ef10.c 195.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2012-2013 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include "net_driver.h"
#include "ef10_regs.h"
#include "io.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "nic.h"
#include "workarounds.h"
17
#include "selftest.h"
18
#include "ef10_sriov.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <linux/in.h>
#include <linux/jhash.h>
#include <linux/wait.h>
#include <linux/workqueue.h>

/* Hardware control for EF10 architecture including 'Huntington'. */

#define EFX_EF10_DRVGEN_EV		7
enum {
	EFX_EF10_TEST = 1,
	EFX_EF10_REFILL,
};

/* The reserved RSS context value */
#define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
34 35 36
/* The maximum size of a shared RSS context */
/* TODO: this should really be from the mcdi protocol export */
#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

/* The filter table(s) are managed by firmware and we have write-only
 * access.  When removing filters we must identify them to the
 * firmware by a 64-bit handle, but this is too wide for Linux kernel
 * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
 * be able to tell in advance whether a requested insertion will
 * replace an existing filter.  Therefore we maintain a software hash
 * table, which should be at least as large as the hardware hash
 * table.
 *
 * Huntington has a single 8K filter table shared between all filter
 * types and both ports.
 */
#define HUNT_FILTER_TBL_ROWS 8192

52
#define EFX_EF10_FILTER_ID_INVALID 0xffff
53 54 55 56

#define EFX_EF10_FILTER_DEV_UC_MAX	32
#define EFX_EF10_FILTER_DEV_MC_MAX	256

57 58 59 60 61 62
/* VLAN list entry */
struct efx_ef10_vlan {
	struct list_head list;
	u16 vid;
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
enum efx_ef10_default_filters {
	EFX_EF10_BCAST,
	EFX_EF10_UCDEF,
	EFX_EF10_MCDEF,
	EFX_EF10_VXLAN4_UCDEF,
	EFX_EF10_VXLAN4_MCDEF,
	EFX_EF10_VXLAN6_UCDEF,
	EFX_EF10_VXLAN6_MCDEF,
	EFX_EF10_NVGRE4_UCDEF,
	EFX_EF10_NVGRE4_MCDEF,
	EFX_EF10_NVGRE6_UCDEF,
	EFX_EF10_NVGRE6_MCDEF,
	EFX_EF10_GENEVE4_UCDEF,
	EFX_EF10_GENEVE4_MCDEF,
	EFX_EF10_GENEVE6_UCDEF,
	EFX_EF10_GENEVE6_MCDEF,

	EFX_EF10_NUM_DEFAULT_FILTERS
};

83 84
/* Per-VLAN filters information */
struct efx_ef10_filter_vlan {
85
	struct list_head list;
86
	u16 vid;
87 88
	u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
	u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
89
	u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
90 91
};

92 93 94 95
struct efx_ef10_dev_addr {
	u8 addr[ETH_ALEN];
};

96
struct efx_ef10_filter_table {
97 98
/* The MCDI match masks supported by this fw & hw, in order of priority */
	u32 rx_match_mcdi_flags[
99
		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
100 101 102 103
	unsigned int rx_match_count;

	struct {
		unsigned long spec;	/* pointer to spec plus flag bits */
104 105
/* BUSY flag indicates that an update is in progress.  AUTO_OLD is
 * used to mark and sweep MAC filters for the device address lists.
106 107
 */
#define EFX_EF10_FILTER_FLAG_BUSY	1UL
108
#define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
109 110 111 112 113
#define EFX_EF10_FILTER_FLAGS		3UL
		u64 handle;		/* firmware handle */
	} *entry;
	wait_queue_head_t waitq;
/* Shadow of net_device address lists, guarded by mac_lock */
114 115
	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
116 117
	int dev_uc_count;
	int dev_mc_count;
118 119
	bool uc_promisc;
	bool mc_promisc;
120 121
/* Whether in multicast promiscuous mode when last changed */
	bool mc_promisc_last;
122
	bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */
123
	bool vlan_filter;
124
	struct list_head vlan_list;
125 126 127 128 129 130 131
};

/* An arbitrary search limit for the software hash table */
#define EFX_EF10_FILTER_SEARCH_LIMIT 200

static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
static void efx_ef10_filter_table_remove(struct efx_nic *efx);
132 133 134 135
static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
					      struct efx_ef10_filter_vlan *vlan);
static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
136
static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
{
	WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
	return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
}

static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
{
	return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
}

static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
{
	return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
}

154 155 156 157 158 159 160 161 162
static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
{
	efx_dword_t reg;

	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
 * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
 * bar; PFs use BAR 0/1 for memory.
 */
static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
{
	switch (efx->pci_dev->device) {
	case 0x0b03: /* SFC9250 PF */
		return 0;
	default:
		return 2;
	}
}

/* All VFs use BAR 0/1 for memory */
static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
{
	return 0;
}

183 184
static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
{
185 186
	int bar;

187
	bar = efx->type->mem_bar(efx);
188
	return resource_size(&efx->pci_dev->resource[bar]);
189 190
}

191 192 193 194 195
static bool efx_ef10_is_vf(struct efx_nic *efx)
{
	return efx->type->is_vf;
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int efx_ef10_get_pf_index(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
			  sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < sizeof(outbuf))
		return -EIO;

	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
	return 0;
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_get_vf_index(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
			  sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < sizeof(outbuf))
		return -EIO;

	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
	return 0;
}
#endif

234
static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
235
{
236
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V3_OUT_LEN);
237 238 239 240 241 242 243 244 245 246
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
247
	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
248 249 250 251 252 253 254
		netif_err(efx, drv, efx->net_dev,
			  "unable to read datapath firmware capabilities\n");
		return -EIO;
	}

	nic_data->datapath_caps =
		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
255

256
	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
257 258
		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
				GET_CAPABILITIES_V2_OUT_FLAGS2);
259 260 261
		nic_data->piobuf_size = MCDI_WORD(outbuf,
				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
	} else {
262
		nic_data->datapath_caps2 = 0;
263 264
		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
	}
265

266 267 268 269 270 271 272
	/* record the DPCPU firmware IDs to determine VEB vswitching support.
	 */
	nic_data->rx_dpcpu_fw_id =
		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
	nic_data->tx_dpcpu_fw_id =
		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);

273 274 275 276 277
	if (!(nic_data->datapath_caps &
	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
		netif_err(efx, probe, efx->net_dev,
			  "current firmware does not support an RX prefix\n");
		return -ENODEV;
278 279
	}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
		u8 vi_window_mode = MCDI_BYTE(outbuf,
				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);

		switch (vi_window_mode) {
		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
			efx->vi_stride = 8192;
			break;
		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
			efx->vi_stride = 16384;
			break;
		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
			efx->vi_stride = 65536;
			break;
		default:
			netif_err(efx, probe, efx->net_dev,
				  "Unrecognised VI window mode %d\n",
				  vi_window_mode);
			return -EIO;
		}
		netif_dbg(efx, probe, efx->net_dev, "vi_stride = %u\n",
			  efx->vi_stride);
	} else {
		/* keep default VI stride */
		netif_dbg(efx, probe, efx->net_dev,
			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
			  efx->vi_stride);
	}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	return 0;
}

static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
			  outbuf, sizeof(outbuf), NULL);
	if (rc)
		return rc;
	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
	return rc > 0 ? rc : -ERANGE;
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	unsigned int implemented;
	unsigned int enabled;
	int rc;

	nic_data->workaround_35388 = false;
	nic_data->workaround_61265 = false;

	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);

	if (rc == -ENOSYS) {
		/* Firmware without GET_WORKAROUNDS - not a problem. */
		rc = 0;
	} else if (rc == 0) {
		/* Bug61265 workaround is always enabled if implemented. */
		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
			nic_data->workaround_61265 = true;

		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
			nic_data->workaround_35388 = true;
		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
			/* Workaround is implemented but not enabled.
			 * Try to enable it.
			 */
			rc = efx_mcdi_set_workaround(efx,
						     MC_CMD_WORKAROUND_BUG35388,
						     true, NULL);
			if (rc == 0)
				nic_data->workaround_35388 = true;
			/* If we failed to set the workaround just carry on. */
			rc = 0;
		}
	}

	netif_dbg(efx, probe, efx->net_dev,
		  "workaround for bug 35388 is %sabled\n",
		  nic_data->workaround_35388 ? "en" : "dis");
	netif_dbg(efx, probe, efx->net_dev,
		  "workaround for bug 61265 is %sabled\n",
		  nic_data->workaround_61265 ? "en" : "dis");

	return rc;
}

static void efx_ef10_process_timer_config(struct efx_nic *efx,
					  const efx_dword_t *data)
{
	unsigned int max_count;

	if (EFX_EF10_WORKAROUND_61265(efx)) {
		efx->timer_quantum_ns = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
		efx->timer_max_ns = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
		efx->timer_quantum_ns = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
		max_count = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
	} else {
		efx->timer_quantum_ns = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
		max_count = MCDI_DWORD(data,
			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
	}

	netif_dbg(efx, probe, efx->net_dev,
		  "got timer properties from MC: quantum %u ns; max %u ns\n",
		  efx->timer_quantum_ns, efx->timer_max_ns);
}

static int efx_ef10_get_timer_config(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
	int rc;

	rc = efx_ef10_get_timer_workarounds(efx);
	if (rc)
		return rc;

	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
				outbuf, sizeof(outbuf), NULL);

	if (rc == 0) {
		efx_ef10_process_timer_config(efx, outbuf);
	} else if (rc == -ENOSYS || rc == -EPERM) {
		/* Not available - fall back to Huntington defaults. */
		unsigned int quantum;

		rc = efx_ef10_get_sysclk_freq(efx);
		if (rc < 0)
			return rc;

		quantum = 1536000 / rc; /* 1536 cycles */
		efx->timer_quantum_ns = quantum;
		efx->timer_max_ns = efx->type->timer_period_max * quantum;
		rc = 0;
	} else {
		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
				       NULL, 0, rc);
	}

	return rc;
}

435
static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
436 437 438 439 440 441 442 443 444 445 446 447 448 449
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
	size_t outlen;
	int rc;

	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
		return -EIO;

450 451
	ether_addr_copy(mac_address,
			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
452 453 454
	return 0;
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
	size_t outlen;
	int num_addrs, rc;

	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
		       EVB_PORT_ID_ASSIGNED);
	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);

	if (rc)
		return rc;
	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
		return -EIO;

	num_addrs = MCDI_DWORD(outbuf,
			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);

	WARN_ON(num_addrs != 1);

	ether_addr_copy(mac_address,
			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));

	return 0;
}

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	return sprintf(buf, "%d\n",
		       ((efx->mcdi->fn_flags) &
			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
		       ? 1 : 0);
}

static ssize_t efx_ef10_show_primary_flag(struct device *dev,
					  struct device_attribute *attr,
					  char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	return sprintf(buf, "%d\n",
		       ((efx->mcdi->fn_flags) &
			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
		       ? 1 : 0);
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan;

	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));

	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
		if (vlan->vid == vid)
			return vlan;
	}

	return NULL;
}

static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan;
	int rc;

	mutex_lock(&nic_data->vlan_lock);

	vlan = efx_ef10_find_vlan(efx, vid);
	if (vlan) {
532 533 534 535 536
		/* We add VID 0 on init. 8021q adds it on module init
		 * for all interfaces with VLAN filtring feature.
		 */
		if (vid == 0)
			goto done_unlock;
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		netif_warn(efx, drv, efx->net_dev,
			   "VLAN %u already added\n", vid);
		rc = -EALREADY;
		goto fail_exist;
	}

	rc = -ENOMEM;
	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
	if (!vlan)
		goto fail_alloc;

	vlan->vid = vid;

	list_add_tail(&vlan->list, &nic_data->vlan_list);

	if (efx->filter_state) {
		mutex_lock(&efx->mac_lock);
		down_write(&efx->filter_sem);
		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
		up_write(&efx->filter_sem);
		mutex_unlock(&efx->mac_lock);
		if (rc)
			goto fail_filter_add_vlan;
	}

562
done_unlock:
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
	mutex_unlock(&nic_data->vlan_lock);
	return 0;

fail_filter_add_vlan:
	list_del(&vlan->list);
	kfree(vlan);
fail_alloc:
fail_exist:
	mutex_unlock(&nic_data->vlan_lock);
	return rc;
}

static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
				       struct efx_ef10_vlan *vlan)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));

	if (efx->filter_state) {
		down_write(&efx->filter_sem);
		efx_ef10_filter_del_vlan(efx, vlan->vid);
		up_write(&efx->filter_sem);
	}

	list_del(&vlan->list);
	kfree(vlan);
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan;
	int rc = 0;

	/* 8021q removes VID 0 on module unload for all interfaces
	 * with VLAN filtering feature. We need to keep it to receive
	 * untagged traffic.
	 */
	if (vid == 0)
		return 0;

	mutex_lock(&nic_data->vlan_lock);

	vlan = efx_ef10_find_vlan(efx, vid);
	if (!vlan) {
		netif_err(efx, drv, efx->net_dev,
			  "VLAN %u to be deleted not found\n", vid);
		rc = -ENOENT;
	} else {
		efx_ef10_del_vlan_internal(efx, vlan);
	}

	mutex_unlock(&nic_data->vlan_lock);

	return rc;
}

621 622 623 624 625 626 627 628 629 630 631
static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan, *next_vlan;

	mutex_lock(&nic_data->vlan_lock);
	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
		efx_ef10_del_vlan_internal(efx, vlan);
	mutex_unlock(&nic_data->vlan_lock);
}

632 633 634 635
static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
		   NULL);
static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);

636 637 638 639 640 641 642 643 644 645
static int efx_ef10_probe(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data;
	int i, rc;

	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
	if (!nic_data)
		return -ENOMEM;
	efx->nic_data = nic_data;

E
Edward Cree 已提交
646 647 648
	/* we assume later that we can copy from this buffer in dwords */
	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
	if (rc)
		goto fail1;

	/* Get the MC's warm boot count.  In case it's rebooting right
	 * now, be prepared to retry.
	 */
	i = 0;
	for (;;) {
		rc = efx_ef10_get_warm_boot_count(efx);
		if (rc >= 0)
			break;
		if (++i == 5)
			goto fail2;
		ssleep(1);
	}
	nic_data->warm_boot_count = rc;

	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;

670 671
	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;

672 673 674 675 676 677 678 679 680 681 682
	/* In case we're recovering from a crash (kexec), we want to
	 * cancel any outstanding request by the previous user of this
	 * function.  We send a special message using the least
	 * significant bits of the 'high' (doorbell) register.
	 */
	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);

	rc = efx_mcdi_init(efx);
	if (rc)
		goto fail2;

683 684
	mutex_init(&nic_data->udp_tunnels_lock);

685 686 687 688 689 690 691 692 693 694
	/* Reset (most) configuration for this function */
	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
	if (rc)
		goto fail3;

	/* Enable event logging */
	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
	if (rc)
		goto fail3;

695 696
	rc = device_create_file(&efx->pci_dev->dev,
				&dev_attr_link_control_flag);
697 698 699
	if (rc)
		goto fail3;

700 701 702 703 704 705 706 707
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
	if (rc)
		goto fail4;

	rc = efx_ef10_get_pf_index(efx);
	if (rc)
		goto fail5;

708
	rc = efx_ef10_init_datapath_caps(efx);
709
	if (rc < 0)
710
		goto fail5;
711

712 713 714 715 716 717 718 719 720 721 722 723 724 725
	/* We can have one VI for each vi_stride-byte region.
	 * However, until we use TX option descriptors we need two TX queues
	 * per channel.
	 */
	efx->max_channels = min_t(unsigned int,
				  EFX_MAX_CHANNELS,
				  efx_ef10_mem_map_size(efx) /
				  (efx->vi_stride * EFX_TXQ_TYPES));
	efx->max_tx_channels = efx->max_channels;
	if (WARN_ON(efx->max_channels == 0)) {
		rc = -EIO;
		goto fail5;
	}

726 727 728
	efx->rx_packet_len_offset =
		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;

E
Edward Cree 已提交
729 730 731 732
	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
		efx->net_dev->hw_features |= NETIF_F_RXFCS;

733 734
	rc = efx_mcdi_port_get_number(efx);
	if (rc < 0)
735
		goto fail5;
736 737
	efx->port_num = rc;

738
	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
739
	if (rc)
740
		goto fail5;
741

742
	rc = efx_ef10_get_timer_config(efx);
743
	if (rc < 0)
744
		goto fail5;
745 746

	rc = efx_mcdi_mon_probe(efx);
747
	if (rc && rc != -EPERM)
748
		goto fail5;
749

750 751
	efx_ptp_probe(efx, NULL);

752 753 754 755 756 757 758 759 760 761
#ifdef CONFIG_SFC_SRIOV
	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);

		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
	} else
#endif
		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);

762 763 764 765 766 767 768 769
	INIT_LIST_HEAD(&nic_data->vlan_list);
	mutex_init(&nic_data->vlan_lock);

	/* Add unspecified VID to support VLAN filtering being disabled */
	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
	if (rc)
		goto fail_add_vid_unspec;

770 771 772 773 774 775 776 777
	/* If VLAN filtering is enabled, we need VID 0 to get untagged
	 * traffic.  It is added automatically if 8021q module is loaded,
	 * but we can't rely on it since module may be not loaded.
	 */
	rc = efx_ef10_add_vlan(efx, 0);
	if (rc)
		goto fail_add_vid_0;

778 779
	return 0;

780 781
fail_add_vid_0:
	efx_ef10_cleanup_vlans(efx);
782 783 784 785
fail_add_vid_unspec:
	mutex_destroy(&nic_data->vlan_lock);
	efx_ptp_remove(efx);
	efx_mcdi_mon_remove(efx);
786 787 788 789
fail5:
	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
fail4:
	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
790
fail3:
791 792 793 794 795 796 797 798
	efx_mcdi_detach(efx);

	mutex_lock(&nic_data->udp_tunnels_lock);
	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
	(void)efx_ef10_set_udp_tnl_ports(efx, true);
	mutex_unlock(&nic_data->udp_tunnels_lock);
	mutex_destroy(&nic_data->udp_tunnels_lock);

799 800 801 802 803 804 805 806 807 808 809
	efx_mcdi_fini(efx);
fail2:
	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
fail1:
	kfree(nic_data);
	efx->nic_data = NULL;
	return rc;
}

static int efx_ef10_free_vis(struct efx_nic *efx)
{
810
	MCDI_DECLARE_BUF_ERR(outbuf);
E
Edward Cree 已提交
811 812 813
	size_t outlen;
	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
				    outbuf, sizeof(outbuf), &outlen);
814 815 816 817

	/* -EALREADY means nothing to free, so ignore */
	if (rc == -EALREADY)
		rc = 0;
E
Edward Cree 已提交
818 819 820
	if (rc)
		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
				       rc);
821 822 823
	return rc;
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
#ifdef EFX_USE_PIO

static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
	unsigned int i;
	int rc;

	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);

	for (i = 0; i < nic_data->n_piobufs; i++) {
		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
			       nic_data->piobuf_handle[i]);
		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
				  NULL, 0, NULL);
		WARN_ON(rc);
	}

	nic_data->n_piobufs = 0;
}

static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
	unsigned int i;
	size_t outlen;
	int rc = 0;

	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);

	for (i = 0; i < n; i++) {
857 858 859 860 861 862 863 864 865
		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
					outbuf, sizeof(outbuf), &outlen);
		if (rc) {
			/* Don't display the MC error if we didn't have space
			 * for a VF.
			 */
			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
						       0, outbuf, outlen, rc);
866
			break;
867
		}
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
			rc = -EIO;
			break;
		}
		nic_data->piobuf_handle[i] =
			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
		netif_dbg(efx, probe, efx->net_dev,
			  "allocated PIO buffer %u handle %x\n", i,
			  nic_data->piobuf_handle[i]);
	}

	nic_data->n_piobufs = i;
	if (rc)
		efx_ef10_free_piobufs(efx);
	return rc;
}

static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
E
Edward Cree 已提交
888
	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	unsigned int offset, index;
	int rc;

	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);

	/* Link a buffer to each VI in the write-combining mapping */
	for (index = 0; index < nic_data->n_piobufs; ++index) {
		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
			       nic_data->piobuf_handle[index]);
		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
			       nic_data->pio_write_vi_base + index);
		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
				  NULL, 0, NULL);
		if (rc) {
			netif_err(efx, drv, efx->net_dev,
				  "failed to link VI %u to PIO buffer %u (%d)\n",
				  nic_data->pio_write_vi_base + index, index,
				  rc);
			goto fail;
		}
		netif_dbg(efx, probe, efx->net_dev,
			  "linked VI %u to PIO buffer %u\n",
			  nic_data->pio_write_vi_base + index, index);
	}

