8195
#endif
P
Peter Zijlstra 已提交
8196
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8197 8198 8199
		atomic_set(&rq->nr_iowait, 0);
	}

8200
	set_load_weight(&init_task);
8201

8202 8203 8204 8205
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8206
#ifdef CONFIG_SMP
8207
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8208 8209
#endif

8210
#ifdef CONFIG_RT_MUTEXES
8211
	plist_head_init(&init_task.pi_waiters);
8212 8213
#endif

L
Linus Torvalds 已提交
8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
8227 8228 8229

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
8230 8231 8232 8233
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8234

8235
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8236
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8237
#ifdef CONFIG_SMP
8238
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8239
#ifdef CONFIG_NO_HZ
8240 8241 8242 8243 8244
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
	atomic_set(&nohz.load_balancer, nr_cpu_ids);
	atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
	atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8245
#endif
R
Rusty Russell 已提交
8246 8247 8248
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8249
#endif /* SMP */
8250

8251
	scheduler_running = 1;
L
Linus Torvalds 已提交
8252 8253
}

8254
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8255 8256
static inline int preempt_count_equals(int preempt_offset)
{
8257
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8258

A
Arnd Bergmann 已提交
8259
	return (nested == preempt_offset);
8260 8261
}

8262
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
8263 8264 8265
{
	static unsigned long prev_jiffy;	/* ratelimiting */

8266 8267
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
8268 8269 8270 8271 8272
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
8273 8274 8275 8276 8277 8278 8279
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
8280 8281 8282 8283 8284

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8285 8286 8287 8288 8289
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8290 8291
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
8292 8293
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
8294
	int on_rq;
8295

P
Peter Zijlstra 已提交
8296
	on_rq = p->on_rq;
8297 8298 8299 8300 8301 8302 8303
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
8304 8305

	check_class_changed(rq, p, prev_class, old_prio);
8306 8307
}

L
Linus Torvalds 已提交
8308 8309
void normalize_rt_tasks(void)
{
8310
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8311
	unsigned long flags;
8312
	struct rq *rq;
L
Linus Torvalds 已提交
8313

8314
	read_lock_irqsave(&tasklist_lock, flags);
8315
	do_each_thread(g, p) {
8316 8317 8318 8319 8320 8321
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8322 8323
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
8324 8325 8326
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
8327
#endif
I
Ingo Molnar 已提交
8328 8329 8330 8331 8332 8333 8334 8335

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8336
			continue;
I
Ingo Molnar 已提交
8337
		}
L
Linus Torvalds 已提交
8338

8339
		raw_spin_lock(&p->pi_lock);
8340
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8341

8342
		normalize_task(rq, p);
8343

8344
		__task_rq_unlock(rq);
8345
		raw_spin_unlock(&p->pi_lock);
8346 8347
	} while_each_thread(g, p);

8348
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8349 8350 8351
}

#endif /* CONFIG_MAGIC_SYSRQ */
8352

8353
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8354
/*
8355
 * These functions are only useful for the IA64 MCA handling, or kdb.
8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8370
struct task_struct *curr_task(int cpu)
8371 8372 8373 8374
{
	return cpu_curr(cpu);
}

8375 8376 8377
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
8378 8379 8380 8381 8382 8383
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8384 8385
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8386 8387 8388 8389 8390 8391 8392
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8393
void set_curr_task(int cpu, struct task_struct *p)
8394 8395 8396 8397 8398
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8399

8400 8401
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8402 8403 8404
{
	int i;

8405 8406
	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

P
Peter Zijlstra 已提交
8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417
	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8418 8419
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8420 8421
{
	struct cfs_rq *cfs_rq;
8422
	struct sched_entity *se;
S
Srivatsa Vaddagiri 已提交
8423 8424
	int i;

8425
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8426 8427
	if (!tg->cfs_rq)
		goto err;
8428
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8429 8430
	if (!tg->se)
		goto err;
8431 8432

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8433

8434 8435
	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

S
Srivatsa Vaddagiri 已提交
8436
	for_each_possible_cpu(i) {
8437 8438
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8439 8440 8441
		if (!cfs_rq)
			goto err;

8442 8443
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8444
		if (!se)
8445
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8446

8447
		init_cfs_rq(cfs_rq);
8448
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8449 8450 8451 8452
	}

	return 1;

P
Peter Zijlstra 已提交
8453
err_free_rq:
8454
	kfree(cfs_rq);
P
Peter Zijlstra 已提交
8455
err:
8456 8457 8458 8459 8460
	return 0;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
8472
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8473
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8474
}
8475
#else /* !CONFIG_FAIR_GROUP_SCHED */
8476 8477 8478 8479
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8480 8481
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8482 8483 8484 8485 8486 8487 8488
{
	return 1;
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8489
#endif /* CONFIG_FAIR_GROUP_SCHED */
8490 8491