	/* Link a buffer to each TX queue */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel) {
			/* We assign the PIO buffers to queues in
			 * reverse order to allow for the following
			 * special case.
			 */
			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
				   tx_queue->channel->channel - 1) *
				  efx_piobuf_size);
928 929
			index = offset / nic_data->piobuf_size;
			offset = offset % nic_data->piobuf_size;
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

			/* When the host page size is 4K, the first
			 * host page in the WC mapping may be within
			 * the same VI page as the last TX queue.  We
			 * can only link one buffer to each VI.
			 */
			if (tx_queue->queue == nic_data->pio_write_vi_base) {
				BUG_ON(index != 0);
				rc = 0;
			} else {
				MCDI_SET_DWORD(inbuf,
					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
					       nic_data->piobuf_handle[index]);
				MCDI_SET_DWORD(inbuf,
					       LINK_PIOBUF_IN_TXQ_INSTANCE,
					       tx_queue->queue);
				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
						  NULL, 0, NULL);
			}

			if (rc) {
				/* This is non-fatal; the TX path just
				 * won't use PIO for this queue
				 */
				netif_err(efx, drv, efx->net_dev,
					  "failed to link VI %u to PIO buffer %u (%d)\n",
					  tx_queue->queue, index, rc);
				tx_queue->piobuf = NULL;
			} else {
				tx_queue->piobuf =
					nic_data->pio_write_base +
962
					index * efx->vi_stride + offset;
963 964 965 966 967 968 969 970 971 972 973 974 975
				tx_queue->piobuf_offset = offset;
				netif_dbg(efx, probe, efx->net_dev,
					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
					  tx_queue->queue, index,
					  tx_queue->piobuf_offset,
					  tx_queue->piobuf);
			}
		}
	}

	return 0;

fail:
E
Edward Cree 已提交
976 977 978 979
	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
	 */
	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
980 981 982 983 984 985 986 987 988 989
	while (index--) {
		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
			       nic_data->pio_write_vi_base + index);
		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
			     NULL, 0, NULL);
	}
	return rc;
}

990 991 992 993 994 995 996 997 998 999 1000
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

	/* All our existing PIO buffers went away */
	efx_for_each_channel(channel, efx)
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->piobuf = NULL;
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
#else /* !EFX_USE_PIO */

static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
	return n == 0 ? 0 : -ENOBUFS;
}

static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
	return 0;
}

static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
}

1017 1018 1019 1020
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
}

1021 1022
#endif /* EFX_USE_PIO */

1023 1024 1025 1026 1027
static void efx_ef10_remove(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
#ifdef CONFIG_SFC_SRIOV
	struct efx_ef10_nic_data *nic_data_pf;
	struct pci_dev *pci_dev_pf;
	struct efx_nic *efx_pf;
	struct ef10_vf *vf;

	if (efx->pci_dev->is_virtfn) {
		pci_dev_pf = efx->pci_dev->physfn;
		if (pci_dev_pf) {
			efx_pf = pci_get_drvdata(pci_dev_pf);
			nic_data_pf = efx_pf->nic_data;
			vf = nic_data_pf->vf + nic_data->vf_index;
			vf->efx = NULL;
		} else
			netif_info(efx, drv, efx->net_dev,
				   "Could not get the PF id from VF\n");
	}
#endif

1047 1048 1049
	efx_ef10_cleanup_vlans(efx);
	mutex_destroy(&nic_data->vlan_lock);

1050 1051
	efx_ptp_remove(efx);

1052 1053 1054 1055
	efx_mcdi_mon_remove(efx);

	efx_ef10_rx_free_indir_table(efx);

1056 1057 1058
	if (nic_data->wc_membase)
		iounmap(nic_data->wc_membase);

1059 1060 1061
	rc = efx_ef10_free_vis(efx);
	WARN_ON(rc != 0);

1062 1063 1064
	if (!nic_data->must_restore_piobufs)
		efx_ef10_free_piobufs(efx);

1065 1066 1067
	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);

1068 1069 1070 1071 1072 1073 1074 1075 1076
	efx_mcdi_detach(efx);

	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
	mutex_lock(&nic_data->udp_tunnels_lock);
	(void)efx_ef10_set_udp_tnl_ports(efx, true);
	mutex_unlock(&nic_data->udp_tunnels_lock);

	mutex_destroy(&nic_data->udp_tunnels_lock);

1077 1078 1079 1080 1081
	efx_mcdi_fini(efx);
	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
	kfree(nic_data);
}

1082 1083 1084 1085 1086
static int efx_ef10_probe_pf(struct efx_nic *efx)
{
	return efx_ef10_probe(efx);
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
			    u32 *port_flags, u32 *vadaptor_flags,
			    unsigned int *vlan_tags)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
	size_t outlen;
	int rc;

	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
			       port_id);

		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
				  outbuf, sizeof(outbuf), &outlen);
		if (rc)
			return rc;

		if (outlen < sizeof(outbuf)) {
			rc = -EIO;
			return rc;
		}
	}

	if (port_flags)
		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
	if (vadaptor_flags)
		*vadaptor_flags =
			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
	if (vlan_tags)
		*vlan_tags =
			MCDI_DWORD(outbuf,
				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);

	return 0;
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);

	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);

	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

int efx_ef10_vport_add_mac(struct efx_nic *efx,
			   unsigned int port_id, u8 *mac)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);

	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);

	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
			    sizeof(inbuf), NULL, 0, NULL);
}

int efx_ef10_vport_del_mac(struct efx_nic *efx,
			   unsigned int port_id, u8 *mac)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);

	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);

	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
			    sizeof(inbuf), NULL, 0, NULL);
}

1168 1169 1170 1171
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_probe_vf(struct efx_nic *efx)
{
	int rc;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	struct pci_dev *pci_dev_pf;

	/* If the parent PF has no VF data structure, it doesn't know about this
	 * VF so fail probe.  The VF needs to be re-created.  This can happen
	 * if the PF driver is unloaded while the VF is assigned to a guest.
	 */
	pci_dev_pf = efx->pci_dev->physfn;
	if (pci_dev_pf) {
		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;

		if (!nic_data_pf->vf) {
			netif_info(efx, drv, efx->net_dev,
				   "The VF cannot link to its parent PF; "
				   "please destroy and re-create the VF\n");
			return -EBUSY;
		}
	}
1190 1191 1192 1193 1194 1195 1196 1197 1198

	rc = efx_ef10_probe(efx);
	if (rc)
		return rc;

	rc = efx_ef10_get_vf_index(efx);
	if (rc)
		goto fail;

1199 1200 1201 1202 1203 1204 1205 1206
	if (efx->pci_dev->is_virtfn) {
		if (efx->pci_dev->physfn) {
			struct efx_nic *efx_pf =
				pci_get_drvdata(efx->pci_dev->physfn);
			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
			struct efx_ef10_nic_data *nic_data = efx->nic_data;

			nic_data_p->vf[nic_data->vf_index].efx = efx;
1207 1208
			nic_data_p->vf[nic_data->vf_index].pci_dev =
				efx->pci_dev;
1209 1210 1211 1212 1213
		} else
			netif_info(efx, drv, efx->net_dev,
				   "Could not get the PF id from VF\n");
	}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	return 0;

fail:
	efx_ef10_remove(efx);
	return rc;
}
#else
static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
{
	return 0;
}
#endif

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
static int efx_ef10_alloc_vis(struct efx_nic *efx,
			      unsigned int min_vis, unsigned int max_vis)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);
	if (rc != 0)
		return rc;

	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
		return -EIO;

	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));

	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
	return 0;
}

1254 1255 1256
/* Note that the failure path of this function does not free
 * resources, as this will be done by efx_ef10_remove().
 */
1257 1258
static int efx_ef10_dimension_resources(struct efx_nic *efx)
{
1259 1260
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	unsigned int uc_mem_map_size, wc_mem_map_size;
1261 1262 1263
	unsigned int min_vis = max(EFX_TXQ_TYPES,
				   efx_separate_tx_channels ? 2 : 1);
	unsigned int channel_vis, pio_write_vi_base, max_vis;
1264 1265 1266
	void __iomem *membase;
	int rc;

1267
	channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1268

1269 1270 1271 1272 1273 1274 1275 1276
#ifdef EFX_USE_PIO
	/* Try to allocate PIO buffers if wanted and if the full
	 * number of PIO buffers would be sufficient to allocate one
	 * copy-buffer per TX channel.  Failure is non-fatal, as there
	 * are only a small number of PIO buffers shared between all
	 * functions of the controller.
	 */
	if (efx_piobuf_size != 0 &&
1277
	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1278 1279 1280
	    efx->n_tx_channels) {
		unsigned int n_piobufs =
			DIV_ROUND_UP(efx->n_tx_channels,
1281
				     nic_data->piobuf_size / efx_piobuf_size);
1282 1283

		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1284 1285 1286 1287 1288 1289 1290
		if (rc == -ENOSPC)
			netif_dbg(efx, probe, efx->net_dev,
				  "out of PIO buffers; cannot allocate more\n");
		else if (rc == -EPERM)
			netif_dbg(efx, probe, efx->net_dev,
				  "not permitted to allocate PIO buffers\n");
		else if (rc)
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
			netif_err(efx, probe, efx->net_dev,
				  "failed to allocate PIO buffers (%d)\n", rc);
		else
			netif_dbg(efx, probe, efx->net_dev,
				  "allocated %u PIO buffers\n", n_piobufs);
	}
#else
	nic_data->n_piobufs = 0;
#endif

	/* PIO buffers should be mapped with write-combining enabled,
	 * and we want to make single UC and WC mappings rather than
	 * several of each (in fact that's the only option if host
	 * page size is >4K).  So we may allocate some extra VIs just
	 * for writing PIO buffers through.
1306
	 *
1307
	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1308 1309
	 * first 4K of the next VI.  Then the WC mapping begins with
	 * the remainder of this last VI.
1310
	 */
1311
	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1312 1313
				     ER_DZ_TX_PIOBUF);
	if (nic_data->n_piobufs) {
1314 1315 1316
		/* pio_write_vi_base rounds down to give the number of complete
		 * VIs inside the UC mapping.
		 */
1317
		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1318 1319
		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
					       nic_data->n_piobufs) *
1320
					      efx->vi_stride) -
1321 1322 1323 1324 1325
				   uc_mem_map_size);
		max_vis = pio_write_vi_base + nic_data->n_piobufs;
	} else {
		pio_write_vi_base = 0;
		wc_mem_map_size = 0;
1326
		max_vis = channel_vis;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	}

	/* In case the last attached driver failed to free VIs, do it now */
	rc = efx_ef10_free_vis(efx);
	if (rc != 0)
		return rc;

	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
	if (rc != 0)
		return rc;

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	if (nic_data->n_allocated_vis < channel_vis) {
		netif_info(efx, drv, efx->net_dev,
			   "Could not allocate enough VIs to satisfy RSS"
			   " requirements. Performance may not be optimal.\n");
		/* We didn't get the VIs to populate our channels.
		 * We could keep what we got but then we'd have more
		 * interrupts than we need.
		 * Instead calculate new max_channels and restart
		 */
		efx->max_channels = nic_data->n_allocated_vis;
		efx->max_tx_channels =
			nic_data->n_allocated_vis / EFX_TXQ_TYPES;

		efx_ef10_free_vis(efx);
		return -EAGAIN;
	}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	/* If we didn't get enough VIs to map all the PIO buffers, free the
	 * PIO buffers
	 */
	if (nic_data->n_piobufs &&
	    nic_data->n_allocated_vis <
	    pio_write_vi_base + nic_data->n_piobufs) {
		netif_dbg(efx, probe, efx->net_dev,
			  "%u VIs are not sufficient to map %u PIO buffers\n",
			  nic_data->n_allocated_vis, nic_data->n_piobufs);
		efx_ef10_free_piobufs(efx);
	}

	/* Shrink the original UC mapping of the memory BAR */
	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
	if (!membase) {
		netif_err(efx, probe, efx->net_dev,
			  "could not shrink memory BAR to %x\n",
			  uc_mem_map_size);
		return -ENOMEM;
	}
	iounmap(efx->membase);
	efx->membase = membase;

	/* Set up the WC mapping if needed */
	if (wc_mem_map_size) {
		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
						  uc_mem_map_size,
						  wc_mem_map_size);
		if (!nic_data->wc_membase) {
			netif_err(efx, probe, efx->net_dev,
				  "could not allocate WC mapping of size %x\n",
				  wc_mem_map_size);
			return -ENOMEM;
		}
		nic_data->pio_write_vi_base = pio_write_vi_base;
		nic_data->pio_write_base =
			nic_data->wc_membase +
1392
			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
			 uc_mem_map_size);

		rc = efx_ef10_link_piobufs(efx);
		if (rc)
			efx_ef10_free_piobufs(efx);
	}

	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
		  &efx->membase_phys, efx->membase, uc_mem_map_size,
		  nic_data->wc_membase, wc_mem_map_size);

	return 0;
1406 1407 1408 1409 1410 1411 1412
}

static int efx_ef10_init_nic(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;

1413 1414 1415 1416 1417 1418 1419
	if (nic_data->must_check_datapath_caps) {
		rc = efx_ef10_init_datapath_caps(efx);
		if (rc)
			return rc;
		nic_data->must_check_datapath_caps = false;
	}

1420 1421 1422 1423 1424 1425 1426 1427 1428
	if (nic_data->must_realloc_vis) {
		/* We cannot let the number of VIs change now */
		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
					nic_data->n_allocated_vis);
		if (rc)
			return rc;
		nic_data->must_realloc_vis = false;
	}

1429 1430 1431 1432 1433 1434 1435 1436
	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
		if (rc == 0) {
			rc = efx_ef10_link_piobufs(efx);
			if (rc)
				efx_ef10_free_piobufs(efx);
		}

1437 1438 1439 1440 1441 1442 1443 1444
		/* Log an error on failure, but this is non-fatal.
		 * Permission errors are less important - we've presumably
		 * had the PIO buffer licence removed.
		 */
		if (rc == -EPERM)
			netif_dbg(efx, drv, efx->net_dev,
				  "not permitted to restore PIO buffers\n");
		else if (rc)
1445 1446 1447 1448 1449
			netif_err(efx, drv, efx->net_dev,
				  "failed to restore PIO buffers (%d)\n", rc);
		nic_data->must_restore_piobufs = false;
	}

1450
	/* don't fail init if RSS setup doesn't work */
1451
	rc = efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table, NULL);
1452
	efx->rss_active = (rc == 0);
1453

1454 1455 1456
	return 0;
}

1457 1458 1459
static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1460 1461 1462
#ifdef CONFIG_SFC_SRIOV
	unsigned int i;
#endif
1463 1464 1465 1466 1467

	/* All our allocations have been reset */
	nic_data->must_realloc_vis = true;
	nic_data->must_restore_filters = true;
	nic_data->must_restore_piobufs = true;
1468
	efx_ef10_forget_old_piobufs(efx);
1469
	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1470 1471 1472 1473 1474 1475 1476 1477 1478

	/* Driver-created vswitches and vports must be re-created */
	nic_data->must_probe_vswitching = true;
	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
#ifdef CONFIG_SFC_SRIOV
	if (nic_data->vf)
		for (i = 0; i < efx->vf_count; i++)
			nic_data->vf[i].vport_id = 0;
#endif
1479 1480
}

1481 1482 1483 1484 1485 1486 1487 1488
static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
{
	if (reason == RESET_TYPE_MC_FAILURE)
		return RESET_TYPE_DATAPATH;

	return efx_mcdi_map_reset_reason(reason);
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
static int efx_ef10_map_reset_flags(u32 *flags)
{
	enum {
		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
				   ETH_RESET_SHARED_SHIFT),
		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
				 ETH_RESET_SHARED_SHIFT)
	};

	/* We assume for now that our PCI function is permitted to
	 * reset everything.
	 */

	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
		*flags &= ~EF10_RESET_MC;
		return RESET_TYPE_WORLD;
	}

	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
		*flags &= ~EF10_RESET_PORT;
		return RESET_TYPE_ALL;
	}

	/* no invisible reset implemented */

	return -EINVAL;
}

1519 1520 1521 1522
static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
{
	int rc = efx_mcdi_reset(efx, reset_type);

1523 1524 1525 1526 1527 1528
	/* Unprivileged functions return -EPERM, but need to return success
	 * here so that the datapath is brought back up.
	 */
	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
		rc = 0;

1529 1530 1531
	/* If it was a port reset, trigger reallocation of MC resources.
	 * Note that on an MC reset nothing needs to be done now because we'll
	 * detect the MC reset later and handle it then.
1532 1533
	 * For an FLR, we never get an MC reset event, but the MC has reset all
	 * resources assigned to us, so we have to trigger reallocation now.
1534
	 */
1535 1536
	if ((reset_type == RESET_TYPE_ALL ||
	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1537 1538 1539 1540
		efx_ef10_reset_mc_allocations(efx);
	return rc;
}

1541 1542 1543 1544 1545 1546 1547 1548
#define EF10_DMA_STAT(ext_name, mcdi_name)			\
	[EF10_STAT_ ## ext_name] =				\
	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
	[EF10_STAT_ ## int_name] =				\
	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_OTHER_STAT(ext_name)				\
	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1549 1550
#define GENERIC_SW_STAT(ext_name)				\
	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1551 1552

static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
	EF10_OTHER_STAT(port_rx_good_bytes),
	EF10_OTHER_STAT(port_rx_bad_bytes),
	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1594 1595
	GENERIC_SW_STAT(rx_nodesc_trunc),
	GENERIC_SW_STAT(rx_noskb_drops),
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1626 1627
};

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
			       (1ULL << EF10_STAT_port_tx_packets) |	\
			       (1ULL << EF10_STAT_port_tx_pause) |	\
			       (1ULL << EF10_STAT_port_tx_unicast) |	\
			       (1ULL << EF10_STAT_port_tx_multicast) |	\
			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
			       (1ULL << EF10_STAT_port_rx_bytes) |	\
			       (1ULL <<                                 \
				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
			       (1ULL << EF10_STAT_port_rx_packets) |	\
			       (1ULL << EF10_STAT_port_rx_good) |	\
			       (1ULL << EF10_STAT_port_rx_bad) |	\
			       (1ULL << EF10_STAT_port_rx_pause) |	\
			       (1ULL << EF10_STAT_port_rx_control) |	\
			       (1ULL << EF10_STAT_port_rx_unicast) |	\
			       (1ULL << EF10_STAT_port_rx_multicast) |	\
			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
			       (1ULL << EF10_STAT_port_rx_lt64) |	\
			       (1ULL << EF10_STAT_port_rx_64) |		\
			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
			       (1ULL << EF10_STAT_port_rx_overflow) |	\
			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1659 1660
			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1661

1662 1663 1664 1665
/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
 * For a 10G/40G switchable port we do not expose these because they might
 * not include all the packets they should.
 * On 8000 series NICs these statistics are always provided.
1666
 */
1667 1668 1669 1670 1671 1672 1673 1674 1675
#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
				 (1ULL << EF10_STAT_port_tx_lt64) |	\
				 (1ULL << EF10_STAT_port_tx_64) |	\
				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1676 1677 1678 1679 1680

/* These statistics are only provided by the 40G MAC.  For a 10G/40G
 * switchable port we do expose these because the errors will otherwise
 * be silent.
 */
1681 1682
#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
				  (1ULL << EF10_STAT_port_rx_length_error))
1683

1684 1685 1686 1687
/* These statistics are only provided if the firmware supports the
 * capability PM_AND_RXDP_COUNTERS.
 */
#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1700

1701
static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1702
{
1703
	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1704
	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1705
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1706

1707 1708 1709 1710
	if (!(efx->mcdi->fn_flags &
	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
		return 0;

1711
	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1712
		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1713 1714 1715 1716 1717
		/* 8000 series have everything even at 40G */
		if (nic_data->datapath_caps2 &
		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
	} else {
1718
		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1719
	}
1720 1721 1722 1723 1724

	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;

1725 1726 1727 1728 1729
	return raw_mask;
}

static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
{
1730
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1731 1732 1733 1734
	u64 raw_mask[2];

	raw_mask[0] = efx_ef10_raw_stat_mask(efx);

1735 1736 1737 1738 1739 1740 1741 1742
	/* Only show vadaptor stats when EVB capability is present */
	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
		raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
	} else {
		raw_mask[1] = 0;
	}
1743 1744

#if BITS_PER_LONG == 64
1745
	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1746 1747
	mask[0] = raw_mask[0];
	mask[1] = raw_mask[1];
1748
#else
1749
	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1750 1751 1752
	mask[0] = raw_mask[0] & 0xffffffff;
	mask[1] = raw_mask[0] >> 32;
	mask[2] = raw_mask[1] & 0xffffffff;
1753
#endif
1754 1755 1756 1757
}

static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
{
1758 1759 1760
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);

	efx_ef10_get_stat_mask(efx, mask);
1761
	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1762
				      mask, names);
1763 1764
}

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
					   struct rtnl_link_stats64 *core_stats)
{
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	u64 *stats = nic_data->stats;
	size_t stats_count = 0, index;

	efx_ef10_get_stat_mask(efx, mask);

	if (full_stats) {
		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
			if (efx_ef10_stat_desc[index].name) {
				*full_stats++ = stats[index];
				++stats_count;
			}
		}
	}

1784 1785 1786 1787 1788 1789
	if (!core_stats)
		return stats_count;

	if (nic_data->datapath_caps &
			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
		/* Use vadaptor stats. */
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
					 stats[EF10_STAT_rx_multicast] +
					 stats[EF10_STAT_rx_broadcast];
		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
					 stats[EF10_STAT_tx_multicast] +
					 stats[EF10_STAT_tx_broadcast];
		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
				       stats[EF10_STAT_rx_multicast_bytes] +
				       stats[EF10_STAT_rx_broadcast_bytes];
		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
				       stats[EF10_STAT_tx_multicast_bytes] +
				       stats[EF10_STAT_tx_broadcast_bytes];
		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1803
					 stats[GENERIC_STAT_rx_noskb_drops];
1804 1805 1806 1807 1808
		core_stats->multicast = stats[EF10_STAT_rx_multicast];
		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
		core_stats->rx_errors = core_stats->rx_crc_errors;
		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	} else {
		/* Use port stats. */
		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
					 stats[GENERIC_STAT_rx_nodesc_trunc] +
					 stats[GENERIC_STAT_rx_noskb_drops];
		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
		core_stats->rx_length_errors =
				stats[EF10_STAT_port_rx_gtjumbo] +
				stats[EF10_STAT_port_rx_length_error];
		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
		core_stats->rx_frame_errors =
				stats[EF10_STAT_port_rx_align_error];
		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
		core_stats->rx_errors = (core_stats->rx_length_errors +
					 core_stats->rx_crc_errors +
					 core_stats->rx_frame_errors);
1829 1830 1831 1832 1833 1834
	}

	return stats_count;
}

static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1835 1836
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1837
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1838 1839 1840 1841
	__le64 generation_start, generation_end;
	u64 *stats = nic_data->stats;
	__le64 *dma_stats;

1842 1843
	efx_ef10_get_stat_mask(efx, mask);

1844 1845 1846 1847 1848 1849
	dma_stats = efx->stats_buffer.addr;

	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
		return 0;
	rmb();
1850
	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1851
			     stats, efx->stats_buffer.addr, false);
1852
	rmb();
1853 1854 1855 1856 1857
	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
	if (generation_end != generation_start)
		return -EAGAIN;

	/* Update derived statistics */
1858 1859 1860 1861 1862 1863 1864
	efx_nic_fix_nodesc_drop_stat(efx,
				     &stats[EF10_STAT_port_rx_nodesc_drops]);
	stats[EF10_STAT_port_rx_good_bytes] =
		stats[EF10_STAT_port_rx_bytes] -
		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1865
	efx_update_sw_stats(efx, stats);
1866 1867 1868 1869
	return 0;
}


1870 1871
static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
				       struct rtnl_link_stats64 *core_stats)
1872 1873 1874 1875 1876 1877 1878
{
	int retry;

	/* If we're unlucky enough to read statistics during the DMA, wait
	 * up to 10ms for it to finish (typically takes <500us)
	 */
	for (retry = 0; retry < 100; ++retry) {
1879
		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1880 1881 1882 1883
			break;
		udelay(100);
	}

1884 1885
	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
}
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
	__le64 generation_start, generation_end;
	u64 *stats = nic_data->stats;
	u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
	struct efx_buffer stats_buf;
	__le64 *dma_stats;
	int rc;

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	spin_unlock_bh(&efx->stats_lock);

	if (in_interrupt()) {
		/* If in atomic context, cannot update stats.  Just update the
		 * software stats and return so the caller can continue.
		 */
		spin_lock_bh(&efx->stats_lock);
		efx_update_sw_stats(efx, stats);
		return 0;
	}

1910 1911 1912
	efx_ef10_get_stat_mask(efx, mask);

	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1913 1914
	if (rc) {
		spin_lock_bh(&efx->stats_lock);
1915
		return rc;
1916
	}
1917 1918 1919 1920 1921 1922

	dma_stats = stats_buf.addr;
	dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;

	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1923
			      MAC_STATS_IN_DMA, 1);
1924 1925 1926
	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);

1927 1928
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
				NULL, 0, NULL);
1929
	spin_lock_bh(&efx->stats_lock);
1930 1931 1932 1933 1934
	if (rc) {
		/* Expect ENOENT if DMA queues have not been set up */
		if (rc != -ENOENT || atomic_read(&efx->active_queues))
			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
					       sizeof(inbuf), NULL, 0, rc);
1935
		goto out;
1936
	}
1937 1938

	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1939 1940
	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
		WARN_ON_ONCE(1);
1941
		goto out;
1942
	}
1943 1944 1945 1946 1947 1948 1949 1950
	rmb();
	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
			     stats, stats_buf.addr, false);
	rmb();
	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
	if (generation_end != generation_start) {
		rc = -EAGAIN;
		goto out;
1951 1952
	}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	efx_update_sw_stats(efx, stats);
out:
	efx_nic_free_buffer(efx, &stats_buf);
	return rc;
}

static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
				       struct rtnl_link_stats64 *core_stats)
{
	if (efx_ef10_try_update_nic_stats_vf(efx))
		return 0;

	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1966 1967 1968 1969 1970
}

static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
1971
	unsigned int mode, usecs;
1972 1973
	efx_dword_t timer_cmd;

1974
	if (channel->irq_moderation_us) {
1975
		mode = 3;
1976
		usecs = channel->irq_moderation_us;
1977 1978
	} else {
		mode = 0;
1979
		usecs = 0;
1980 1981
	}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	if (EFX_EF10_WORKAROUND_61265(efx)) {
		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
		unsigned int ns = usecs * 1000;

		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
			       channel->channel);
		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);

		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
				   inbuf, sizeof(inbuf), 0, NULL, 0);
	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);

1997 1998 1999
		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
				     EFE_DD_EVQ_IND_TIMER_FLAGS,
				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
2000
				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2001 2002 2003
		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
				channel->channel);
	} else {
2004 2005
		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);

2006
		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2007
				     ERF_DZ_TC_TIMER_VAL, ticks);
2008 2009 2010 2011 2012
		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
				channel->channel);
	}
}

2013 2014 2015 2016 2017 2018 2019 2020
static void efx_ef10_get_wol_vf(struct efx_nic *efx,
				struct ethtool_wolinfo *wol) {}

static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
{
	return -EOPNOTSUPP;
}

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
{
	wol->supported = 0;
	wol->wolopts = 0;
	memset(&wol->sopass, 0, sizeof(wol->sopass));
}

static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
{
	if (type != 0)
		return -EINVAL;
	return 0;
}

static void efx_ef10_mcdi_request(struct efx_nic *efx,
				  const efx_dword_t *hdr, size_t hdr_len,
				  const efx_dword_t *sdu, size_t sdu_len)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	u8 *pdu = nic_data->mcdi_buf.addr;

	memcpy(pdu, hdr, hdr_len);
	memcpy(pdu + hdr_len, sdu, sdu_len);
	wmb();

	/* The hardware provides 'low' and 'high' (doorbell) registers
	 * for passing the 64-bit address of an MCDI request to
	 * firmware.  However the dwords are swapped by firmware.  The
	 * least significant bits of the doorbell are then 0 for all
	 * MCDI requests due to alignment.
	 */
	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
		    ER_DZ_MC_DB_LWRD);
	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
		    ER_DZ_MC_DB_HWRD);
}

static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;

	rmb();
	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
}

static void
efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
			    size_t offset, size_t outlen)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	const u8 *pdu = nic_data->mcdi_buf.addr;

	memcpy(outbuf, pdu + offset, outlen);
}

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	/* All our allocations have been reset */
	efx_ef10_reset_mc_allocations(efx);

	/* The datapath firmware might have been changed */
	nic_data->must_check_datapath_caps = true;

	/* MAC statistics have been cleared on the NIC; clear the local
	 * statistic that we update with efx_update_diff_stat().
	 */
	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;

	rc = efx_ef10_get_warm_boot_count(efx);
	if (rc < 0) {
		/* The firmware is presumably in the process of
		 * rebooting.  However, we are supposed to report each
		 * reboot just once, so we must only do that once we
		 * can read and store the updated warm boot count.
		 */
		return 0;
	}

	if (rc == nic_data->warm_boot_count)
		return 0;

	nic_data->warm_boot_count = rc;
2112
	efx_ef10_mcdi_reboot_detected(efx);
2113

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	return -EIO;
}

/* Handle an MSI interrupt
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
{
	struct efx_msi_context *context = dev_id;
	struct efx_nic *efx = context->efx;

	netif_vdbg(efx, intr, efx->net_dev,
		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());

2132
	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
		/* Note test interrupts */
		if (context->index == efx->irq_level)
			efx->last_irq_cpu = raw_smp_processor_id();

		/* Schedule processing of the channel */
		efx_schedule_channel_irq(efx->channel[context->index]);
	}

	return IRQ_HANDLED;
}

static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
{
	struct efx_nic *efx = dev_id;
2147
	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;

	/* Read the ISR which also ACKs the interrupts */
	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);

	if (queues == 0)
		return IRQ_NONE;

	if (likely(soft_enabled)) {
		/* Note test interrupts */
		if (queues & (1U << efx->irq_level))
			efx->last_irq_cpu = raw_smp_processor_id();

		efx_for_each_channel(channel, efx) {
			if (queues & 1)
				efx_schedule_channel_irq(channel);
			queues >>= 1;
		}
	}

	netif_vdbg(efx, intr, efx->net_dev,
		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));

	return IRQ_HANDLED;
}

2178
static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2179 2180 2181
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);

2182 2183 2184 2185
	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
				    NULL) == 0)
		return -ENOTSUPP;

2186 2187 2188
	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);

	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2189
	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
			    inbuf, sizeof(inbuf), NULL, 0, NULL);
}

static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
{
	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
				    (tx_queue->ptr_mask + 1) *
				    sizeof(efx_qword_t),
				    GFP_KERNEL);
}

/* This writes to the TX_DESC_WPTR and also pushes data */
static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
					 const efx_qword_t *txd)
{
	unsigned int write_ptr;
	efx_oword_t reg;

	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
	reg.qword[0] = *txd;
	efx_writeo_page(tx_queue->efx, &reg,
			ER_DZ_TX_DESC_UPD, tx_queue->queue);
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
 */
static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
				struct sk_buff *skb,
				bool *data_mapped)
{
	struct efx_tx_buffer *buffer;
	struct tcphdr *tcp;
	struct iphdr *ip;

	u16 ipv4_id;
	u32 seqnum;
	u32 mss;

2229
	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

	mss = skb_shinfo(skb)->gso_size;

	if (unlikely(mss < 4)) {
		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
		return -EINVAL;
	}

	ip = ip_hdr(skb);
	if (ip->version == 4) {
		/* Modify IPv4 header if needed. */
		ip->tot_len = 0;
		ip->check = 0;
E
Edward Cree 已提交
2243
		ipv4_id = ntohs(ip->id);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	} else {
		/* Modify IPv6 header if needed. */
		struct ipv6hdr *ipv6 = ipv6_hdr(skb);

		ipv6->payload_len = 0;
		ipv4_id = 0;
	}

	tcp = tcp_hdr(skb);
	seqnum = ntohl(tcp->seq);

	buffer = efx_tx_queue_get_insert_buffer(tx_queue);

	buffer->flags = EFX_TX_BUF_OPTION;
	buffer->len = 0;
	buffer->unmap_len = 0;
	EFX_POPULATE_QWORD_5(buffer->option,
			ESF_DZ_TX_DESC_IS_OPT, 1,
			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
			ESF_DZ_TX_TSO_OPTION_TYPE,
			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
			);
	++tx_queue->insert_count;

	buffer = efx_tx_queue_get_insert_buffer(tx_queue);

	buffer->flags = EFX_TX_BUF_OPTION;
	buffer->len = 0;
	buffer->unmap_len = 0;
	EFX_POPULATE_QWORD_4(buffer->option,
			ESF_DZ_TX_DESC_IS_OPT, 1,
			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
			ESF_DZ_TX_TSO_OPTION_TYPE,
			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
			ESF_DZ_TX_TSO_TCP_MSS, mss
			);
	++tx_queue->insert_count;

	return 0;
}

E
Edward Cree 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
static u32 efx_ef10_tso_versions(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	u32 tso_versions = 0;

	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
		tso_versions |= BIT(1);
	if (nic_data->datapath_caps2 &
	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
		tso_versions |= BIT(2);
	return tso_versions;
}

2301 2302 2303 2304 2305 2306 2307 2308
static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
						       EFX_BUF_SIZE));
	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
	struct efx_channel *channel = tx_queue->channel;
	struct efx_nic *efx = tx_queue->efx;
2309
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2310
	bool tso_v2 = false;
2311
	size_t inlen;
2312 2313 2314 2315
	dma_addr_t dma_addr;
	efx_qword_t *txd;
	int rc;
	int i;
2316
	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2317

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	/* TSOv2 is a limited resource that can only be configured on a limited
	 * number of queues. TSO without checksum offload is not really a thing,
	 * so we only enable it for those queues.
	 */
	if (csum_offload && (nic_data->datapath_caps2 &
			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))) {
		tso_v2 = true;
		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
				channel->channel);
	}

2329 2330 2331 2332 2333
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2334
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347

	dma_addr = tx_queue->txd.buf.dma_addr;

	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
		  tx_queue->queue, entries, (u64)dma_addr);

	for (i = 0; i < entries; ++i) {
		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
		dma_addr += EFX_BUF_SIZE;
	}

	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	do {
		MCDI_POPULATE_DWORD_3(inbuf, INIT_TXQ_IN_FLAGS,
				/* This flag was removed from mcdi_pcol.h for
				 * the non-_EXT version of INIT_TXQ.  However,
				 * firmware still honours it.
				 */
				INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
				INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
				INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);

		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
					NULL, 0, NULL);
		if (rc == -ENOSPC && tso_v2) {
			/* Retry without TSOv2 if we're short on contexts. */
			tso_v2 = false;
			netif_warn(efx, probe, efx->net_dev,
				   "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
		} else if (rc) {
			efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
					       MC_CMD_INIT_TXQ_EXT_IN_LEN,
					       NULL, 0, rc);
			goto fail;
		}
	} while (rc);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

	/* A previous user of this TX queue might have set us up the
	 * bomb by writing a descriptor to the TX push collector but
	 * not the doorbell.  (Each collector belongs to a port, not a
	 * queue or function, so cannot easily be reset.)  We must
	 * attempt to push a no-op descriptor in its place.
	 */
	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
	tx_queue->insert_count = 1;
	txd = efx_tx_desc(tx_queue, 0);
	EFX_POPULATE_QWORD_4(*txd,
			     ESF_DZ_TX_DESC_IS_OPT, true,
			     ESF_DZ_TX_OPTION_TYPE,
			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
	tx_queue->write_count = 1;
2389

2390 2391 2392 2393 2394
	if (tso_v2) {
		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
		tx_queue->tso_version = 2;
	} else if (nic_data->datapath_caps &
			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2395 2396 2397
		tx_queue->tso_version = 1;
	}

2398 2399 2400 2401 2402 2403
	wmb();
	efx_ef10_push_tx_desc(tx_queue, txd);

	return;

fail:
2404 2405
	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
		    tx_queue->queue);
2406 2407 2408 2409 2410
}

static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2411
	MCDI_DECLARE_BUF_ERR(outbuf);
2412 2413 2414 2415 2416 2417 2418
	struct efx_nic *efx = tx_queue->efx;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
		       tx_queue->queue);

E
Edward Cree 已提交
2419
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2420 2421 2422 2423 2424 2425 2426 2427
			  outbuf, sizeof(outbuf), &outlen);

	if (rc && rc != -EALREADY)
		goto fail;

	return;

fail:
E
Edward Cree 已提交
2428 2429
	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
			       outbuf, outlen, rc);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
}

static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
{
	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned int write_ptr;
	efx_dword_t reg;

	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
	efx_writed_page(tx_queue->efx, &reg,
			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff

static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
					  dma_addr_t dma_addr, unsigned int len)
{
	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
		/* If we need to break across multiple descriptors we should
		 * stop at a page boundary. This assumes the length limit is
		 * greater than the page size.
		 */
		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;

		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
	}

	return len;
}

2468 2469 2470 2471 2472 2473 2474
static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
{
	unsigned int old_write_count = tx_queue->write_count;
	struct efx_tx_buffer *buffer;
	unsigned int write_ptr;
	efx_qword_t *txd;

2475 2476 2477
	tx_queue->xmit_more_available = false;
	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
		return;
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

	do {
		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
		buffer = &tx_queue->buffer[write_ptr];
		txd = efx_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
		if (buffer->flags & EFX_TX_BUF_OPTION) {
			*txd = buffer->option;
E
Edward Cree 已提交
2488 2489 2490
			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
				/* PIO descriptor */
				tx_queue->packet_write_count = tx_queue->write_count;
2491
		} else {
E
Edward Cree 已提交
2492
			tx_queue->packet_write_count = tx_queue->write_count;
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
			EFX_POPULATE_QWORD_3(
				*txd,
				ESF_DZ_TX_KER_CONT,
				buffer->flags & EFX_TX_BUF_CONT,
				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
		}
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */

	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
		txd = efx_tx_desc(tx_queue,
				  old_write_count & tx_queue->ptr_mask);
		efx_ef10_push_tx_desc(tx_queue, txd);
		++tx_queue->pushes;
	} else {
		efx_ef10_notify_tx_desc(tx_queue);
	}
}

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
#define RSS_MODE_HASH_ADDRS	(1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
				 1 << RSS_MODE_HASH_DST_ADDR_LBN)
#define RSS_MODE_HASH_PORTS	(1 << RSS_MODE_HASH_SRC_PORT_LBN |\
				 1 << RSS_MODE_HASH_DST_PORT_LBN)
#define RSS_CONTEXT_FLAGS_DEFAULT	(1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)

static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
{
	/* Firmware had a bug (sfc bug 61952) where it would not actually
	 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
	 * This meant that it would always contain whatever was previously
	 * in the MCDI buffer.  Fortunately, all firmware versions with
	 * this bug have the same default flags value for a newly-allocated
	 * RSS context, and the only time we want to get the flags is just
	 * after allocating.  Moreover, the response has a 32-bit hole
	 * where the context ID would be in the request, so we can use an
	 * overlength buffer in the request and pre-fill the flags field
	 * with what we believe the default to be.  Thus if the firmware
	 * has the bug, it will leave our pre-filled value in the flags
	 * field of the response, and we will get the right answer.
	 *
	 * However, this does mean that this function should NOT be used if
	 * the RSS context flags might not be their defaults - it is ONLY
	 * reliably correct for a newly-allocated RSS context.
	 */
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
	size_t outlen;
	int rc;

	/* Check we have a hole for the context ID */
	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
		       RSS_CONTEXT_FLAGS_DEFAULT);
	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
	if (rc == 0) {
		if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
			rc = -EIO;
		else
			*flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
	}
	return rc;
}

/* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
 * If we fail, we just leave the RSS context at its default hash settings,
 * which is safe but may slightly reduce performance.
 * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
 * just need to set the UDP ports flags (for both IP versions).
 */
static void efx_ef10_set_rss_flags(struct efx_nic *efx, u32 context)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
	u32 flags;

	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);

	if (efx_ef10_get_rss_flags(efx, context, &flags) != 0)
		return;
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, context);
	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2589 2590 2591 2592
	if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
			  NULL, 0, NULL))
		/* Succeeded, so UDP 4-tuple is now enabled */
		efx->rx_hash_udp_4tuple = true;
2593 2594
}

2595 2596
static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
				      bool exclusive, unsigned *context_size)
2597 2598 2599
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2600
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2601 2602
	size_t outlen;
	int rc;
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	u32 alloc_type = exclusive ?
				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
	unsigned rss_spread = exclusive ?
				efx->rss_spread :
				min(rounddown_pow_of_two(efx->rss_spread),
				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);

	if (!exclusive && rss_spread == 1) {
		*context = EFX_EF10_RSS_CONTEXT_INVALID;
		if (context_size)
			*context_size = 1;
		return 0;
	}
2617

J
Jon Cooper 已提交
2618 2619 2620 2621
	if (nic_data->datapath_caps &
	    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
		return -EOPNOTSUPP;

2622
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2623
		       nic_data->vport_id);
2624 2625
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636

	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
		outbuf, sizeof(outbuf), &outlen);
	if (rc != 0)
		return rc;

	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
		return -EIO;

	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);

2637 2638 2639
	if (context_size)
		*context_size = rss_spread;

2640 2641 2642 2643
	if (nic_data->datapath_caps &
	    1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
		efx_ef10_set_rss_flags(efx, *context);