#ifdef CONFIG_RT_GROUP_SCHED
8492 8493 8494 8495
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8496 8497
	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);
8498

8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8510 8511
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8512 8513
{
	struct rt_rq *rt_rq;
8514
	struct sched_rt_entity *rt_se;
8515 8516
	int i;

8517
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8518 8519
	if (!tg->rt_rq)
		goto err;
8520
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8521 8522 8523
	if (!tg->rt_se)
		goto err;

8524 8525
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8526 8527

	for_each_possible_cpu(i) {
8528 8529
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8530 8531
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8532

8533 8534
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8535
		if (!rt_se)
8536
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8537

8538 8539
		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8540
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8541 8542
	}

8543 8544
	return 1;

P
Peter Zijlstra 已提交
8545
err_free_rq:
8546
	kfree(rt_rq);
P
Peter Zijlstra 已提交
8547
err:
8548 8549
	return 0;
}
8550
#else /* !CONFIG_RT_GROUP_SCHED */
8551 8552 8553 8554
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8555 8556
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8557 8558 8559
{
	return 1;
}
8560
#endif /* CONFIG_RT_GROUP_SCHED */
8561

D
Dhaval Giani 已提交
8562
#ifdef CONFIG_CGROUP_SCHED
8563 8564 8565 8566
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
8567
	autogroup_free(tg);
8568 8569 8570 8571
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8572
struct task_group *sched_create_group(struct task_group *parent)
8573 8574 8575 8576 8577 8578 8579 8580
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8581
	if (!alloc_fair_sched_group(tg, parent))
8582 8583
		goto err;

8584
	if (!alloc_rt_sched_group(tg, parent))
8585 8586
		goto err;

8587
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8588
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8589 8590 8591 8592 8593

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8594
	list_add_rcu(&tg->siblings, &parent->children);
8595
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8596

8597
	return tg;
S
Srivatsa Vaddagiri 已提交
8598 8599

err:
P
Peter Zijlstra 已提交
8600
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8601 8602 8603
	return ERR_PTR(-ENOMEM);
}

8604
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8605
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8606 8607
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8608
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8609 8610
}

8611
/* Destroy runqueue etc associated with a task group */
8612
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8613
{
8614
	unsigned long flags;
8615
	int i;
S
Srivatsa Vaddagiri 已提交
8616

8617 8618
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
8619
		unregister_fair_sched_group(tg, i);
8620 8621

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8622
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8623
	list_del_rcu(&tg->siblings);
8624
	spin_unlock_irqrestore(&task_group_lock, flags);
8625 8626

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8627
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8628 8629
}

8630
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8631 8632 8633
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8634 8635
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8636 8637 8638 8639 8640 8641 8642
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8643
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
8644
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
8645

8646
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8647
		dequeue_task(rq, tsk, 0);
8648 8649
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8650

P
Peter Zijlstra 已提交
8651
#ifdef CONFIG_FAIR_GROUP_SCHED
8652 8653 8654
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
8655
#endif
8656
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
8657

8658 8659 8660
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8661
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8662

8663
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
8664
}
D
Dhaval Giani 已提交
8665
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8666

8667
#ifdef CONFIG_FAIR_GROUP_SCHED
8668 8669
static DEFINE_MUTEX(shares_mutex);

8670
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8671 8672
{
	int i;
8673
	unsigned long flags;
8674

8675 8676 8677 8678 8679 8680
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8681
	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8682

8683
	mutex_lock(&shares_mutex);
8684
	if (tg->shares == shares)
8685
		goto done;
S
Srivatsa Vaddagiri 已提交
8686

8687
	tg->shares = shares;
8688
	for_each_possible_cpu(i) {
8689 8690 8691 8692 8693 8694 8695
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
8696
			update_cfs_shares(group_cfs_rq(se));
8697
		raw_spin_unlock_irqrestore(&rq->lock, flags);
8698
	}
S
Srivatsa Vaddagiri 已提交
8699

8700
done:
8701
	mutex_unlock(&shares_mutex);
8702
	return 0;
S
Srivatsa Vaddagiri 已提交
8703 8704
}

8705 8706 8707 8708
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8709
#endif
8710

8711
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8712
/*
P
Peter Zijlstra 已提交
8713
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8714
 */
P
Peter Zijlstra 已提交
8715 8716 8717 8718 8719
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8720
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8721

P
Peter Zijlstra 已提交
8722
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8723 8724
}

P
Peter Zijlstra 已提交
8725 8726
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8727
{
P
Peter Zijlstra 已提交
8728
	struct task_struct *g, *p;
8729

P
Peter Zijlstra 已提交
8730 8731 8732 8733
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8734