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	return 0;
}

static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
	int rc;

	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
		       context);

	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
	WARN_ON(rc != 0);
}

2660
static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2661
				       const u32 *rx_indir_table, const u8 *key)
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
{
	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
	int i, rc;

	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
		       context);
	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);

2672 2673 2674 2675 2676
	/* This iterates over the length of efx->rx_indir_table, but copies
	 * bytes from rx_indir_table.  That's because the latter is a pointer
	 * rather than an array, but should have the same length.
	 * The efx->rx_hash_key loop below is similar.
	 */
2677 2678 2679
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
		MCDI_PTR(tablebuf,
			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2680
				(u8) rx_indir_table[i];
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
			  sizeof(tablebuf), NULL, 0, NULL);
	if (rc != 0)
		return rc;

	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
		       context);
	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2692
		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
			    sizeof(keybuf), NULL, 0, NULL);
}

static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
}

2707 2708
static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
					      unsigned *context_size)
2709
{
2710
	u32 new_rx_rss_context;
2711
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2712 2713 2714 2715 2716
	int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
					    false, context_size);

	if (rc != 0)
		return rc;
2717

2718 2719 2720 2721 2722
	nic_data->rx_rss_context = new_rx_rss_context;
	nic_data->rx_rss_context_exclusive = false;
	efx_set_default_rx_indir_table(efx);
	return 0;
}
2723

2724
static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2725 2726
						 const u32 *rx_indir_table,
						 const u8 *key)
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;
	u32 new_rx_rss_context;

	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
	    !nic_data->rx_rss_context_exclusive) {
		rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
						true, NULL);
		if (rc == -EOPNOTSUPP)
			return rc;
		else if (rc != 0)
			goto fail1;
	} else {
		new_rx_rss_context = nic_data->rx_rss_context;
2742 2743
	}

2744
	rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2745
					 rx_indir_table, key);
2746
	if (rc != 0)
2747
		goto fail2;
2748

2749 2750 2751 2752 2753 2754 2755
	if (nic_data->rx_rss_context != new_rx_rss_context)
		efx_ef10_rx_free_indir_table(efx);
	nic_data->rx_rss_context = new_rx_rss_context;
	nic_data->rx_rss_context_exclusive = true;
	if (rx_indir_table != efx->rx_indir_table)
		memcpy(efx->rx_indir_table, rx_indir_table,
		       sizeof(efx->rx_indir_table));
2756 2757 2758
	if (key != efx->rx_hash_key)
		memcpy(efx->rx_hash_key, key, efx->type->rx_hash_key_size);

2759
	return 0;
2760

2761 2762 2763 2764
fail2:
	if (new_rx_rss_context != nic_data->rx_rss_context)
		efx_ef10_free_rss_context(efx, new_rx_rss_context);
fail1:
2765
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2766 2767 2768
	return rc;
}

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
	size_t outlen;
	int rc, i;

	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
		     MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);

	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
		return -ENOENT;

	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
		       nic_data->rx_rss_context);
	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
		     MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
			  tablebuf, sizeof(tablebuf), &outlen);
	if (rc != 0)
		return rc;

	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
		return -EIO;

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] = MCDI_PTR(tablebuf,
				RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];

	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
		       nic_data->rx_rss_context);
	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
			  keybuf, sizeof(keybuf), &outlen);
	if (rc != 0)
		return rc;

	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
		return -EIO;

	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
		efx->rx_hash_key[i] = MCDI_PTR(
				keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];

	return 0;
}

2819
static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2820 2821
					  const u32 *rx_indir_table,
					  const u8 *key)
2822 2823 2824 2825 2826 2827
{
	int rc;

	if (efx->rss_spread == 1)
		return 0;

2828 2829 2830 2831
	if (!key)
		key = efx->rx_hash_key;

	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868

	if (rc == -ENOBUFS && !user) {
		unsigned context_size;
		bool mismatch = false;
		size_t i;

		for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
		     i++)
			mismatch = rx_indir_table[i] !=
				ethtool_rxfh_indir_default(i, efx->rss_spread);

		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
		if (rc == 0) {
			if (context_size != efx->rss_spread)
				netif_warn(efx, probe, efx->net_dev,
					   "Could not allocate an exclusive RSS"
					   " context; allocated a shared one of"
					   " different size."
					   " Wanted %u, got %u.\n",
					   efx->rss_spread, context_size);
			else if (mismatch)
				netif_warn(efx, probe, efx->net_dev,
					   "Could not allocate an exclusive RSS"
					   " context; allocated a shared one but"
					   " could not apply custom"
					   " indirection.\n");
			else
				netif_info(efx, probe, efx->net_dev,
					   "Could not allocate an exclusive RSS"
					   " context; allocated a shared one.\n");
		}
	}
	return rc;
}

static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
					  const u32 *rx_indir_table
2869 2870
					  __attribute__ ((unused)),
					  const u8 *key
2871 2872 2873 2874 2875 2876 2877 2878 2879
					  __attribute__ ((unused)))
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	if (user)
		return -EOPNOTSUPP;
	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
		return 0;
	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
}

static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
{
	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
				    (rx_queue->ptr_mask + 1) *
				    sizeof(efx_qword_t),
				    GFP_KERNEL);
}

static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
{
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
						EFX_BUF_SIZE));
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
	struct efx_nic *efx = rx_queue->efx;
2898
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2899
	size_t inlen;
2900 2901 2902
	dma_addr_t dma_addr;
	int rc;
	int i;
2903
	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2904 2905 2906 2907 2908 2909 2910 2911 2912

	rx_queue->scatter_n = 0;
	rx_queue->scatter_len = 0;

	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
		       efx_rx_queue_index(rx_queue));
2913 2914 2915
	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
			      INIT_RXQ_IN_FLAG_PREFIX, 1,
			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2916
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2917
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931

	dma_addr = rx_queue->rxd.buf.dma_addr;

	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);

	for (i = 0; i < entries; ++i) {
		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
		dma_addr += EFX_BUF_SIZE;
	}

	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);

	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2932
			  NULL, 0, NULL);
2933 2934 2935
	if (rc)
		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
			    efx_rx_queue_index(rx_queue));
2936 2937 2938 2939 2940
}

static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2941
	MCDI_DECLARE_BUF_ERR(outbuf);
2942 2943 2944 2945 2946 2947 2948
	struct efx_nic *efx = rx_queue->efx;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
		       efx_rx_queue_index(rx_queue));

E
Edward Cree 已提交
2949
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2950 2951 2952 2953 2954 2955 2956 2957
			  outbuf, sizeof(outbuf), &outlen);

	if (rc && rc != -EALREADY)
		goto fail;

	return;

fail:
E
Edward Cree 已提交
2958 2959
	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
			       outbuf, outlen, rc);
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
}

static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
{
	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
}

/* This creates an entry in the RX descriptor queue */
static inline void
efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = efx_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_2(*rxd,
			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}

static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned int write_count;
	efx_dword_t reg;

	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
	write_count = rx_queue->added_count & ~7;
	if (rx_queue->notified_count == write_count)
		return;

	do
		efx_ef10_build_rx_desc(
			rx_queue,
			rx_queue->notified_count & rx_queue->ptr_mask);
	while (++rx_queue->notified_count != write_count);

	wmb();
	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
			     write_count & rx_queue->ptr_mask);
	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
			efx_rx_queue_index(rx_queue));
}

static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;

static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
{
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
	efx_qword_t event;

	EFX_POPULATE_QWORD_2(event,
			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);

	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);

	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
	 * already swapped the data to little-endian order.
	 */
	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
	       sizeof(efx_qword_t));

	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
			   inbuf, sizeof(inbuf), 0,
			   efx_ef10_rx_defer_refill_complete, 0);
}

static void
efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
				  int rc, efx_dword_t *outbuf,
				  size_t outlen_actual)
{
	/* nothing to do */
}

static int efx_ef10_ev_probe(struct efx_channel *channel)
{
	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
				    (channel->eventq_mask + 1) *
				    sizeof(efx_qword_t),
				    GFP_KERNEL);
}

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
static void efx_ef10_ev_fini(struct efx_channel *channel)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
	MCDI_DECLARE_BUF_ERR(outbuf);
	struct efx_nic *efx = channel->efx;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);

	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);

	if (rc && rc != -EALREADY)
		goto fail;

	return;

fail:
	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
			       outbuf, outlen, rc);
}

3069 3070 3071
static int efx_ef10_ev_init(struct efx_channel *channel)
{
	MCDI_DECLARE_BUF(inbuf,
3072 3073 3074
			 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
						   EFX_BUF_SIZE));
	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3075 3076 3077 3078
	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
	struct efx_nic *efx = channel->efx;
	struct efx_ef10_nic_data *nic_data;
	size_t inlen, outlen;
3079
	unsigned int enabled, implemented;
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	dma_addr_t dma_addr;
	int rc;
	int i;

	nic_data = efx->nic_data;

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);

	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
	/* INIT_EVQ expects index in vector table, not absolute */
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
	if (nic_data->datapath_caps2 &
	    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
		/* Use the new generic approach to specifying event queue
		 * configuration, requesting lower latency or higher throughput.
		 * The options that actually get used appear in the output.
		 */
		MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
				      INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
				      INIT_EVQ_V2_IN_FLAG_TYPE,
				      MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
	} else {
		bool cut_thru = !(nic_data->datapath_caps &
			1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);

		MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
				      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
				      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
				      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
				      INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
	}

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	dma_addr = channel->eventq.buf.dma_addr;
	for (i = 0; i < entries; ++i) {
		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
		dma_addr += EFX_BUF_SIZE;
	}

	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);

	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
			  outbuf, sizeof(outbuf), &outlen);
3132 3133 3134 3135 3136 3137 3138

	if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
		netif_dbg(efx, drv, efx->net_dev,
			  "Channel %d using event queue flags %08x\n",
			  channel->channel,
			  MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));

3139
	/* IRQ return is ignored */
3140 3141
	if (channel->channel || rc)
		return rc;
3142

3143 3144
	/* Successfully created event queue on channel 0 */
	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3145
	if (rc == -ENOSYS) {
3146 3147
		/* GET_WORKAROUNDS was implemented before this workaround,
		 * thus it must be unavailable in this firmware.
3148 3149 3150 3151
		 */
		nic_data->workaround_26807 = false;
		rc = 0;
	} else if (rc) {
3152
		goto fail;
3153 3154 3155 3156 3157 3158
	} else {
		nic_data->workaround_26807 =
			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);

		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
		    !nic_data->workaround_26807) {
3159 3160
			unsigned int flags;

3161 3162
			rc = efx_mcdi_set_workaround(efx,
						     MC_CMD_WORKAROUND_BUG26807,
3163 3164 3165 3166 3167 3168 3169
						     true, &flags);

			if (!rc) {
				if (flags &
				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
					netif_info(efx, drv, efx->net_dev,
						   "other functions on NIC have been reset\n");
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182

					/* With MCFW v4.6.x and earlier, the
					 * boot count will have incremented,
					 * so re-read the warm_boot_count
					 * value now to ensure this function
					 * doesn't think it has changed next
					 * time it checks.
					 */
					rc = efx_ef10_get_warm_boot_count(efx);
					if (rc >= 0) {
						nic_data->warm_boot_count = rc;
						rc = 0;
					}
3183
				}
3184
				nic_data->workaround_26807 = true;
3185
			} else if (rc == -EPERM) {
3186
				rc = 0;
3187
			}
3188
		}
3189 3190 3191 3192
	}

	if (!rc)
		return 0;
3193 3194

fail:
3195 3196
	efx_ef10_ev_fini(channel);
	return rc;
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
}

static void efx_ef10_ev_remove(struct efx_channel *channel)
{
	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
}

static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
					   unsigned int rx_queue_label)
{
	struct efx_nic *efx = rx_queue->efx;

	netif_info(efx, hw, efx->net_dev,
		   "rx event arrived on queue %d labeled as queue %u\n",
		   efx_rx_queue_index(rx_queue), rx_queue_label);

	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}

static void
efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
			     unsigned int actual, unsigned int expected)
{
	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
	struct efx_nic *efx = rx_queue->efx;

	netif_info(efx, hw, efx->net_dev,
		   "dropped %d events (index=%d expected=%d)\n",
		   dropped, actual, expected);

	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}

/* partially received RX was aborted. clean up. */
static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
{
	unsigned int rx_desc_ptr;

	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
		  "scattered RX aborted (dropping %u buffers)\n",
		  rx_queue->scatter_n);

	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;

	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
		      0, EFX_RX_PKT_DISCARD);

	rx_queue->removed_count += rx_queue->scatter_n;
	rx_queue->scatter_n = 0;
	rx_queue->scatter_len = 0;
	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
}

3250 3251 3252 3253 3254 3255 3256 3257
static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
					   unsigned int n_packets,
					   unsigned int rx_encap_hdr,
					   unsigned int rx_l3_class,
					   unsigned int rx_l4_class,
					   const efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
E
Edward Cree 已提交
3258
	bool handled = false;
3259 3260

	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
E
Edward Cree 已提交
3261 3262 3263 3264 3265 3266
		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
			if (!efx->loopback_selftest)
				channel->n_rx_eth_crc_err += n_packets;
			return EFX_RX_PKT_DISCARD;
		}
		handled = true;
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	}
	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
			netdev_WARN(efx->net_dev,
				    "invalid class for RX_IPCKSUM_ERR: event="
				    EFX_QWORD_FMT "\n",
				    EFX_QWORD_VAL(*event));
		if (!efx->loopback_selftest)
			*(rx_encap_hdr ?
			  &channel->n_rx_outer_ip_hdr_chksum_err :
			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
		return 0;
	}
	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
			      (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
			       rx_l4_class != ESE_DZ_L4_CLASS_UDP))))
			netdev_WARN(efx->net_dev,
				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
				    EFX_QWORD_FMT "\n",
				    EFX_QWORD_VAL(*event));
		if (!efx->loopback_selftest)
			*(rx_encap_hdr ?
			  &channel->n_rx_outer_tcp_udp_chksum_err :
			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
		return 0;
	}
	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
		if (unlikely(!rx_encap_hdr))
			netdev_WARN(efx->net_dev,
				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
				    EFX_QWORD_FMT "\n",
				    EFX_QWORD_VAL(*event));
		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
			netdev_WARN(efx->net_dev,
				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
				    EFX_QWORD_FMT "\n",
				    EFX_QWORD_VAL(*event));
		if (!efx->loopback_selftest)
			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
		return 0;
	}
	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
		if (unlikely(!rx_encap_hdr))
			netdev_WARN(efx->net_dev,
				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
				    EFX_QWORD_FMT "\n",
				    EFX_QWORD_VAL(*event));
		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
				  (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
				   rx_l4_class != ESE_DZ_L4_CLASS_UDP)))
			netdev_WARN(efx->net_dev,
				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
				    EFX_QWORD_FMT "\n",
				    EFX_QWORD_VAL(*event));
		if (!efx->loopback_selftest)
			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
		return 0;
	}

E
Edward Cree 已提交
3337
	WARN_ON(!handled); /* No error bits were recognised */
3338 3339 3340
	return 0;
}

3341 3342 3343
static int efx_ef10_handle_rx_event(struct efx_channel *channel,
				    const efx_qword_t *event)
{
3344 3345
	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3346 3347
	unsigned int n_descs, n_packets, i;
	struct efx_nic *efx = channel->efx;
3348
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3349
	struct efx_rx_queue *rx_queue;
3350
	efx_qword_t errors;
3351 3352 3353
	bool rx_cont;
	u16 flags = 0;

3354
	if (unlikely(READ_ONCE(efx->reset_pending)))
3355 3356 3357 3358 3359 3360
		return 0;

	/* Basic packet information */
	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3361
	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3362 3363
	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3364 3365 3366 3367 3368
	rx_encap_hdr =
		nic_data->datapath_caps &
			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
		ESE_EZ_ENCAP_HDR_NONE;
3369

3370 3371 3372 3373
	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
			    EFX_QWORD_FMT "\n",
			    EFX_QWORD_VAL(*event));
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383

	rx_queue = efx_channel_get_rx_queue(channel);

	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);

	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));

	if (n_descs != rx_queue->scatter_n + 1) {
3384 3385
		struct efx_ef10_nic_data *nic_data = efx->nic_data;

3386 3387
		/* detect rx abort */
		if (unlikely(n_descs == rx_queue->scatter_n)) {
3388 3389 3390 3391 3392 3393
			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
				netdev_WARN(efx->net_dev,
					    "invalid RX abort: scatter_n=%u event="
					    EFX_QWORD_FMT "\n",
					    rx_queue->scatter_n,
					    EFX_QWORD_VAL(*event));
3394 3395 3396 3397
			efx_ef10_handle_rx_abort(rx_queue);
			return 0;
		}

3398 3399 3400 3401 3402 3403 3404
		/* Check that RX completion merging is valid, i.e.
		 * the current firmware supports it and this is a
		 * non-scattered packet.
		 */
		if (!(nic_data->datapath_caps &
		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
		    rx_queue->scatter_n != 0 || rx_cont) {
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
			efx_ef10_handle_rx_bad_lbits(
				rx_queue, next_ptr_lbits,
				(rx_queue->removed_count +
				 rx_queue->scatter_n + 1) &
				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
			return 0;
		}

		/* Merged completion for multiple non-scattered packets */
		rx_queue->scatter_n = 1;
		rx_queue->scatter_len = 0;
		n_packets = n_descs;
		++channel->n_rx_merge_events;
		channel->n_rx_merge_packets += n_packets;
		flags |= EFX_RX_PKT_PREFIX_LEN;
	} else {
		++rx_queue->scatter_n;
		rx_queue->scatter_len += rx_bytes;
		if (rx_cont)
			return 0;
		n_packets = 1;
	}

3428 3429 3430 3431 3432 3433 3434 3435
	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
				     ESF_DZ_RX_IPCKSUM_ERR, 1,
				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
	EFX_AND_QWORD(errors, *event, errors);
	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3436
							 rx_encap_hdr,
3437
							 rx_l3_class, rx_l4_class,
3438
							 event);
3439
	} else {
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
		bool tcpudp = rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
			      rx_l4_class == ESE_DZ_L4_CLASS_UDP;

		switch (rx_encap_hdr) {
		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
			if (tcpudp)
				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
			break;
		case ESE_EZ_ENCAP_HDR_GRE:
		case ESE_EZ_ENCAP_HDR_NONE:
			if (tcpudp)
				flags |= EFX_RX_PKT_CSUMMED;
			break;
		default:
			netdev_WARN(efx->net_dev,
				    "unknown encapsulation type: event="
				    EFX_QWORD_FMT "\n",
				    EFX_QWORD_VAL(*event));
		}
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	}

	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
		flags |= EFX_RX_PKT_TCP;

	channel->irq_mod_score += 2 * n_packets;

	/* Handle received packet(s) */
	for (i = 0; i < n_packets; i++) {
		efx_rx_packet(rx_queue,
			      rx_queue->removed_count & rx_queue->ptr_mask,
			      rx_queue->scatter_n, rx_queue->scatter_len,
			      flags);
		rx_queue->removed_count += rx_queue->scatter_n;
	}

	rx_queue->scatter_n = 0;
	rx_queue->scatter_len = 0;

	return n_packets;
}

static int
efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	struct efx_tx_queue *tx_queue;
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	int tx_descs = 0;

3491
	if (unlikely(READ_ONCE(efx->reset_pending)))
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
		return 0;

	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
		return 0;

	/* Transmit completion */
	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
	tx_queue = efx_channel_get_tx_queue(channel,
					    tx_ev_q_label % EFX_TXQ_TYPES);
	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
		    tx_queue->ptr_mask);
	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);

	return tx_descs;
}

static void
efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	int subcode;

	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);

	switch (subcode) {
	case ESE_DZ_DRV_TIMER_EV:
	case ESE_DZ_DRV_WAKE_UP_EV:
		break;
	case ESE_DZ_DRV_START_UP_EV:
		/* event queue init complete. ok. */
		break;
	default:
		netif_err(efx, hw, efx->net_dev,
			  "channel %d unknown driver event type %d"
			  " (data " EFX_QWORD_FMT ")\n",
			  channel->channel, subcode,
			  EFX_QWORD_VAL(*event));

	}
}

static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
						   efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	u32 subcode;

	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);

	switch (subcode) {
	case EFX_EF10_TEST:
		channel->event_test_cpu = raw_smp_processor_id();
		break;
	case EFX_EF10_REFILL:
		/* The queue must be empty, so we won't receive any rx
		 * events, so efx_process_channel() won't refill the
		 * queue. Refill it here
		 */
3551
		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
		break;
	default:
		netif_err(efx, hw, efx->net_dev,
			  "channel %d unknown driver event type %u"
			  " (data " EFX_QWORD_FMT ")\n",
			  channel->channel, (unsigned) subcode,
			  EFX_QWORD_VAL(*event));
	}
}

static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
{
	struct efx_nic *efx = channel->efx;
	efx_qword_t event, *p_event;
	unsigned int read_ptr;
	int ev_code;
	int tx_descs = 0;
	int spent = 0;

3571 3572 3573
	if (quota <= 0)
		return spent;

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
	read_ptr = channel->eventq_read_ptr;

	for (;;) {
		p_event = efx_event(channel, read_ptr);
		event = *p_event;

		if (!efx_event_present(&event))
			break;

		EFX_SET_QWORD(*p_event);

		++read_ptr;

		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);

		netif_vdbg(efx, drv, efx->net_dev,
			   "processing event on %d " EFX_QWORD_FMT "\n",
			   channel->channel, EFX_QWORD_VAL(event));

		switch (ev_code) {
		case ESE_DZ_EV_CODE_MCDI_EV:
			efx_mcdi_process_event(channel, &event);
			break;
		case ESE_DZ_EV_CODE_RX_EV:
			spent += efx_ef10_handle_rx_event(channel, &event);
			if (spent >= quota) {
				/* XXX can we split a merged event to
				 * avoid going over-quota?
				 */
				spent = quota;
				goto out;
			}
			break;
		case ESE_DZ_EV_CODE_TX_EV:
			tx_descs += efx_ef10_handle_tx_event(channel, &event);
			if (tx_descs > efx->txq_entries) {
				spent = quota;
				goto out;
			} else if (++spent == quota) {
				goto out;
			}
			break;
		case ESE_DZ_EV_CODE_DRIVER_EV:
			efx_ef10_handle_driver_event(channel, &event);
			if (++spent == quota)
				goto out;
			break;
		case EFX_EF10_DRVGEN_EV:
			efx_ef10_handle_driver_generated_event(channel, &event);
			break;
		default:
			netif_err(efx, hw, efx->net_dev,
				  "channel %d unknown event type %d"
				  " (data " EFX_QWORD_FMT ")\n",
				  channel->channel, ev_code,
				  EFX_QWORD_VAL(event));
		}
	}

out:
	channel->eventq_read_ptr = read_ptr;
	return spent;
}

static void efx_ef10_ev_read_ack(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
	efx_dword_t rptr;

	if (EFX_EF10_WORKAROUND_35388(efx)) {
		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));

		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
				     ERF_DD_EVQ_IND_RPTR,
				     (channel->eventq_read_ptr &
				      channel->eventq_mask) >>
				     ERF_DD_EVQ_IND_RPTR_WIDTH);
		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
				channel->channel);
		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
				     ERF_DD_EVQ_IND_RPTR,
				     channel->eventq_read_ptr &
				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
				channel->channel);
	} else {
		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
				     channel->eventq_read_ptr &
				     channel->eventq_mask);
		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
	}
}

static void efx_ef10_ev_test_generate(struct efx_channel *channel)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
	struct efx_nic *efx = channel->efx;
	efx_qword_t event;
	int rc;

	EFX_POPULATE_QWORD_2(event,
			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
			     ESF_DZ_EV_DATA, EFX_EF10_TEST);

	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);

	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
	 * already swapped the data to little-endian order.
	 */
	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
	       sizeof(efx_qword_t));

	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
			  NULL, 0, NULL);
	if (rc != 0)
		goto fail;

	return;

fail:
	WARN_ON(true);
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
}

void efx_ef10_handle_drain_event(struct efx_nic *efx)
{
	if (atomic_dec_and_test(&efx->active_queues))
		wake_up(&efx->flush_wq);

	WARN_ON(atomic_read(&efx->active_queues) < 0);
}

static int efx_ef10_fini_dmaq(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int pending;

	/* If the MC has just rebooted, the TX/RX queues will have already been
	 * torn down, but efx->active_queues needs to be set to zero.
	 */
	if (nic_data->must_realloc_vis) {
		atomic_set(&efx->active_queues, 0);
		return 0;
	}

	/* Do not attempt to write to the NIC during EEH recovery */
	if (efx->state != STATE_RECOVERY) {
		efx_for_each_channel(channel, efx) {
			efx_for_each_channel_rx_queue(rx_queue, channel)
				efx_ef10_rx_fini(rx_queue);
			efx_for_each_channel_tx_queue(tx_queue, channel)
				efx_ef10_tx_fini(tx_queue);
		}

		wait_event_timeout(efx->flush_wq,
				   atomic_read(&efx->active_queues) == 0,
				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
		pending = atomic_read(&efx->active_queues);
		if (pending) {
			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
				  pending);
			return -ETIMEDOUT;
		}
	}

	return 0;
}

3750 3751 3752 3753 3754
static void efx_ef10_prepare_flr(struct efx_nic *efx)
{
	atomic_set(&efx->active_queues, 0);
}

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
				  const struct efx_filter_spec *right)
{
	if ((left->match_flags ^ right->match_flags) |
	    ((left->flags ^ right->flags) &
	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
		return false;

	return memcmp(&left->outer_vid, &right->outer_vid,
		      sizeof(struct efx_filter_spec) -
		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
}

static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
{
	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
	return jhash2((const u32 *)&spec->outer_vid,
		      (sizeof(struct efx_filter_spec) -
		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
		      0);
	/* XXX should we randomise the initval? */
}

/* Decide whether a filter should be exclusive or else should allow
 * delivery to additional recipients.  Currently we decide that
 * filters for specific local unicast MAC and IP addresses are
 * exclusive.
 */
static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
{
	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
	    !is_multicast_ether_addr(spec->loc_mac))
		return true;

	if ((spec->match_flags &
	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
		if (spec->ether_type == htons(ETH_P_IP) &&
		    !ipv4_is_multicast(spec->loc_host[0]))
			return true;
		if (spec->ether_type == htons(ETH_P_IPV6) &&
		    ((const u8 *)spec->loc_host)[0] != 0xff)
			return true;
	}

	return false;
}

static struct efx_filter_spec *
efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
			   unsigned int filter_idx)
{
	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
					  ~EFX_EF10_FILTER_FLAGS);
}

static unsigned int
efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
			   unsigned int filter_idx)
{
	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
}

static void
efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
			  unsigned int filter_idx,
			  const struct efx_filter_spec *spec,
			  unsigned int flags)
{
	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
}

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
static void
efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
					   const struct efx_filter_spec *spec,
					   efx_dword_t *inbuf)
{
	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
	u32 match_fields = 0, uc_match, mc_match;

	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
		       efx_ef10_filter_is_exclusive(spec) ?
		       MC_CMD_FILTER_OP_IN_OP_INSERT :
		       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);

	/* Convert match flags and values.  Unlike almost
	 * everything else in MCDI, these fields are in
	 * network byte order.
	 */
#define COPY_VALUE(value, mcdi_field)					     \
	do {							     \
		match_fields |=					     \
			1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
			mcdi_field ## _LBN;			     \
		BUILD_BUG_ON(					     \
			MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
			sizeof(value));				     \
		memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
		       &value, sizeof(value));			     \
	} while (0)
#define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
	if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
		COPY_VALUE(spec->gen_field, mcdi_field);	     \
	}
	/* Handle encap filters first.  They will always be mismatch
	 * (unknown UC or MC) filters
	 */
	if (encap_type) {
		/* ether_type and outer_ip_proto need to be variables
		 * because COPY_VALUE wants to memcpy them
		 */
		__be16 ether_type =
			htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
			      ETH_P_IPV6 : ETH_P_IP);
		u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
		u8 outer_ip_proto;

		switch (encap_type & EFX_ENCAP_TYPES_MASK) {
		case EFX_ENCAP_TYPE_VXLAN:
			vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
			/* fallthrough */
		case EFX_ENCAP_TYPE_GENEVE:
			COPY_VALUE(ether_type, ETHER_TYPE);
			outer_ip_proto = IPPROTO_UDP;
			COPY_VALUE(outer_ip_proto, IP_PROTO);
			/* We always need to set the type field, even
			 * though we're not matching on the TNI.
			 */
			MCDI_POPULATE_DWORD_1(inbuf,
				FILTER_OP_EXT_IN_VNI_OR_VSID,
				FILTER_OP_EXT_IN_VNI_TYPE,
				vni_type);
			break;
		case EFX_ENCAP_TYPE_NVGRE:
			COPY_VALUE(ether_type, ETHER_TYPE);
			outer_ip_proto = IPPROTO_GRE;
			COPY_VALUE(outer_ip_proto, IP_PROTO);
			break;
		default:
			WARN_ON(1);
		}

		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
	} else {
		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
	}

	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
		match_fields |=
			is_multicast_ether_addr(spec->loc_mac) ?
			1 << mc_match :
			1 << uc_match;
	COPY_FIELD(REM_HOST, rem_host, SRC_IP);
	COPY_FIELD(LOC_HOST, loc_host, DST_IP);
	COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
	COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
	COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
	COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
	COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
	COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
	COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
	COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
#undef COPY_FIELD
#undef COPY_VALUE
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
		       match_fields);
}

3925 3926 3927 3928 3929 3930
static void efx_ef10_filter_push_prep(struct efx_nic *efx,
				      const struct efx_filter_spec *spec,
				      efx_dword_t *inbuf, u64 handle,
				      bool replacing)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
J
Jon Cooper 已提交
3931
	u32 flags = spec->flags;
3932

3933
	memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
3934

J
Jon Cooper 已提交
3935 3936 3937 3938 3939 3940
	/* Remove RSS flag if we don't have an RSS context. */
	if (flags & EFX_FILTER_FLAG_RX_RSS &&
	    spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
	    nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
		flags &= ~EFX_FILTER_FLAG_RX_RSS;

3941 3942 3943 3944 3945
	if (replacing) {
		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
	} else {
3946
		efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
3947 3948
	}

3949
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3950 3951 3952 3953
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3954
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3955 3956
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
B
Ben Hutchings 已提交
3957 3958 3959
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
		       0 : spec->dmaq_id);
3960
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
J
Jon Cooper 已提交
3961
		       (flags & EFX_FILTER_FLAG_RX_RSS) ?
3962 3963
		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
J
Jon Cooper 已提交
3964
	if (flags & EFX_FILTER_FLAG_RX_RSS)
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
			       spec->rss_context !=
			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
			       spec->rss_context : nic_data->rx_rss_context);
}

static int efx_ef10_filter_push(struct efx_nic *efx,
				const struct efx_filter_spec *spec,
				u64 *handle, bool replacing)
{
3975 3976
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
3977 3978 3979 3980 3981 3982 3983
	int rc;

	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), NULL);
	if (rc == 0)
		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3984 3985
	if (rc == -ENOSPC)
		rc = -EBUSY; /* to match efx_farch_filter_insert() */
3986 3987 3988
	return rc;
}

3989
static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3990
{
3991
	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
3992
	unsigned int match_flags = spec->match_flags;
3993
	unsigned int uc_match, mc_match;
3994 3995
	u32 mcdi_flags = 0;

3996 3997
#define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) {		\
		unsigned int  old_match_flags = match_flags;		\
3998 3999 4000
		match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;		\
		if (match_flags != old_match_flags)			\
			mcdi_flags |=					\
4001 4002 4003 4004 4005
				(1 << ((encap) ?			\
				       MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
				       mcdi_field ## _LBN :		\
				       MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
				       mcdi_field ## _LBN));		\
4006
	}
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
	/* inner or outer based on encap type */
	MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
	MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
	MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
	MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
	MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
	MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
	MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
	MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
	/* always outer */
	MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
	MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
4019 4020
#undef MAP_FILTER_TO_MCDI_FLAG

4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	/* special handling for encap type, and mismatch */
	if (encap_type) {
		match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
		mcdi_flags |=
			(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
		mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);

		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
	} else {
		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
	}

	if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
		match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
		mcdi_flags |=
			is_multicast_ether_addr(spec->loc_mac) ?
			1 << mc_match :
			1 << uc_match;
	}

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
	/* Did we map them all? */
	WARN_ON_ONCE(match_flags);

	return mcdi_flags;
}

static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
			       const struct efx_filter_spec *spec)
{
	u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4053 4054 4055 4056 4057
	unsigned int match_pri;

	for (match_pri = 0;
	     match_pri < table->rx_match_count;
	     match_pri++)
4058
		if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
			return match_pri;

	return -EPROTONOSUPPORT;
}

static s32 efx_ef10_filter_insert(struct efx_nic *efx,
				  struct efx_filter_spec *spec,
				  bool replace_equal)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
	struct efx_filter_spec *saved_spec;
	unsigned int match_pri, hash;
	unsigned int priv_flags;
	bool replacing = false;
	int ins_index = -1;
	DEFINE_WAIT(wait);
	bool is_mc_recip;
	s32 rc;

	/* For now, only support RX filters */
	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
	    EFX_FILTER_FLAG_RX)
		return -EINVAL;

4084
	rc = efx_ef10_filter_pri(table, spec);
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
	if (rc < 0)
		return rc;
	match_pri = rc;

	hash = efx_ef10_filter_hash(spec);
	is_mc_recip = efx_filter_is_mc_recipient(spec);
	if (is_mc_recip)
		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);

	/* Find any existing filters with the same match tuple or
	 * else a free slot to insert at.  If any of them are busy,
	 * we have to wait and retry.
	 */
	for (;;) {
		unsigned int depth = 1;
		unsigned int i;

		spin_lock_bh(&efx->filter_lock);

		for (;;) {
			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
			saved_spec = efx_ef10_filter_entry_spec(table, i);

			if (!saved_spec) {
				if (ins_index < 0)
					ins_index = i;
			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
				if (table->entry[i].spec &
				    EFX_EF10_FILTER_FLAG_BUSY)
					break;
				if (spec->priority < saved_spec->priority &&
4116
				    spec->priority != EFX_FILTER_PRI_AUTO) {
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
					rc = -EPERM;
					goto out_unlock;
				}
				if (!is_mc_recip) {
					/* This is the only one */
					if (spec->priority ==
					    saved_spec->priority &&
					    !replace_equal) {
						rc = -EEXIST;
						goto out_unlock;
					}
					ins_index = i;
					goto found;
				} else if (spec->priority >
					   saved_spec->priority ||
					   (spec->priority ==
					    saved_spec->priority &&
					    replace_equal)) {
					if (ins_index < 0)
						ins_index = i;
					else
						__set_bit(depth, mc_rem_map);
				}
			}

			/* Once we reach the maximum search depth, use
			 * the first suitable slot or return -EBUSY if
			 * there was none
			 */
			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
				if (ins_index < 0) {
					rc = -EBUSY;
					goto out_unlock;
				}
				goto found;
			}

			++depth;
		}

		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
		spin_unlock_bh(&efx->filter_lock);
		schedule();
	}

found:
	/* Create a software table entry if necessary, and mark it
	 * busy.  We might yet fail to insert, but any attempt to
	 * insert a conflicting filter while we're waiting for the
	 * firmware must find the busy entry.
	 */
	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
	if (saved_spec) {
4170 4171
		if (spec->priority == EFX_FILTER_PRI_AUTO &&
		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4172
			/* Just make sure it won't be removed */
4173 4174
			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4175
			table->entry[ins_index].spec &=
4176
				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
			rc = ins_index;
			goto out_unlock;
		}
		replacing = true;
		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
	} else {
		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
		if (!saved_spec) {
			rc = -ENOMEM;
			goto out_unlock;
		}
		*saved_spec = *spec;
		priv_flags = 0;
	}
	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);

	/* Mark lower-priority multicast recipients busy prior to removal */
	if (is_mc_recip) {
		unsigned int depth, i;

		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
			if (test_bit(depth, mc_rem_map))
				table->entry[i].spec |=
					EFX_EF10_FILTER_FLAG_BUSY;
		}
	}

	spin_unlock_bh(&efx->filter_lock);

	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
				  replacing);

	/* Finalise the software table entry */
	spin_lock_bh(&efx->filter_lock);
	if (rc == 0) {
		if (replacing) {
			/* Update the fields that may differ */
4216 4217 4218
			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
				saved_spec->flags |=
					EFX_FILTER_FLAG_RX_OVER_AUTO;
4219
			saved_spec->priority = spec->priority;
4220
			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
			saved_spec->flags |= spec->flags;
			saved_spec->rss_context = spec->rss_context;
			saved_spec->dmaq_id = spec->dmaq_id;
		}
	} else if (!replacing) {
		kfree(saved_spec);
		saved_spec = NULL;
	}
	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);

	/* Remove and finalise entries for lower-priority multicast
	 * recipients
	 */
	if (is_mc_recip) {
4235
		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
		unsigned int depth, i;

		memset(inbuf, 0, sizeof(inbuf));

		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
			if (!test_bit(depth, mc_rem_map))
				continue;

			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
			saved_spec = efx_ef10_filter_entry_spec(table, i);
			priv_flags = efx_ef10_filter_entry_flags(table, i);

			if (rc == 0) {
				spin_unlock_bh(&efx->filter_lock);
				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
					       table->entry[i].handle);
				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
						  inbuf, sizeof(inbuf),
						  NULL, 0, NULL);
				spin_lock_bh(&efx->filter_lock);
			}

			if (rc == 0) {
				kfree(saved_spec);
				saved_spec = NULL;
				priv_flags = 0;
			} else {
				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
			}
			efx_ef10_filter_set_entry(table, i, saved_spec,
						  priv_flags);
		}
	}

	/* If successful, return the inserted filter ID */
	if (rc == 0)
4274
		rc = efx_ef10_make_filter_id(match_pri, ins_index);
4275 4276 4277 4278 4279 4280 4281 4282

	wake_up_all(&table->waitq);
out_unlock:
	spin_unlock_bh(&efx->filter_lock);
	finish_wait(&table->waitq, &wait);
	return rc;
}

4283
static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4284 4285 4286 4287 4288
{
	/* no need to do anything here on EF10 */
}

/* Remove a filter.
4289 4290
 * If !by_index, remove by ID
 * If by_index, remove by index
4291 4292 4293
 * Filter ID may come from userland and must be range-checked.
 */
static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4294
					   unsigned int priority_mask,
4295
					   u32 filter_id, bool by_index)
4296
{
4297
	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	struct efx_ef10_filter_table *table = efx->filter_state;
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
	struct efx_filter_spec *spec;
	DEFINE_WAIT(wait);
	int rc;

	/* Find the software table entry and mark it busy.  Don't
	 * remove it yet; any attempt to update while we're waiting
	 * for the firmware must find the busy entry.
	 */
	for (;;) {
		spin_lock_bh(&efx->filter_lock);
		if (!(table->entry[filter_idx].spec &
		      EFX_EF10_FILTER_FLAG_BUSY))
			break;
		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
		spin_unlock_bh(&efx->filter_lock);
		schedule();
	}
4319

4320
	spec = efx_ef10_filter_entry_spec(table, filter_idx);
4321
	if (!spec ||
4322
	    (!by_index &&
4323
	     efx_ef10_filter_pri(table, spec) !=
4324
	     efx_ef10_filter_get_unsafe_pri(filter_id))) {
4325 4326 4327
		rc = -ENOENT;
		goto out_unlock;
	}
4328 4329

	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4330
	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4331 4332
		/* Just remove flags */
		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4333
		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4334 4335 4336 4337
		rc = 0;
		goto out_unlock;
	}

4338
	if (!(priority_mask & (1U << spec->priority))) {
4339 4340 4341 4342
		rc = -ENOENT;
		goto out_unlock;
	}

4343 4344 4345
	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
	spin_unlock_bh(&efx->filter_lock);

4346
	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4347
		/* Reset to an automatic filter */
4348 4349 4350

		struct efx_filter_spec new_spec = *spec;

4351
		new_spec.priority = EFX_FILTER_PRI_AUTO;
4352
		new_spec.flags = (EFX_FILTER_FLAG_RX |
4353 4354
				  (efx_rss_enabled(efx) ?
				   EFX_FILTER_FLAG_RX_RSS : 0));
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
		new_spec.dmaq_id = 0;
		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
		rc = efx_ef10_filter_push(efx, &new_spec,
					  &table->entry[filter_idx].handle,
					  true);

		spin_lock_bh(&efx->filter_lock);
		if (rc == 0)
			*spec = new_spec;
	} else {
		/* Really remove the filter */

		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
			       efx_ef10_filter_is_exclusive(spec) ?
			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
			       table->entry[filter_idx].handle);
4373 4374
		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
					inbuf, sizeof(inbuf), NULL, 0, NULL);
4375 4376

		spin_lock_bh(&efx->filter_lock);
4377 4378
		if ((rc == 0) || (rc == -ENOENT)) {
			/* Filter removed OK or didn't actually exist */
4379 4380
			kfree(spec);
			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4381 4382
		} else {
			efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4383
					       MC_CMD_FILTER_OP_EXT_IN_LEN,
4384
					       NULL, 0, rc);
4385 4386
		}
	}
4387