P
Peter Zijlstra 已提交
8735 8736
	return 0;
}
8737

P
Peter Zijlstra 已提交
8738 8739 8740 8741 8742
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8743

P
Peter Zijlstra 已提交
8744 8745 8746 8747 8748 8749
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8750

P
Peter Zijlstra 已提交
8751 8752
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8753

P
Peter Zijlstra 已提交
8754 8755 8756
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8757 8758
	}

8759 8760 8761 8762 8763
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8764

8765 8766 8767
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8768 8769
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8770

P
Peter Zijlstra 已提交
8771
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8772

8773 8774 8775 8776 8777
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8778

8779 8780 8781
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8782 8783 8784
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8785

P
Peter Zijlstra 已提交
8786 8787 8788 8789
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8790

P
Peter Zijlstra 已提交
8791
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8792
	}
P
Peter Zijlstra 已提交
8793

P
Peter Zijlstra 已提交
8794 8795 8796 8797
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8798 8799
}

P
Peter Zijlstra 已提交
8800
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8801
{
P
Peter Zijlstra 已提交
8802 8803 8804 8805 8806 8807 8808
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8809 8810
}

8811
static int tg_set_rt_bandwidth(struct task_group *tg,
8812
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8813
{
P
Peter Zijlstra 已提交
8814
	int i, err = 0;
P
Peter Zijlstra 已提交
8815 8816

	mutex_lock(&rt_constraints_mutex);
8817
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8818 8819
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8820
		goto unlock;
P
Peter Zijlstra 已提交
8821

8822
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8823 8824
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8825 8826 8827 8828

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8829
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8830
		rt_rq->rt_runtime = rt_runtime;
8831
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8832
	}
8833
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8834
unlock:
8835
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8836 8837 8838
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8839 8840
}

8841 8842 8843 8844 8845 8846 8847 8848 8849
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

8850
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8851 8852
}

P
Peter Zijlstra 已提交
8853 8854 8855 8856
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8857
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8858 8859
		return -1;

8860
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8861 8862 8863
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8864 8865 8866 8867 8868 8869 8870 8871

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8872 8873 8874
	if (rt_period == 0)
		return -EINVAL;

8875
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8889
	u64 runtime, period;
8890 8891
	int ret = 0;

8892 8893 8894
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8895 8896 8897 8898 8899 8900 8901 8902
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8903

8904
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8905
	read_lock(&tasklist_lock);
8906
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8907
	read_unlock(&tasklist_lock);
8908 8909 8910 8911
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8912 8913 8914 8915 8916 8917 8918 8919 8920 8921

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8922
#else /* !CONFIG_RT_GROUP_SCHED */
8923 8924
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8925 8926 8927
	unsigned long flags;
	int i;

8928 8929 8930
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8931 8932 8933 8934 8935 8936 8937
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8938
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8939 8940 8941
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8942
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8943
		rt_rq->rt_runtime = global_rt_runtime();
8944
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8945
	}
8946
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8947

8948 8949
	return 0;
}
8950
#endif /* CONFIG_RT_GROUP_SCHED */
8951 8952

int sched_rt_handler(struct ctl_table *table, int write,
8953
		void __user *buffer, size_t *lenp,
8954 8955 8956 8957 8958 8959 8960 8961 8962 8963
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8964
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8981

8982
#ifdef CONFIG_CGROUP_SCHED
8983 8984

/* return corresponding task_group object of a cgroup */
8985
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8986
{
8987 8988
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8989 8990 8991
}

static struct cgroup_subsys_state *
8992
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8993
{
8994
	struct task_group *tg, *parent;
8995

8996
	if (!cgrp->parent) {
8997
		/* This is early initialization for the top cgroup */
8998
		return &root_task_group.css;
8999 9000
	}

9001 9002
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9003 9004 9005 9006 9007 9008
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9009 9010
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9011
{
9012
	struct task_group *tg = cgroup_tg(cgrp);
9013 9014 9015 9016

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9017
static int
9018
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9019
{
9020
#ifdef CONFIG_RT_GROUP_SCHED
9021
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9022 9023
		return -EINVAL;
#else
9024 9025 9026
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9027
#endif
9028 9029
	return 0;
}
9030 9031

static void
9032
cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9033 9034 9035 9036
{
	sched_move_task(tsk);
}

9037
static void
9038 9039
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

9052
#ifdef CONFIG_FAIR_GROUP_SCHED
9053
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9054
				u64 shareval)
9055
{
9056
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9057 9058
}

9059
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9060
{
9061
	struct task_group *tg = cgroup_tg(cgrp);
9062

9063
	return (u64) scale_load_down(tg->shares);
9064
}
9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186