4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
	wake_up_all(&table->waitq);
out_unlock:
	spin_unlock_bh(&efx->filter_lock);
	finish_wait(&table->waitq, &wait);
	return rc;
}

static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
				       enum efx_filter_priority priority,
				       u32 filter_id)
{
4400 4401
	return efx_ef10_filter_remove_internal(efx, 1U << priority,
					       filter_id, false);
4402 4403
}

4404 4405 4406
static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
					  enum efx_filter_priority priority,
					  u32 filter_id)
4407
{
4408 4409 4410
	if (filter_id == EFX_EF10_FILTER_ID_INVALID)
		return;
	efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
4411 4412
}

4413 4414 4415 4416
static int efx_ef10_filter_get_safe(struct efx_nic *efx,
				    enum efx_filter_priority priority,
				    u32 filter_id, struct efx_filter_spec *spec)
{
4417
	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4418 4419 4420 4421 4422 4423 4424
	struct efx_ef10_filter_table *table = efx->filter_state;
	const struct efx_filter_spec *saved_spec;
	int rc;

	spin_lock_bh(&efx->filter_lock);
	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
	if (saved_spec && saved_spec->priority == priority &&
4425
	    efx_ef10_filter_pri(table, saved_spec) ==
4426
	    efx_ef10_filter_get_unsafe_pri(filter_id)) {
4427 4428 4429 4430 4431 4432 4433 4434 4435
		*spec = *saved_spec;
		rc = 0;
	} else {
		rc = -ENOENT;
	}
	spin_unlock_bh(&efx->filter_lock);
	return rc;
}

4436
static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4437 4438
				     enum efx_filter_priority priority)
{
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
	unsigned int priority_mask;
	unsigned int i;
	int rc;

	priority_mask = (((1U << (priority + 1)) - 1) &
			 ~(1U << EFX_FILTER_PRI_AUTO));

	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
						     i, true);
		if (rc && rc != -ENOENT)
			return rc;
	}

	return 0;
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
}

static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
					 enum efx_filter_priority priority)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	unsigned int filter_idx;
	s32 count = 0;

	spin_lock_bh(&efx->filter_lock);
	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		if (table->entry[filter_idx].spec &&
		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
		    priority)
			++count;
	}
	spin_unlock_bh(&efx->filter_lock);
	return count;
}

static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;

4478
	return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
}

static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
				      enum efx_filter_priority priority,
				      u32 *buf, u32 size)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_filter_spec *spec;
	unsigned int filter_idx;
	s32 count = 0;

	spin_lock_bh(&efx->filter_lock);
	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		spec = efx_ef10_filter_entry_spec(table, filter_idx);
		if (spec && spec->priority == priority) {
			if (count == size) {
				count = -EMSGSIZE;
				break;
			}
4498 4499 4500
			buf[count++] =
				efx_ef10_make_filter_id(
					efx_ef10_filter_pri(table, spec),
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
					filter_idx);
		}
	}
	spin_unlock_bh(&efx->filter_lock);
	return count;
}

#ifdef CONFIG_RFS_ACCEL

static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;

static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
				      struct efx_filter_spec *spec)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
4516
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
	struct efx_filter_spec *saved_spec;
	unsigned int hash, i, depth = 1;
	bool replacing = false;
	int ins_index = -1;
	u64 cookie;
	s32 rc;

	/* Must be an RX filter without RSS and not for a multicast
	 * destination address (RFS only works for connected sockets).
	 * These restrictions allow us to pass only a tiny amount of
	 * data through to the completion function.
	 */
	EFX_WARN_ON_PARANOID(spec->flags !=
			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));

	hash = efx_ef10_filter_hash(spec);

	spin_lock_bh(&efx->filter_lock);

	/* Find any existing filter with the same match tuple or else
	 * a free slot to insert at.  If an existing filter is busy,
	 * we have to give up.
	 */
	for (;;) {
		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
		saved_spec = efx_ef10_filter_entry_spec(table, i);

		if (!saved_spec) {
			if (ins_index < 0)
				ins_index = i;
		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
				rc = -EBUSY;
				goto fail_unlock;
			}
			if (spec->priority < saved_spec->priority) {
				rc = -EPERM;
				goto fail_unlock;
			}
			ins_index = i;
			break;
		}

		/* Once we reach the maximum search depth, use the
		 * first suitable slot or return -EBUSY if there was
		 * none
		 */
		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
			if (ins_index < 0) {
				rc = -EBUSY;
				goto fail_unlock;
			}
			break;
		}

		++depth;
	}

	/* Create a software table entry if necessary, and mark it
	 * busy.  We might yet fail to insert, but any attempt to
	 * insert a conflicting filter while we're waiting for the
	 * firmware must find the busy entry.
	 */
	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
	if (saved_spec) {
		replacing = true;
	} else {
		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
		if (!saved_spec) {
			rc = -ENOMEM;
			goto fail_unlock;
		}
		*saved_spec = *spec;
	}
	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
				  EFX_EF10_FILTER_FLAG_BUSY);

	spin_unlock_bh(&efx->filter_lock);

	/* Pack up the variables needed on completion */
	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;

	efx_ef10_filter_push_prep(efx, spec, inbuf,
				  table->entry[ins_index].handle, replacing);
	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
			   MC_CMD_FILTER_OP_OUT_LEN,
			   efx_ef10_filter_rfs_insert_complete, cookie);

	return ins_index;

fail_unlock:
	spin_unlock_bh(&efx->filter_lock);
	return rc;
}

static void
efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
				    int rc, efx_dword_t *outbuf,
				    size_t outlen_actual)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	unsigned int ins_index, dmaq_id;
	struct efx_filter_spec *spec;
	bool replacing;

	/* Unpack the cookie */
	replacing = cookie >> 31;
	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
	dmaq_id = cookie & 0xffff;

	spin_lock_bh(&efx->filter_lock);
	spec = efx_ef10_filter_entry_spec(table, ins_index);
	if (rc == 0) {
		table->entry[ins_index].handle =
			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
		if (replacing)
			spec->dmaq_id = dmaq_id;
	} else if (!replacing) {
		kfree(spec);
		spec = NULL;
	}
	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
	spin_unlock_bh(&efx->filter_lock);

	wake_up_all(&table->waitq);
}

static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
				    unsigned long filter_idx,
				    int rc, efx_dword_t *outbuf,
				    size_t outlen_actual);

static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
					   unsigned int filter_idx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_filter_spec *spec =
		efx_ef10_filter_entry_spec(table, filter_idx);
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);

	if (!spec ||
	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
	    spec->priority != EFX_FILTER_PRI_HINT ||
	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
				 flow_id, filter_idx))
		return false;

	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
		       table->entry[filter_idx].handle);
	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
			       efx_ef10_filter_rfs_expire_complete, filter_idx))
		return false;

	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
	return true;
}

static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
				    unsigned long filter_idx,
				    int rc, efx_dword_t *outbuf,
				    size_t outlen_actual)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_filter_spec *spec =
		efx_ef10_filter_entry_spec(table, filter_idx);

	spin_lock_bh(&efx->filter_lock);
	if (rc == 0) {
		kfree(spec);
		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
	}
	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
	wake_up_all(&table->waitq);
	spin_unlock_bh(&efx->filter_lock);
}

#endif /* CONFIG_RFS_ACCEL */

4703
static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4704 4705 4706
{
	int match_flags = 0;

4707
#define MAP_FLAG(gen_flag, mcdi_field) do {				\
4708
		u32 old_mcdi_flags = mcdi_flags;			\
4709 4710
		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##	\
				     mcdi_field ## _LBN);		\
4711 4712
		if (mcdi_flags != old_mcdi_flags)			\
			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
	} while (0)

	if (encap) {
		/* encap filters must specify encap type */
		match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
		/* and imply ethertype and ip proto */
		mcdi_flags &=
			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
		mcdi_flags &=
			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
		/* VLAN tags refer to the outer packet */
		MAP_FLAG(INNER_VID, INNER_VLAN);
		MAP_FLAG(OUTER_VID, OUTER_VLAN);
		/* everything else refers to the inner packet */
		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
		MAP_FLAG(REM_HOST, IFRM_SRC_IP);
		MAP_FLAG(LOC_HOST, IFRM_DST_IP);
		MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
		MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
		MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
		MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
		MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
		MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
	} else {
		MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
		MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
		MAP_FLAG(REM_HOST, SRC_IP);
		MAP_FLAG(LOC_HOST, DST_IP);
		MAP_FLAG(REM_MAC, SRC_MAC);
		MAP_FLAG(REM_PORT, SRC_PORT);
		MAP_FLAG(LOC_MAC, DST_MAC);
		MAP_FLAG(LOC_PORT, DST_PORT);
		MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
		MAP_FLAG(INNER_VID, INNER_VLAN);
		MAP_FLAG(OUTER_VID, OUTER_VLAN);
		MAP_FLAG(IP_PROTO, IP_PROTO);
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	}
#undef MAP_FLAG

	/* Did we map them all? */
	if (mcdi_flags)
		return -EINVAL;

	return match_flags;
}

4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_filter_vlan *vlan, *next_vlan;

	/* See comment in efx_ef10_filter_table_remove() */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

	if (!table)
		return;

	list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
		efx_ef10_filter_del_vlan_internal(efx, vlan);
}

4776
static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4777
					    bool encap,
4778 4779 4780 4781 4782 4783 4784 4785
					    enum efx_filter_match_flags match_flags)
{
	unsigned int match_pri;
	int mf;

	for (match_pri = 0;
	     match_pri < table->rx_match_count;
	     match_pri++) {
4786
		mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4787 4788 4789 4790 4791 4792 4793 4794
				table->rx_match_mcdi_flags[match_pri]);
		if (mf == match_flags)
			return true;
	}

	return false;
}

4795 4796 4797 4798
static int
efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
				    struct efx_ef10_filter_table *table,
				    bool encap)
4799 4800 4801 4802 4803 4804 4805 4806 4807
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
	unsigned int pd_match_pri, pd_match_count;
	size_t outlen;
	int rc;

	/* Find out which RX filter types are supported, and their priorities */
	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4808 4809
		       encap ?
		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4810 4811 4812 4813 4814
		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
			  &outlen);
	if (rc)
4815 4816
		return rc;

4817 4818 4819 4820 4821 4822 4823 4824 4825
	pd_match_count = MCDI_VAR_ARRAY_LEN(
		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);

	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
		u32 mcdi_flags =
			MCDI_ARRAY_DWORD(
				outbuf,
				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
				pd_match_pri);
4826
		rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4827 4828 4829 4830 4831 4832 4833 4834 4835
		if (rc < 0) {
			netif_dbg(efx, probe, efx->net_dev,
				  "%s: fw flags %#x pri %u not supported in driver\n",
				  __func__, mcdi_flags, pd_match_pri);
		} else {
			netif_dbg(efx, probe, efx->net_dev,
				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
				  __func__, mcdi_flags, pd_match_pri,
				  rc, table->rx_match_count);
4836 4837
			table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
			table->rx_match_count++;
4838 4839 4840
		}
	}

4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
	return 0;
}

static int efx_ef10_filter_table_probe(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct net_device *net_dev = efx->net_dev;
	struct efx_ef10_filter_table *table;
	struct efx_ef10_vlan *vlan;
	int rc;

	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return -EINVAL;

	if (efx->filter_state) /* already probed */
		return 0;

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return -ENOMEM;

	table->rx_match_count = 0;
	rc = efx_ef10_filter_table_probe_matches(efx, table, false);
	if (rc)
		goto fail;
	if (nic_data->datapath_caps &
		   (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
		rc = efx_ef10_filter_table_probe_matches(efx, table, true);
	if (rc)
		goto fail;
4871
	if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4872
	    !(efx_ef10_filter_match_supported(table, false,
4873
		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4874
	      efx_ef10_filter_match_supported(table, false,
4875 4876 4877 4878 4879 4880 4881 4882
		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
		netif_info(efx, probe, net_dev,
			   "VLAN filters are not supported in this firmware variant\n");
		net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
		efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
		net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
	}

4883 4884 4885 4886 4887 4888
	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
	if (!table->entry) {
		rc = -ENOMEM;
		goto fail;
	}

4889
	table->mc_promisc_last = false;
4890 4891
	table->vlan_filter =
		!!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4892
	INIT_LIST_HEAD(&table->vlan_list);
4893

4894 4895
	efx->filter_state = table;
	init_waitqueue_head(&table->waitq);
4896 4897 4898 4899 4900 4901 4902

	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
		if (rc)
			goto fail_add_vlan;
	}

4903 4904
	return 0;

4905 4906 4907
fail_add_vlan:
	efx_ef10_filter_cleanup_vlans(efx);
	efx->filter_state = NULL;
4908 4909 4910 4911 4912
fail:
	kfree(table);
	return rc;
}

4913 4914 4915
/* Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
4916 4917 4918 4919
static void efx_ef10_filter_table_restore(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4920 4921
	unsigned int invalid_filters = 0, failed = 0;
	struct efx_ef10_filter_vlan *vlan;
4922 4923
	struct efx_filter_spec *spec;
	unsigned int filter_idx;
4924 4925
	u32 mcdi_flags;
	int match_pri;
4926
	int rc, i;
4927

4928 4929
	WARN_ON(!rwsem_is_locked(&efx->filter_sem));

4930 4931 4932
	if (!nic_data->must_restore_filters)
		return;

4933 4934 4935
	if (!table)
		return;

4936 4937 4938 4939 4940 4941 4942
	spin_lock_bh(&efx->filter_lock);

	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		spec = efx_ef10_filter_entry_spec(table, filter_idx);
		if (!spec)
			continue;

4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
		mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
		match_pri = 0;
		while (match_pri < table->rx_match_count &&
		       table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
			++match_pri;
		if (match_pri >= table->rx_match_count) {
			invalid_filters++;
			goto not_restored;
		}
		if (spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT &&
		    spec->rss_context != nic_data->rx_rss_context)
			netif_warn(efx, drv, efx->net_dev,
				   "Warning: unable to restore a filter with specific RSS context.\n");

4957 4958 4959 4960 4961 4962 4963
		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
		spin_unlock_bh(&efx->filter_lock);

		rc = efx_ef10_filter_push(efx, spec,
					  &table->entry[filter_idx].handle,
					  false);
		if (rc)
4964
			failed++;
4965
		spin_lock_bh(&efx->filter_lock);
4966

4967
		if (rc) {
4968
not_restored:
4969 4970 4971 4972 4973 4974
			list_for_each_entry(vlan, &table->vlan_list, list)
				for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
					if (vlan->default_filters[i] == filter_idx)
						vlan->default_filters[i] =
							EFX_EF10_FILTER_ID_INVALID;

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
			kfree(spec);
			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
		} else {
			table->entry[filter_idx].spec &=
				~EFX_EF10_FILTER_FLAG_BUSY;
		}
	}

	spin_unlock_bh(&efx->filter_lock);

4985 4986 4987 4988 4989 4990 4991 4992
	/* This can happen validly if the MC's capabilities have changed, so
	 * is not an error.
	 */
	if (invalid_filters)
		netif_dbg(efx, drv, efx->net_dev,
			  "Did not restore %u filters that are now unsupported.\n",
			  invalid_filters);

4993 4994
	if (failed)
		netif_err(efx, hw, efx->net_dev,
4995
			  "unable to restore %u filters\n", failed);
4996 4997 4998 4999 5000 5001 5002
	else
		nic_data->must_restore_filters = false;
}

static void efx_ef10_filter_table_remove(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
5003
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
5004 5005 5006 5007
	struct efx_filter_spec *spec;
	unsigned int filter_idx;
	int rc;

5008
	efx_ef10_filter_cleanup_vlans(efx);
5009
	efx->filter_state = NULL;
5010 5011 5012 5013 5014 5015 5016 5017 5018
	/* If we were called without locking, then it's not safe to free
	 * the table as others might be using it.  So we just WARN, leak
	 * the memory, and potentially get an inconsistent filter table
	 * state.
	 * This should never actually happen.
	 */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

5019 5020 5021
	if (!table)
		return;

5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		spec = efx_ef10_filter_entry_spec(table, filter_idx);
		if (!spec)
			continue;

		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
			       efx_ef10_filter_is_exclusive(spec) ?
			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
			       table->entry[filter_idx].handle);
5033 5034
		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
					sizeof(inbuf), NULL, 0, NULL);
5035
		if (rc)
5036 5037 5038
			netif_info(efx, drv, efx->net_dev,
				   "%s: filter %04x remove failed\n",
				   __func__, filter_idx);
5039 5040 5041 5042 5043 5044 5045
		kfree(spec);
	}

	vfree(table->entry);
	kfree(table);
}

5046 5047 5048 5049 5050 5051
static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	unsigned int filter_idx;

	if (*id != EFX_EF10_FILTER_ID_INVALID) {
5052
		filter_idx = efx_ef10_filter_get_unsafe_id(*id);
5053 5054 5055 5056 5057 5058
		if (!table->entry[filter_idx].spec)
			netif_dbg(efx, drv, efx->net_dev,
				  "marked null spec old %04x:%04x\n", *id,
				  filter_idx);
		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
		*id = EFX_EF10_FILTER_ID_INVALID;
5059
	}
5060 5061
}

5062 5063 5064
/* Mark old per-VLAN filters that may need to be removed */
static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
					   struct efx_ef10_filter_vlan *vlan)
5065 5066
{
	struct efx_ef10_filter_table *table = efx->filter_state;
5067
	unsigned int i;
5068

5069
	for (i = 0; i < table->dev_uc_count; i++)
5070
		efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5071
	for (i = 0; i < table->dev_mc_count; i++)
5072
		efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5073 5074
	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
		efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5075 5076
}

5077 5078 5079 5080
/* Mark old filters that may need to be removed.
 * Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
5081 5082 5083
static void efx_ef10_filter_mark_old(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
5084
	struct efx_ef10_filter_vlan *vlan;
5085 5086

	spin_lock_bh(&efx->filter_lock);
5087 5088
	list_for_each_entry(vlan, &table->vlan_list, list)
		_efx_ef10_filter_vlan_mark_old(efx, vlan);
5089
	spin_unlock_bh(&efx->filter_lock);
5090 5091
}

5092
static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5093 5094 5095 5096 5097
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct net_device *net_dev = efx->net_dev;
	struct netdev_hw_addr *uc;
	unsigned int i;
5098

5099
	table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5100 5101 5102
	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
	i = 1;
	netdev_for_each_uc_addr(uc, net_dev) {
5103
		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5104
			table->uc_promisc = true;
5105 5106
			break;
		}
5107 5108 5109
		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
		i++;
	}
5110 5111

	table->dev_uc_count = i;
5112 5113
}

5114
static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5115 5116 5117 5118
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct net_device *net_dev = efx->net_dev;
	struct netdev_hw_addr *mc;
5119
	unsigned int i;
5120

5121
	table->mc_overflow = false;
5122
	table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5123

5124
	i = 0;
5125
	netdev_for_each_mc_addr(mc, net_dev) {
5126
		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5127
			table->mc_promisc = true;
5128
			table->mc_overflow = true;
5129 5130
			break;
		}
5131 5132
		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
		i++;
5133
	}
5134 5135

	table->dev_mc_count = i;
5136
}
5137

5138
static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5139 5140
					    struct efx_ef10_filter_vlan *vlan,
					    bool multicast, bool rollback)
5141 5142 5143
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_dev_addr *addr_list;
5144
	enum efx_filter_flags filter_flags;
5145
	struct efx_filter_spec spec;
5146 5147 5148
	u8 baddr[ETH_ALEN];
	unsigned int i, j;
	int addr_count;
5149
	u16 *ids;
5150 5151 5152 5153
	int rc;

	if (multicast) {
		addr_list = table->dev_mc_list;
5154
		addr_count = table->dev_mc_count;
5155
		ids = vlan->mc;
5156 5157
	} else {
		addr_list = table->dev_uc_list;
5158
		addr_count = table->dev_uc_count;
5159
		ids = vlan->uc;
5160 5161
	}

5162 5163
	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;

5164
	/* Insert/renew filters */
5165
	for (i = 0; i < addr_count; i++) {
5166
		EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID);
5167
		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5168
		efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5169 5170
		rc = efx_ef10_filter_insert(efx, &spec, true);
		if (rc < 0) {
5171 5172 5173 5174 5175 5176 5177 5178
			if (rollback) {
				netif_info(efx, drv, efx->net_dev,
					   "efx_ef10_filter_insert failed rc=%d\n",
					   rc);
				/* Fall back to promiscuous */
				for (j = 0; j < i; j++) {
					efx_ef10_filter_remove_unsafe(
						efx, EFX_FILTER_PRI_AUTO,
5179 5180
						ids[j]);
					ids[j] = EFX_EF10_FILTER_ID_INVALID;
5181 5182 5183
				}
				return rc;
			} else {
5184
				/* keep invalid ID, and carry on */
5185
			}
5186 5187
		} else {
			ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5188 5189
		}
	}
5190

5191 5192
	if (multicast && rollback) {
		/* Also need an Ethernet broadcast filter */
5193 5194
		EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
				     EFX_EF10_FILTER_ID_INVALID);
5195
		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5196
		eth_broadcast_addr(baddr);
5197
		efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5198
		rc = efx_ef10_filter_insert(efx, &spec, true);
5199
		if (rc < 0) {
5200
			netif_warn(efx, drv, efx->net_dev,
5201 5202 5203 5204 5205
				   "Broadcast filter insert failed rc=%d\n", rc);
			/* Fall back to promiscuous */
			for (j = 0; j < i; j++) {
				efx_ef10_filter_remove_unsafe(
					efx, EFX_FILTER_PRI_AUTO,
5206 5207
					ids[j]);
				ids[j] = EFX_EF10_FILTER_ID_INVALID;
5208 5209 5210
			}
			return rc;
		} else {
5211
			vlan->default_filters[EFX_EF10_BCAST] =
5212
				efx_ef10_filter_get_unsafe_id(rc);
5213
		}
5214
	}
5215 5216 5217 5218

	return 0;
}

5219 5220
static int efx_ef10_filter_insert_def(struct efx_nic *efx,
				      struct efx_ef10_filter_vlan *vlan,
5221
				      enum efx_encap_type encap_type,
5222
				      bool multicast, bool rollback)
5223 5224
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5225
	enum efx_filter_flags filter_flags;
5226 5227 5228
	struct efx_filter_spec spec;
	u8 baddr[ETH_ALEN];
	int rc;
5229
	u16 *id;
5230

5231 5232 5233
	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;

	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5234 5235 5236 5237 5238 5239

	if (multicast)
		efx_filter_set_mc_def(&spec);
	else
		efx_filter_set_uc_def(&spec);

5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
	if (encap_type) {
		if (nic_data->datapath_caps &
		    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
			efx_filter_set_encap_type(&spec, encap_type);
		else
			/* don't insert encap filters on non-supporting
			 * platforms. ID will be left as INVALID.
			 */
			return 0;
	}

5251 5252 5253
	if (vlan->vid != EFX_FILTER_VID_UNSPEC)
		efx_filter_set_eth_local(&spec, vlan->vid, NULL);

5254 5255
	rc = efx_ef10_filter_insert(efx, &spec, true);
	if (rc < 0) {
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
		const char *um = multicast ? "Multicast" : "Unicast";
		const char *encap_name = "";
		const char *encap_ipv = "";

		if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
		    EFX_ENCAP_TYPE_VXLAN)
			encap_name = "VXLAN ";
		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
			 EFX_ENCAP_TYPE_NVGRE)
			encap_name = "NVGRE ";
		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
			 EFX_ENCAP_TYPE_GENEVE)
			encap_name = "GENEVE ";
		if (encap_type & EFX_ENCAP_FLAG_IPV6)
			encap_ipv = "IPv6 ";
		else if (encap_type)
			encap_ipv = "IPv4 ";

		/* unprivileged functions can't insert mismatch filters
		 * for encapsulated or unicast traffic, so downgrade
		 * those warnings to debug.
		 */
5278
		netif_cond_dbg(efx, drv, efx->net_dev,
5279 5280 5281
			       rc == -EPERM && (encap_type || !multicast), warn,
			       "%s%s%s mismatch filter insert failed rc=%d\n",
			       encap_name, encap_ipv, um, rc);
5282
	} else if (multicast) {
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
		/* mapping from encap types to default filter IDs (multicast) */
		static enum efx_ef10_default_filters map[] = {
			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
				EFX_EF10_VXLAN6_MCDEF,
			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
				EFX_EF10_NVGRE6_MCDEF,
			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
				EFX_EF10_GENEVE6_MCDEF,
		};

		/* quick bounds check (BCAST result impossible) */
		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5299
		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5300 5301 5302 5303 5304 5305 5306
			WARN_ON(1);
			return -EINVAL;
		}
		/* then follow map */
		id = &vlan->default_filters[map[encap_type]];

		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5307
		*id = efx_ef10_filter_get_unsafe_id(rc);
5308
		if (!nic_data->workaround_26807 && !encap_type) {
5309 5310
			/* Also need an Ethernet broadcast filter */
			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5311
					   filter_flags, 0);
5312
			eth_broadcast_addr(baddr);
5313
			efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5314 5315 5316 5317 5318 5319 5320 5321 5322
			rc = efx_ef10_filter_insert(efx, &spec, true);
			if (rc < 0) {
				netif_warn(efx, drv, efx->net_dev,
					   "Broadcast filter insert failed rc=%d\n",
					   rc);
				if (rollback) {
					/* Roll back the mc_def filter */
					efx_ef10_filter_remove_unsafe(
							efx, EFX_FILTER_PRI_AUTO,
5323 5324
							*id);
					*id = EFX_EF10_FILTER_ID_INVALID;
5325 5326 5327
					return rc;
				}
			} else {
5328 5329 5330 5331
				EFX_WARN_ON_PARANOID(
					vlan->default_filters[EFX_EF10_BCAST] !=
					EFX_EF10_FILTER_ID_INVALID);
				vlan->default_filters[EFX_EF10_BCAST] =
5332
					efx_ef10_filter_get_unsafe_id(rc);
5333 5334 5335 5336
			}
		}
		rc = 0;
	} else {
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
		/* mapping from encap types to default filter IDs (unicast) */
		static enum efx_ef10_default_filters map[] = {
			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
				EFX_EF10_VXLAN6_UCDEF,
			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
				EFX_EF10_NVGRE6_UCDEF,
			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
				EFX_EF10_GENEVE6_UCDEF,
		};

		/* quick bounds check (BCAST result impossible) */
		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
D
Dan Carpenter 已提交
5353
		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5354 5355 5356 5357 5358 5359 5360
			WARN_ON(1);
			return -EINVAL;
		}
		/* then follow map */
		id = &vlan->default_filters[map[encap_type]];
		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
		*id = rc;
5361 5362 5363
		rc = 0;
	}
	return rc;
5364 5365 5366 5367 5368 5369 5370 5371 5372
}

/* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
 * flag or removes these filters, we don't need to hold the filter_lock while
 * scanning for these filters.
 */
static void efx_ef10_filter_remove_old(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
5373 5374 5375
	int remove_failed = 0;
	int remove_noent = 0;
	int rc;
5376
	int i;
5377 5378

	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5379
		if (READ_ONCE(table->entry[i].spec) &
5380
		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5381 5382 5383 5384 5385 5386
			rc = efx_ef10_filter_remove_internal(efx,
					1U << EFX_FILTER_PRI_AUTO, i, true);
			if (rc == -ENOENT)
				remove_noent++;
			else if (rc)
				remove_failed++;
5387 5388
		}
	}
5389 5390 5391 5392 5393 5394 5395 5396 5397

	if (remove_failed)
		netif_info(efx, drv, efx->net_dev,
			   "%s: failed to remove %d filters\n",
			   __func__, remove_failed);
	if (remove_noent)
		netif_info(efx, drv, efx->net_dev,
			   "%s: failed to remove %d non-existent filters\n",
			   __func__, remove_noent);
5398 5399
}

5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	u8 mac_old[ETH_ALEN];
	int rc, rc2;

	/* Only reconfigure a PF-created vport */
	if (is_zero_ether_addr(nic_data->vport_mac))
		return 0;

	efx_device_detach_sync(efx);
	efx_net_stop(efx->net_dev);
	down_write(&efx->filter_sem);
	efx_ef10_filter_table_remove(efx);
	up_write(&efx->filter_sem);

	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
	if (rc)
		goto restore_filters;

	ether_addr_copy(mac_old, nic_data->vport_mac);
	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
				    nic_data->vport_mac);
	if (rc)
		goto restore_vadaptor;

	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
				    efx->net_dev->dev_addr);
	if (!rc) {
		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
	} else {
		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
		if (rc2) {
			/* Failed to add original MAC, so clear vport_mac */
			eth_zero_addr(nic_data->vport_mac);
			goto reset_nic;
		}
	}

restore_vadaptor:
	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
	if (rc2)
		goto reset_nic;
restore_filters:
	down_write(&efx->filter_sem);
	rc2 = efx_ef10_filter_table_probe(efx);
	up_write(&efx->filter_sem);
	if (rc2)
		goto reset_nic;

	rc2 = efx_net_open(efx->net_dev);
	if (rc2)
		goto reset_nic;

5454
	efx_device_attach_if_not_resetting(efx);
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465

	return rc;

reset_nic:
	netif_err(efx, drv, efx->net_dev,
		  "Failed to restore when changing MAC address - scheduling reset\n");
	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);

	return rc ? rc : rc2;
}

5466 5467 5468
/* Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
5469 5470
static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
					      struct efx_ef10_filter_vlan *vlan)
5471 5472
{
	struct efx_ef10_filter_table *table = efx->filter_state;
5473
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5474

5475 5476 5477 5478 5479 5480
	/* Do not install unspecified VID if VLAN filtering is enabled.
	 * Do not install all specified VIDs if VLAN filtering is disabled.
	 */
	if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
		return;

5481
	/* Insert/renew unicast filters */
5482
	if (table->uc_promisc) {
5483 5484
		efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
					   false, false);
5485
		efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5486 5487 5488 5489 5490
	} else {
		/* If any of the filters failed to insert, fall back to
		 * promiscuous mode - add in the uc_def filter.  But keep
		 * our individual unicast filters.
		 */
5491
		if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5492 5493 5494
			efx_ef10_filter_insert_def(efx, vlan,
						   EFX_ENCAP_TYPE_NONE,
						   false, false);
5495
	}
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
				   false, false);
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
					      EFX_ENCAP_FLAG_IPV6,
				   false, false);
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
				   false, false);
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
					      EFX_ENCAP_FLAG_IPV6,
				   false, false);
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
				   false, false);
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
					      EFX_ENCAP_FLAG_IPV6,
				   false, false);
5511

5512
	/* Insert/renew multicast filters */
5513 5514 5515
	/* If changing promiscuous state with cascaded multicast filters, remove
	 * old filters first, so that packets are dropped rather than duplicated
	 */
5516 5517
	if (nic_data->workaround_26807 &&
	    table->mc_promisc_last != table->mc_promisc)
5518
		efx_ef10_filter_remove_old(efx);
5519
	if (table->mc_promisc) {
5520 5521 5522 5523
		if (nic_data->workaround_26807) {
			/* If we failed to insert promiscuous filters, rollback
			 * and fall back to individual multicast filters
			 */
5524 5525 5526
			if (efx_ef10_filter_insert_def(efx, vlan,
						       EFX_ENCAP_TYPE_NONE,
						       true, true)) {
5527 5528
				/* Changing promisc state, so remove old filters */
				efx_ef10_filter_remove_old(efx);
5529 5530
				efx_ef10_filter_insert_addr_list(efx, vlan,
								 true, false);
5531 5532 5533
			}
		} else {
			/* If we failed to insert promiscuous filters, don't
5534 5535
			 * rollback.  Regardless, also insert the mc_list,
			 * unless it's incomplete due to overflow
5536
			 */
5537 5538 5539
			efx_ef10_filter_insert_def(efx, vlan,
						   EFX_ENCAP_TYPE_NONE,
						   true, false);
5540 5541 5542
			if (!table->mc_overflow)
				efx_ef10_filter_insert_addr_list(efx, vlan,
								 true, false);
5543 5544 5545 5546 5547 5548 5549
		}
	} else {
		/* If any filters failed to insert, rollback and fall back to
		 * promiscuous mode - mc_def filter and maybe broadcast.  If
		 * that fails, roll back again and insert as many of our
		 * individual multicast filters as we can.
		 */
5550
		if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5551 5552 5553
			/* Changing promisc state, so remove old filters */
			if (nic_data->workaround_26807)
				efx_ef10_filter_remove_old(efx);
5554 5555 5556
			if (efx_ef10_filter_insert_def(efx, vlan,
						       EFX_ENCAP_TYPE_NONE,
						       true, true))
5557 5558
				efx_ef10_filter_insert_addr_list(efx, vlan,
								 true, false);
5559 5560
		}
	}
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
				   true, false);
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
					      EFX_ENCAP_FLAG_IPV6,
				   true, false);
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
				   true, false);
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
					      EFX_ENCAP_FLAG_IPV6,
				   true, false);
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
				   true, false);
	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
					      EFX_ENCAP_FLAG_IPV6,
				   true, false);
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
}

/* Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct net_device *net_dev = efx->net_dev;
	struct efx_ef10_filter_vlan *vlan;
5586
	bool vlan_filter;
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603

	if (!efx_dev_registered(efx))
		return;

	if (!table)
		return;

	efx_ef10_filter_mark_old(efx);

	/* Copy/convert the address lists; add the primary station
	 * address and broadcast address
	 */
	netif_addr_lock_bh(net_dev);
	efx_ef10_filter_uc_addr_list(efx);
	efx_ef10_filter_mc_addr_list(efx);
	netif_addr_unlock_bh(net_dev);

5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
	/* If VLAN filtering changes, all old filters are finally removed.
	 * Do it in advance to avoid conflicts for unicast untagged and
	 * VLAN 0 tagged filters.
	 */
	vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
	if (table->vlan_filter != vlan_filter) {
		table->vlan_filter = vlan_filter;
		efx_ef10_filter_remove_old(efx);
	}

5614 5615
	list_for_each_entry(vlan, &table->vlan_list, list)
		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5616 5617

	efx_ef10_filter_remove_old(efx);
5618
	table->mc_promisc_last = table->mc_promisc;
5619 5620
}

5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_filter_vlan *vlan;

	WARN_ON(!rwsem_is_locked(&efx->filter_sem));

	list_for_each_entry(vlan, &table->vlan_list, list) {
		if (vlan->vid == vid)
			return vlan;
	}

	return NULL;
}

static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_filter_vlan *vlan;
	unsigned int i;

	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return -EINVAL;

	vlan = efx_ef10_filter_find_vlan(efx, vid);
	if (WARN_ON(vlan)) {
		netif_err(efx, drv, efx->net_dev,
			  "VLAN %u already added\n", vid);
		return -EALREADY;
	}

	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
	if (!vlan)
		return -ENOMEM;

	vlan->vid = vid;

	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
		vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
		vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5662 5663
	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
		vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683

	list_add_tail(&vlan->list, &table->vlan_list);

	if (efx_dev_registered(efx))
		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);

	return 0;
}

static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
					      struct efx_ef10_filter_vlan *vlan)
{
	unsigned int i;

	/* See comment in efx_ef10_filter_table_remove() */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

	list_del(&vlan->list);

5684
	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5685
		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5686 5687
					      vlan->uc[i]);
	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5688
		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5689
					      vlan->mc[i]);
5690 5691 5692 5693
	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
		if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
			efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
						      vlan->default_filters[i]);
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715

	kfree(vlan);
}

static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_filter_vlan *vlan;

	/* See comment in efx_ef10_filter_table_remove() */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

	vlan = efx_ef10_filter_find_vlan(efx, vid);
	if (!vlan) {
		netif_err(efx, drv, efx->net_dev,
			  "VLAN %u not found in filter state\n", vid);
		return;
	}

	efx_ef10_filter_del_vlan_internal(efx, vlan);
}

5716 5717 5718 5719 5720 5721 5722 5723 5724
static int efx_ef10_set_mac_address(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	bool was_enabled = efx->port_enabled;
	int rc;

	efx_device_detach_sync(efx);
	efx_net_stop(efx->net_dev);
5725 5726

	mutex_lock(&efx->mac_lock);
5727 5728 5729 5730 5731 5732 5733
	down_write(&efx->filter_sem);
	efx_ef10_filter_table_remove(efx);

	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
			efx->net_dev->dev_addr);
	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
		       nic_data->vport_id);
5734 5735
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
				sizeof(inbuf), NULL, 0, NULL);
5736 5737 5738

	efx_ef10_filter_table_probe(efx);
	up_write(&efx->filter_sem);
5739 5740
	mutex_unlock(&efx->mac_lock);

5741 5742
	if (was_enabled)
		efx_net_open(efx->net_dev);
5743
	efx_device_attach_if_not_resetting(efx);
5744

5745 5746
#ifdef CONFIG_SFC_SRIOV
	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5747 5748
		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;

5749 5750
		if (rc == -EPERM) {
			struct efx_nic *efx_pf;
5751

5752 5753
			/* Switch to PF and change MAC address on vport */
			efx_pf = pci_get_drvdata(pci_dev_pf);
5754

5755 5756 5757 5758
			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
						       nic_data->vf_index,
						       efx->net_dev->dev_addr);
		} else if (!rc) {
5759 5760 5761 5762
			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
			unsigned int i;

5763 5764 5765
			/* MAC address successfully changed by VF (with MAC
			 * spoofing) so update the parent PF if possible.
			 */
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
			for (i = 0; i < efx_pf->vf_count; ++i) {
				struct ef10_vf *vf = nic_data->vf + i;

				if (vf->efx == efx) {
					ether_addr_copy(vf->mac,
							efx->net_dev->dev_addr);
					return 0;
				}
			}
		}
5776
	} else
5777
#endif
5778 5779 5780 5781
	if (rc == -EPERM) {
		netif_err(efx, drv, efx->net_dev,
			  "Cannot change MAC address; use sfboot to enable"
			  " mac-spoofing on this interface\n");
5782 5783 5784 5785 5786 5787 5788
	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
		 * fall-back to the method of changing the MAC address on the
		 * vport.  This only applies to PFs because such versions of
		 * MCFW do not support VFs.
		 */
		rc = efx_ef10_vport_set_mac_address(efx);
5789
	} else if (rc) {
5790 5791
		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
				       sizeof(inbuf), NULL, 0, rc);
5792 5793
	}

5794 5795 5796
	return rc;
}

5797 5798 5799 5800 5801 5802 5803
static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
{
	efx_ef10_filter_sync_rx_mode(efx);

	return efx_mcdi_set_mac(efx);
}

5804 5805 5806 5807 5808 5809 5810
static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
{
	efx_ef10_filter_sync_rx_mode(efx);

	return 0;
}

5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);

	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

/* MC BISTs follow a different poll mechanism to phy BISTs.
 * The BIST is done in the poll handler on the MC, and the MCDI command
 * will block until the BIST is done.
 */
static int efx_ef10_poll_bist(struct efx_nic *efx)
{
	int rc;
	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
	size_t outlen;
	u32 result;

	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
			   outbuf, sizeof(outbuf), &outlen);
	if (rc != 0)
		return rc;

	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
		return -EIO;

	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
	switch (result) {
	case MC_CMD_POLL_BIST_PASSED:
		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
		return 0;
	case MC_CMD_POLL_BIST_TIMEOUT:
		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
		return -EIO;
	case MC_CMD_POLL_BIST_FAILED:
		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
		return -EIO;
	default:
		netif_err(efx, hw, efx->net_dev,
			  "BIST returned unknown result %u", result);
		return -EIO;
	}
}

static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
{
	int rc;

	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);

	rc = efx_ef10_start_bist(efx, bist_type);
	if (rc != 0)
		return rc;

	return efx_ef10_poll_bist(efx);
}

static int
efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
{
	int rc, rc2;

	efx_reset_down(efx, RESET_TYPE_WORLD);

	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
			  NULL, 0, NULL, 0, NULL);
	if (rc != 0)
		goto out;

	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;

	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);

out:
5888 5889
	if (rc == -EPERM)
		rc = 0;
5890 5891 5892 5893
	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
	return rc ? rc : rc2;
}

5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
#ifdef CONFIG_SFC_MTD

struct efx_ef10_nvram_type_info {
	u16 type, type_mask;
	u8 port;
	const char *name;
};

static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
5912
	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
};

static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
					struct efx_mcdi_mtd_partition *part,
					unsigned int type)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
	const struct efx_ef10_nvram_type_info *info;
	size_t size, erase_size, outlen;
	bool protected;
	int rc;

	for (info = efx_ef10_nvram_types; ; info++) {
		if (info ==
		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
			return -ENODEV;
		if ((type & ~info->type_mask) == info->type)
			break;
	}
	if (info->port != efx_port_num(efx))
		return -ENODEV;

	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
	if (rc)
		return rc;
	if (protected)
		return -ENODEV; /* hide it */

	part->nvram_type = type;

	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
		return -EIO;
	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
		part->fw_subtype = MCDI_DWORD(outbuf,
					      NVRAM_METADATA_OUT_SUBTYPE);

	part->common.dev_type_name = "EF10 NVRAM manager";
	part->common.type_name = info->name;

	part->common.mtd.type = MTD_NORFLASH;
	part->common.mtd.flags = MTD_CAP_NORFLASH;
	part->common.mtd.size = size;
	part->common.mtd.erasesize = erase_size;

	return 0;
}

static int efx_ef10_mtd_probe(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
	struct efx_mcdi_mtd_partition *parts;
	size_t outlen, n_parts_total, i, n_parts;
	unsigned int type;
	int rc;

	ASSERT_RTNL();

	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
		return -EIO;

	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
	if (n_parts_total >
	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
		return -EIO;

	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
	if (!parts)
		return -ENOMEM;

	n_parts = 0;
	for (i = 0; i < n_parts_total; i++) {
		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
					i);
		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
		if (rc == 0)
			n_parts++;
		else if (rc != -ENODEV)
			goto fail;
	}

	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
fail:
	if (rc)
		kfree(parts);
	return rc;
}

#endif /* CONFIG_SFC_MTD */

static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
{
	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
}

6020 6021 6022
static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
					    u32 host_time) {}

6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
					   bool temp)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
	int rc;

	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
	    channel->sync_events_state == SYNC_EVENTS_VALID ||
	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
		return 0;
	channel->sync_events_state = SYNC_EVENTS_REQUESTED;

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
		       channel->channel);

	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
			  inbuf, sizeof(inbuf), NULL, 0, NULL);

	if (rc != 0)
		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
						    SYNC_EVENTS_DISABLED;

	return rc;
}

static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
					    bool temp)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
	int rc;

	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
		return 0;
	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
		channel->sync_events_state = SYNC_EVENTS_DISABLED;
		return 0;
	}
	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
					    SYNC_EVENTS_DISABLED;

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
		       channel->channel);

	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
			  inbuf, sizeof(inbuf), NULL, 0, NULL);

	return rc;
}

static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
					   bool temp)
{
	int (*set)(struct efx_channel *channel, bool temp);
	struct efx_channel *channel;

	set = en ?
	      efx_ef10_rx_enable_timestamping :
	      efx_ef10_rx_disable_timestamping;

	efx_for_each_channel(channel, efx) {
		int rc = set(channel, temp);
		if (en && rc != 0) {
			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
			return rc;
		}
	}

	return 0;
}

6100 6101 6102 6103 6104 6105
static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
					 struct hwtstamp_config *init)
{
	return -EOPNOTSUPP;
}

6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
				      struct hwtstamp_config *init)
{
	int rc;

	switch (init->rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
		/* if TX timestamping is still requested then leave PTP on */
		return efx_ptp_change_mode(efx,
					   init->tx_type != HWTSTAMP_TX_OFF, 0);
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6130
	case HWTSTAMP_FILTER_NTP_ALL:
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
		init->rx_filter = HWTSTAMP_FILTER_ALL;
		rc = efx_ptp_change_mode(efx, true, 0);
		if (!rc)
			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
		if (rc)
			efx_ptp_change_mode(efx, false, 0);
		return rc;
	default:
		return -ERANGE;
	}
}

6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
				     struct netdev_phys_item_id *ppid)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	if (!is_valid_ether_addr(nic_data->port_id))
		return -EOPNOTSUPP;

	ppid->id_len = ETH_ALEN;
	memcpy(ppid->id, nic_data->port_id, ppid->id_len);

	return 0;
}

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
{
	if (proto != htons(ETH_P_8021Q))
		return -EINVAL;

	return efx_ef10_add_vlan(efx, vid);
}

static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
{
	if (proto != htons(ETH_P_8021Q))
		return -EINVAL;

	return efx_ef10_del_vlan(efx, vid);
}

6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
/* We rely on the MCDI wiping out our TX rings if it made any changes to the
 * ports table, ensuring that any TSO descriptors that were made on a now-
 * removed tunnel port will be blown away and won't break things when we try
 * to transmit them using the new ports table.
 */
static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
	bool will_reset = false;
	size_t num_entries = 0;
	size_t inlen, outlen;
	size_t i;
	int rc;
	efx_dword_t flags_and_num_entries;

	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));

	nic_data->udp_tunnels_dirty = false;

	if (!(nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6196
		efx_device_attach_if_not_resetting(efx);
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
		return 0;
	}

	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);

	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
		if (nic_data->udp_tunnels[i].count &&
		    nic_data->udp_tunnels[i].port) {
			efx_dword_t entry;

			EFX_POPULATE_DWORD_2(entry,
				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
					ntohs(nic_data->udp_tunnels[i].port),
				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
					nic_data->udp_tunnels[i].type);
			*_MCDI_ARRAY_DWORD(inbuf,
				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
				num_entries++) = entry;
		}
	}

	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
		     EFX_WORD_1_LBN);
	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
		     EFX_WORD_1_WIDTH);
	EFX_POPULATE_DWORD_2(flags_and_num_entries,
			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
				!!unloading,
			     EFX_WORD_1, num_entries);
	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
		flags_and_num_entries;

	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);

	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
	if (rc == -EIO) {
		/* Most likely the MC rebooted due to another function also
		 * setting its tunnel port list. Mark the tunnel port list as
		 * dirty, so it will be pushed upon coming up from the reboot.
		 */
		nic_data->udp_tunnels_dirty = true;
		return 0;
	}

	if (rc) {
		/* expected not available on unprivileged functions */
		if (rc != -EPERM)
			netif_warn(efx, drv, efx->net_dev,
				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
		netif_info(efx, drv, efx->net_dev,
			   "Rebooting MC due to UDP tunnel port list change\n");
		will_reset = true;
		if (unloading)
			/* Delay for the MC reset to complete. This will make
			 * unloading other functions a bit smoother. This is a
			 * race, but the other unload will work whichever way
			 * it goes, this just avoids an unnecessary error
			 * message.
			 */
			msleep(100);
	}
	if (!will_reset && !unloading) {
		/* The caller will have detached, relying on the MC reset to
		 * trigger a re-attach.  Since there won't be an MC reset, we
		 * have to do the attach ourselves.
		 */
6268
		efx_device_attach_if_not_resetting(efx);
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
	}

	return rc;
}

static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc = 0;

	mutex_lock(&nic_data->udp_tunnels_lock);
	if (nic_data->udp_tunnels_dirty) {
		/* Make sure all TX are stopped while we modify the table, else
		 * we might race against an efx_features_check().
		 */
		efx_device_detach_sync(efx);
		rc = efx_ef10_set_udp_tnl_ports(efx, false);
	}
	mutex_unlock(&nic_data->udp_tunnels_lock);
	return rc;
}

static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
							     __be16 port)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
		if (!nic_data->udp_tunnels[i].count)
			continue;
		if (nic_data->udp_tunnels[i].port == port)
			return &nic_data->udp_tunnels[i];
	}
	return NULL;
}

static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
				     struct efx_udp_tunnel tnl)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_udp_tunnel *match;
	char typebuf[8];
	size_t i;
	int rc;

	if (!(nic_data->datapath_caps &
	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
		return 0;

	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
	netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
		  typebuf, ntohs(tnl.port));

	mutex_lock(&nic_data->udp_tunnels_lock);
	/* Make sure all TX are stopped while we add to the table, else we
	 * might race against an efx_features_check().
	 */
	efx_device_detach_sync(efx);

	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
	if (match != NULL) {
		if (match->type == tnl.type) {
			netif_dbg(efx, drv, efx->net_dev,
				  "Referencing existing tunnel entry\n");
			match->count++;
			/* No need to cause an MCDI update */
			rc = 0;
			goto unlock_out;
		}
		efx_get_udp_tunnel_type_name(match->type,
					     typebuf, sizeof(typebuf));
		netif_dbg(efx, drv, efx->net_dev,
			  "UDP port %d is already in use by %s\n",
			  ntohs(tnl.port), typebuf);
		rc = -EEXIST;
		goto unlock_out;
	}

	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
		if (!nic_data->udp_tunnels[i].count) {
			nic_data->udp_tunnels[i] = tnl;
			nic_data->udp_tunnels[i].count = 1;
			rc = efx_ef10_set_udp_tnl_ports(efx, false);
			goto unlock_out;
		}

	netif_dbg(efx, drv, efx->net_dev,
		  "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
		  typebuf, ntohs(tnl.port));

	rc = -ENOMEM;

unlock_out:
	mutex_unlock(&nic_data->udp_tunnels_lock);
	return rc;
}

/* Called under the TX lock with the TX queue running, hence no-one can be
 * in the middle of updating the UDP tunnels table.  However, they could
 * have tried and failed the MCDI, in which case they'll have set the dirty
 * flag before dropping their locks.
 */
static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	if (!(nic_data->datapath_caps &
	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
		return false;

	if (nic_data->udp_tunnels_dirty)
		/* SW table may not match HW state, so just assume we can't
		 * use any UDP tunnel offloads.
		 */
		return false;

	return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
}

static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
				     struct efx_udp_tunnel tnl)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_udp_tunnel *match;
	char typebuf[8];
	int rc;

	if (!(nic_data->datapath_caps &
	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
		return 0;

	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
	netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
		  typebuf, ntohs(tnl.port));

	mutex_lock(&nic_data->udp_tunnels_lock);
	/* Make sure all TX are stopped while we remove from the table, else we
	 * might race against an efx_features_check().
	 */
	efx_device_detach_sync(efx);

	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
	if (match != NULL) {
		if (match->type == tnl.type) {
			if (--match->count) {
				/* Port is still in use, so nothing to do */
				netif_dbg(efx, drv, efx->net_dev,
					  "UDP tunnel port %d remains active\n",
					  ntohs(tnl.port));
				rc = 0;
				goto out_unlock;
			}
			rc = efx_ef10_set_udp_tnl_ports(efx, false);
			goto out_unlock;
		}
		efx_get_udp_tunnel_type_name(match->type,
					     typebuf, sizeof(typebuf));
		netif_warn(efx, drv, efx->net_dev,
			   "UDP port %d is actually in use by %s, not removing\n",
			   ntohs(tnl.port), typebuf);
	}
	rc = -ENOENT;

out_unlock:
	mutex_unlock(&nic_data->udp_tunnels_lock);
	return rc;
}

6438 6439
#define EF10_OFFLOAD_FEATURES		\
	(NETIF_F_IP_CSUM |		\
6440
	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
6441 6442 6443 6444
	 NETIF_F_IPV6_CSUM |		\
	 NETIF_F_RXHASH |		\
	 NETIF_F_NTUPLE)

6445
const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6446
	.is_vf = true,
6447
	.mem_bar = efx_ef10_vf_mem_bar,
6448 6449 6450 6451 6452 6453
	.mem_map_size = efx_ef10_mem_map_size,
	.probe = efx_ef10_probe_vf,
	.remove = efx_ef10_remove,
	.dimension_resources = efx_ef10_dimension_resources,
	.init = efx_ef10_init_nic,
	.fini = efx_port_dummy_op_void,
6454
	.map_reset_reason = efx_ef10_map_reset_reason,
6455 6456 6457 6458 6459 6460 6461 6462
	.map_reset_flags = efx_ef10_map_reset_flags,
	.reset = efx_ef10_reset,
	.probe_port = efx_mcdi_port_probe,
	.remove_port = efx_mcdi_port_remove,
	.fini_dmaq = efx_ef10_fini_dmaq,
	.prepare_flr = efx_ef10_prepare_flr,
	.finish_flr = efx_port_dummy_op_void,
	.describe_stats = efx_ef10_describe_stats,
6463
	.update_stats = efx_ef10_update_stats_vf,
6464 6465 6466 6467 6468
	.start_stats = efx_port_dummy_op_void,
	.pull_stats = efx_port_dummy_op_void,
	.stop_stats = efx_port_dummy_op_void,
	.set_id_led = efx_mcdi_set_id_led,
	.push_irq_moderation = efx_ef10_push_irq_moderation,
6469
	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6470 6471 6472 6473 6474 6475 6476 6477 6478
	.check_mac_fault = efx_mcdi_mac_check_fault,
	.reconfigure_port = efx_mcdi_port_reconfigure,
	.get_wol = efx_ef10_get_wol_vf,
	.set_wol = efx_ef10_set_wol_vf,
	.resume_wol = efx_port_dummy_op_void,
	.mcdi_request = efx_ef10_mcdi_request,
	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
	.mcdi_read_response = efx_ef10_mcdi_read_response,
	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6479
	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6480 6481 6482 6483 6484 6485 6486 6487 6488
	.irq_enable_master = efx_port_dummy_op_void,
	.irq_test_generate = efx_ef10_irq_test_generate,
	.irq_disable_non_ev = efx_port_dummy_op_void,
	.irq_handle_msi = efx_ef10_msi_interrupt,
	.irq_handle_legacy = efx_ef10_legacy_interrupt,
	.tx_probe = efx_ef10_tx_probe,
	.tx_init = efx_ef10_tx_init,
	.tx_remove = efx_ef10_tx_remove,
	.tx_write = efx_ef10_tx_write,
6489
	.tx_limit_len = efx_ef10_tx_limit_len,
6490
	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6491
	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
	.rx_probe = efx_ef10_rx_probe,
	.rx_init = efx_ef10_rx_init,
	.rx_remove = efx_ef10_rx_remove,
	.rx_write = efx_ef10_rx_write,
	.rx_defer_refill = efx_ef10_rx_defer_refill,
	.ev_probe = efx_ef10_ev_probe,
	.ev_init = efx_ef10_ev_init,
	.ev_fini = efx_ef10_ev_fini,
	.ev_remove = efx_ef10_ev_remove,
	.ev_process = efx_ef10_ev_process,
	.ev_read_ack = efx_ef10_ev_read_ack,
	.ev_test_generate = efx_ef10_ev_test_generate,
	.filter_table_probe = efx_ef10_filter_table_probe,
	.filter_table_restore = efx_ef10_filter_table_restore,
	.filter_table_remove = efx_ef10_filter_table_remove,
	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
	.filter_insert = efx_ef10_filter_insert,
	.filter_remove_safe = efx_ef10_filter_remove_safe,
	.filter_get_safe = efx_ef10_filter_get_safe,
	.filter_clear_rx = efx_ef10_filter_clear_rx,
	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
	.mtd_probe = efx_port_dummy_op_int,
#endif
	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6524 6525
	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6526
#ifdef CONFIG_SFC_SRIOV
6527 6528 6529
	.vswitching_probe = efx_ef10_vswitching_probe_vf,
	.vswitching_restore = efx_ef10_vswitching_restore_vf,
	.vswitching_remove = efx_ef10_vswitching_remove_vf,
6530
#endif
6531
	.get_mac_address = efx_ef10_get_mac_address_vf,
6532
	.set_mac_address = efx_ef10_set_mac_address,
6533

6534
	.get_phys_port_id = efx_ef10_get_phys_port_id,
6535 6536 6537 6538 6539 6540 6541
	.revision = EFX_REV_HUNT_A0,
	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
	.can_rx_scatter = true,
	.always_rx_scatter = true,
6542
	.min_interrupt_mode = EFX_INT_MODE_MSIX,
6543 6544
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6545
	.offload_features = EF10_OFFLOAD_FEATURES,
6546 6547 6548 6549
	.mcdi_max_ver = 2,
	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
			    1 << HWTSTAMP_FILTER_ALL,
6550
	.rx_hash_key_size = 40,
6551 6552
};

6553
const struct efx_nic_type efx_hunt_a0_nic_type = {
6554
	.is_vf = false,
6555
	.mem_bar = efx_ef10_pf_mem_bar,
6556
	.mem_map_size = efx_ef10_mem_map_size,
6557
	.probe = efx_ef10_probe_pf,
6558 6559 6560 6561
	.remove = efx_ef10_remove,
	.dimension_resources = efx_ef10_dimension_resources,
	.init = efx_ef10_init_nic,
	.fini = efx_port_dummy_op_void,
6562
	.map_reset_reason = efx_ef10_map_reset_reason,
6563
	.map_reset_flags = efx_ef10_map_reset_flags,
6564
	.reset = efx_ef10_reset,
6565 6566 6567
	.probe_port = efx_mcdi_port_probe,
	.remove_port = efx_mcdi_port_remove,
	.fini_dmaq = efx_ef10_fini_dmaq,
6568 6569
	.prepare_flr = efx_ef10_prepare_flr,
	.finish_flr = efx_port_dummy_op_void,
6570
	.describe_stats = efx_ef10_describe_stats,
6571
	.update_stats = efx_ef10_update_stats_pf,
6572
	.start_stats = efx_mcdi_mac_start_stats,
6573
	.pull_stats = efx_mcdi_mac_pull_stats,
6574 6575 6576 6577 6578 6579 6580 6581 6582
	.stop_stats = efx_mcdi_mac_stop_stats,
	.set_id_led = efx_mcdi_set_id_led,
	.push_irq_moderation = efx_ef10_push_irq_moderation,
	.reconfigure_mac = efx_ef10_mac_reconfigure,
	.check_mac_fault = efx_mcdi_mac_check_fault,
	.reconfigure_port = efx_mcdi_port_reconfigure,
	.get_wol = efx_ef10_get_wol,
	.set_wol = efx_ef10_set_wol,
	.resume_wol = efx_port_dummy_op_void,
6583
	.test_chip = efx_ef10_test_chip,
6584 6585 6586 6587 6588
	.test_nvram = efx_mcdi_nvram_test_all,
	.mcdi_request = efx_ef10_mcdi_request,
	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
	.mcdi_read_response = efx_ef10_mcdi_read_response,
	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6589
	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6590 6591 6592 6593 6594 6595 6596 6597 6598
	.irq_enable_master = efx_port_dummy_op_void,
	.irq_test_generate = efx_ef10_irq_test_generate,
	.irq_disable_non_ev = efx_port_dummy_op_void,
	.irq_handle_msi = efx_ef10_msi_interrupt,
	.irq_handle_legacy = efx_ef10_legacy_interrupt,
	.tx_probe = efx_ef10_tx_probe,
	.tx_init = efx_ef10_tx_init,
	.tx_remove = efx_ef10_tx_remove,
	.tx_write = efx_ef10_tx_write,
6599
	.tx_limit_len = efx_ef10_tx_limit_len,
6600
	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6601
	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
	.rx_probe = efx_ef10_rx_probe,
	.rx_init = efx_ef10_rx_init,
	.rx_remove = efx_ef10_rx_remove,
	.rx_write = efx_ef10_rx_write,
	.rx_defer_refill = efx_ef10_rx_defer_refill,
	.ev_probe = efx_ef10_ev_probe,
	.ev_init = efx_ef10_ev_init,
	.ev_fini = efx_ef10_ev_fini,
	.ev_remove = efx_ef10_ev_remove,
	.ev_process = efx_ef10_ev_process,
	.ev_read_ack = efx_ef10_ev_read_ack,
	.ev_test_generate = efx_ef10_ev_test_generate,
	.filter_table_probe = efx_ef10_filter_table_probe,
	.filter_table_restore = efx_ef10_filter_table_restore,
	.filter_table_remove = efx_ef10_filter_table_remove,
	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
	.filter_insert = efx_ef10_filter_insert,
	.filter_remove_safe = efx_ef10_filter_remove_safe,
	.filter_get_safe = efx_ef10_filter_get_safe,
	.filter_clear_rx = efx_ef10_filter_clear_rx,
	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
	.mtd_probe = efx_ef10_mtd_probe,
	.mtd_rename = efx_mcdi_mtd_rename,
	.mtd_read = efx_mcdi_mtd_read,
	.mtd_erase = efx_mcdi_mtd_erase,
	.mtd_write = efx_mcdi_mtd_write,
	.mtd_sync = efx_mcdi_mtd_sync,
#endif
	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
6638 6639
	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6640 6641
	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6642 6643 6644 6645
	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
	.udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
	.udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6646
#ifdef CONFIG_SFC_SRIOV
6647
	.sriov_configure = efx_ef10_sriov_configure,
6648 6649 6650 6651
	.sriov_init = efx_ef10_sriov_init,
	.sriov_fini = efx_ef10_sriov_fini,
	.sriov_wanted = efx_ef10_sriov_wanted,
	.sriov_reset = efx_ef10_sriov_reset,
6652 6653 6654 6655 6656
	.sriov_flr = efx_ef10_sriov_flr,
	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6657
	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6658 6659 6660
	.vswitching_probe = efx_ef10_vswitching_probe_pf,
	.vswitching_restore = efx_ef10_vswitching_restore_pf,
	.vswitching_remove = efx_ef10_vswitching_remove_pf,
6661
#endif
6662
	.get_mac_address = efx_ef10_get_mac_address_pf,
6663
	.set_mac_address = efx_ef10_set_mac_address,
E
Edward Cree 已提交
6664
	.tso_versions = efx_ef10_tso_versions,
6665

6666
	.get_phys_port_id = efx_ef10_get_phys_port_id,
6667 6668 6669 6670
	.revision = EFX_REV_HUNT_A0,
	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6671
	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6672 6673
	.can_rx_scatter = true,
	.always_rx_scatter = true,
E
Edward Cree 已提交
6674
	.option_descriptors = true,
6675
	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
6676 6677
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6678
	.offload_features = EF10_OFFLOAD_FEATURES,
6679 6680
	.mcdi_max_ver = 2,
	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6681 6682
	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
			    1 << HWTSTAMP_FILTER_ALL,
6683
	.rx_hash_key_size = 40,
6684
};