#ifdef CONFIG_CFS_BANDWIDTH
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
	int i;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
	static DEFINE_MUTEX(mutex);

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

	mutex_lock(&mutex);
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock_irq(&rq->lock);
		cfs_rq->runtime_enabled = quota != RUNTIME_INF;
		cfs_rq->runtime_remaining = 0;
		raw_spin_unlock_irq(&rq->lock);
	}
	mutex_unlock(&mutex);

	return 0;
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

	period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

	if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
		return -1;

	quota_us = tg_cfs_bandwidth(tg)->quota;
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
	quota = tg_cfs_bandwidth(tg)->quota;

	if (period <= 0)
		return -EINVAL;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

	cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

#endif /* CONFIG_CFS_BANDWIDTH */
9187
#endif /* CONFIG_FAIR_GROUP_SCHED */
9188

9189
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9190
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9191
				s64 val)
P
Peter Zijlstra 已提交
9192
{
9193
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9194 9195
}

9196
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9197
{
9198
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9199
}
9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9211
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9212

9213
static struct cftype cpu_files[] = {
9214
#ifdef CONFIG_FAIR_GROUP_SCHED
9215 9216
	{
		.name = "shares",
9217 9218
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9219
	},
9220
#endif
9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
#endif
9233
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9234
	{
P
Peter Zijlstra 已提交
9235
		.name = "rt_runtime_us",
9236 9237
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9238
	},
9239 9240
	{
		.name = "rt_period_us",
9241 9242
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9243
	},
9244
#endif
9245 9246 9247 9248
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9249
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9250 9251 9252
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9253 9254 9255
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
9256 9257
	.can_attach_task = cpu_cgroup_can_attach_task,
	.attach_task	= cpu_cgroup_attach_task,
9258
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
9259 9260
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9261 9262 9263
	.early_init	= 1,
};

9264
#endif	/* CONFIG_CGROUP_SCHED */
9265 9266 9267 9268 9269 9270 9271 9272 9273 9274

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9275
/* track cpu usage of a group of tasks and its child groups */
9276 9277 9278
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
9279
	u64 __percpu *cpuusage;
9280
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9281
	struct cpuacct *parent;
9282 9283 9284 9285 9286
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9287
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9288
{
9289
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9302
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9303 9304
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9305
	int i;
9306 9307

	if (!ca)
9308
		goto out;
9309 9310

	ca->cpuusage = alloc_percpu(u64);
9311 9312 9313 9314 9315 9316
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
9317

9318 9319 9320
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9321
	return &ca->css;
9322 9323 9324 9325 9326 9327 9328 9329 9330

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
9331 9332 9333
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9334
static void
9335
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9336
{
9337
	struct cpuacct *ca = cgroup_ca(cgrp);
9338
	int i;
9339

9340 9341
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
9342 9343 9344 9345
	free_percpu(ca->cpuusage);
	kfree(ca);
}

9346 9347
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9348
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9349 9350 9351 9352 9353 9354
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
9355
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9356
	data = *cpuusage;
9357
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9358 9359 9360 9361 9362 9363 9364 9365 9366
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9367
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9368 9369 9370 9371 9372

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
9373
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9374
	*cpuusage = val;
9375
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9376 9377 9378 9379 9380
#else
	*cpuusage = val;
#endif
}

9381
/* return total cpu usage (in nanoseconds) of a group */
9382
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9383
{
9384
	struct cpuacct *ca = cgroup_ca(cgrp);
9385 9386 9387
	u64 totalcpuusage = 0;
	int i;

9388 9389
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9390 9391 9392 9393

	return totalcpuusage;
}

9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9406 9407
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9408 9409 9410 9411 9412

out:
	return err;
}

9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9447 9448 9449
static struct cftype files[] = {
	{
		.name = "usage",
9450 9451
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9452
	},
9453 9454 9455 9456
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9457 9458 9459 9460
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9461 9462
};

9463
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9464
{
9465
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9466 9467 9468 9469 9470 9471 9472 9473 9474 9475
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9476
	int cpu;
9477

L
Li Zefan 已提交
9478
	if (unlikely(!cpuacct_subsys.active))
9479 9480
		return;

9481
	cpu = task_cpu(tsk);
9482 9483 9484

	rcu_read_lock();

9485 9486
	ca = task_ca(tsk);

9487
	for (; ca; ca = ca->parent) {
9488
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9489 9490
		*cpuusage += cputime;
	}
9491 9492

	rcu_read_unlock();
9493 9494
}

9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9512 9513 9514 9515 9516 9517 9518
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9519
	int batch = CPUACCT_BATCH;
9520 9521 9522 9523 9524 9525 9526 9527

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9528
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9529 9530 9531 9532 9533
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9534 9535 9536 9537 9538 9539 9540 9541
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */