futex.c 66.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/module.h>
59
#include <linux/magic.h>
60 61 62
#include <linux/pid.h>
#include <linux/nsproxy.h>

63
#include <asm/futex.h>
L
Linus Torvalds 已提交
64

65 66
#include "rtmutex_common.h"

67 68
int __read_mostly futex_cmpxchg_enabled;

L
Linus Torvalds 已提交
69 70
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

L
Linus Torvalds 已提交
92 93 94 95 96
/*
 * We use this hashed waitqueue instead of a normal wait_queue_t, so
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
97
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
L
Linus Torvalds 已提交
98
 * The order of wakup is always to make the first condition true, then
99
 * wake up q->waiter, then make the second condition true.
L
Linus Torvalds 已提交
100 101
 */
struct futex_q {
P
Pierre Peiffer 已提交
102
	struct plist_node list;
T
Thomas Gleixner 已提交
103 104
	/* Waiter reference */
	struct task_struct *task;
L
Linus Torvalds 已提交
105

106
	/* Which hash list lock to use: */
L
Linus Torvalds 已提交
107 108
	spinlock_t *lock_ptr;

109
	/* Key which the futex is hashed on: */
L
Linus Torvalds 已提交
110 111
	union futex_key key;

112 113
	/* Optional priority inheritance state: */
	struct futex_pi_state *pi_state;
114

115 116 117
	/* rt_waiter storage for requeue_pi: */
	struct rt_mutex_waiter *rt_waiter;

118 119
	/* Bitset for the optional bitmasked wakeup */
	u32 bitset;
L
Linus Torvalds 已提交
120 121 122
};

/*
D
Darren Hart 已提交
123 124 125
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
126 127
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
128 129
	spinlock_t lock;
	struct plist_head chain;
L
Linus Torvalds 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
	return (key1->both.word == key2->both.word
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		atomic_inc(&key->shared.inode->i_count);
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
181 182 183
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
184
		return;
185
	}
186 187 188 189 190 191 192 193 194 195 196

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
197 198 199
/**
 * get_futex_key - Get parameters which are the keys for a futex.
 * @uaddr: virtual address of the futex
D
Darren Hart 已提交
200
 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
E
Eric Dumazet 已提交
201
 * @key: address where result is stored.
202
 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
E
Eric Dumazet 已提交
203 204 205
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
206
 *
207
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
L
Linus Torvalds 已提交
208 209 210
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
211
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
212
 */
213 214
static int
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
215
{
216
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
217 218 219 220 221 222 223
	struct mm_struct *mm = current->mm;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
224
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
225
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
226
		return -EINVAL;
227
	address -= key->both.offset;
L
Linus Torvalds 已提交
228

E
Eric Dumazet 已提交
229 230 231 232 233 234 235 236
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
237
		if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
E
Eric Dumazet 已提交
238 239 240
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
241
		get_futex_key_refs(key);
E
Eric Dumazet 已提交
242 243
		return 0;
	}
L
Linus Torvalds 已提交
244

245
again:
246
	err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
247 248 249 250 251 252 253 254 255
	if (err < 0)
		return err;

	lock_page(page);
	if (!page->mapping) {
		unlock_page(page);
		put_page(page);
		goto again;
	}
L
Linus Torvalds 已提交
256 257 258 259 260 261

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
262
	 * the object not the particular process.
L
Linus Torvalds 已提交
263
	 */
264 265
	if (PageAnon(page)) {
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
266
		key->private.mm = mm;
267
		key->private.address = address;
268 269 270 271
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
		key->shared.inode = page->mapping->host;
		key->shared.pgoff = page->index;
L
Linus Torvalds 已提交
272 273
	}

274
	get_futex_key_refs(key);
L
Linus Torvalds 已提交
275

276 277 278
	unlock_page(page);
	put_page(page);
	return 0;
L
Linus Torvalds 已提交
279 280
}

281
static inline
P
Peter Zijlstra 已提交
282
void put_futex_key(int fshared, union futex_key *key)
L
Linus Torvalds 已提交
283
{
284
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
285 286
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
/*
 * fault_in_user_writeable - fault in user address and verify RW access
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
 * We have no generic implementation of a non destructive write to the
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
	int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
302
				 1, 1, 0, NULL, NULL);
303 304 305
	return ret < 0 ? ret : 0;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
 * @hb:     the hash bucket the futex_q's reside in
 * @key:    the futex key (to distinguish it from other futex futex_q's)
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

T
Thomas Gleixner 已提交
325 326 327 328 329 330 331 332 333 334 335 336
static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 curval;

	pagefault_disable();
	curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
	pagefault_enable();

	return curval;
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
337 338 339
{
	int ret;

340
	pagefault_disable();
341
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
342
	pagefault_enable();
L
Linus Torvalds 已提交
343 344 345 346

	return ret ? -EFAULT : 0;
}

347 348 349 350 351 352 353 354 355 356 357

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

358
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
359 360 361 362 363 364 365 366

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
367
	pi_state->key = FUTEX_KEY_INIT;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;
422
	const struct cred *cred = current_cred(), *pcred;
423

424
	rcu_read_lock();
425
	p = find_task_by_vpid(pid);
426
	if (!p) {
427
		p = ERR_PTR(-ESRCH);
428 429 430 431 432 433 434 435
	} else {
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid)
			p = ERR_PTR(-ESRCH);
		else
			get_task_struct(p);
	}
436

437
	rcu_read_unlock();
438 439 440 441 442 443 444 445 446 447 448 449 450

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
451
	struct futex_hash_bucket *hb;
452
	union futex_key key = FUTEX_KEY_INIT;
453

454 455
	if (!futex_cmpxchg_enabled)
		return;
456 457 458
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
459
	 * versus waiters unqueueing themselves:
460 461 462 463 464 465 466
	 */
	spin_lock_irq(&curr->pi_lock);
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
467
		hb = hash_futex(&key);
468 469 470 471 472
		spin_unlock_irq(&curr->pi_lock);

		spin_lock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
473 474 475 476
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
477 478 479 480 481 482
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
483 484
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
485 486 487 488 489 490 491 492 493 494 495 496 497
		pi_state->owner = NULL;
		spin_unlock_irq(&curr->pi_lock);

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
	}
	spin_unlock_irq(&curr->pi_lock);
}

static int
P
Pierre Peiffer 已提交
498 499
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
500 501 502
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
503
	struct plist_head *head;
504
	struct task_struct *p;
505
	pid_t pid = uval & FUTEX_TID_MASK;
506 507 508

	head = &hb->chain;

P
Pierre Peiffer 已提交
509
	plist_for_each_entry_safe(this, next, head, list) {
P
Pierre Peiffer 已提交
510
		if (match_futex(&this->key, key)) {
511 512 513 514 515
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
516 517 518 519 520 521
			/*
			 * Userspace might have messed up non PI and PI futexes
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

522
			WARN_ON(!atomic_read(&pi_state->refcount));
523 524
			WARN_ON(pid && pi_state->owner &&
				pi_state->owner->pid != pid);
525

526
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
527
			*ps = pi_state;
528 529 530 531 532 533

			return 0;
		}
	}

	/*
534
	 * We are the first waiter - try to look up the real owner and attach
535
	 * the new pi_state to it, but bail out when TID = 0
536
	 */
537
	if (!pid)
538
		return -ESRCH;
539
	p = futex_find_get_task(pid);
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	if (IS_ERR(p))
		return PTR_ERR(p);

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
	spin_lock_irq(&p->pi_lock);
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

		spin_unlock_irq(&p->pi_lock);
		put_task_struct(p);
		return ret;
	}
562 563 564 565 566 567 568 569 570 571

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
572
	pi_state->key = *key;
573

574
	WARN_ON(!list_empty(&pi_state->list));
575 576 577 578 579 580
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
	spin_unlock_irq(&p->pi_lock);

	put_task_struct(p);

P
Pierre Peiffer 已提交
581
	*ps = pi_state;
582 583 584 585

	return 0;
}

586 587
/**
 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
588 589 590 591 592 593 594 595
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
596 597 598 599 600 601 602 603 604 605 606
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
607
				struct task_struct *task, int set_waiters)
608 609 610 611 612 613 614 615 616 617 618 619 620
{
	int lock_taken, ret, ownerdied = 0;
	u32 uval, newval, curval;

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
	newval = task_pid_vnr(task);
621 622
	if (set_waiters)
		newval |= FUTEX_WAITERS;
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

	curval = cmpxchg_futex_value_locked(uaddr, 0, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
	if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
	 * There are two cases, where a futex might have no owner (the
	 * owner TID is 0): OWNER_DIED. We take over the futex in this
	 * case. We also do an unconditional take over, when the owner
	 * of the futex died.
	 *
	 * This is safe as we are protected by the hash bucket lock !
	 */
	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
		/* Keep the OWNER_DIED bit */
		newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
		ownerdied = 0;
		lock_taken = 1;
	}

	curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
	 * We took the lock due to owner died take over.
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
			 * No owner found for this futex. Check if the
			 * OWNER_DIED bit is set to figure out whether
			 * this is a robust futex or not.
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
			 * We simply start over in case of a robust
			 * futex. The code above will take the futex
			 * and return happy.
			 */
			if (curval & FUTEX_OWNER_DIED) {
				ownerdied = 1;
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

L
Linus Torvalds 已提交
711 712 713 714 715 716
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
717 718
	struct task_struct *p = q->task;

L
Linus Torvalds 已提交
719
	/*
T
Thomas Gleixner 已提交
720 721 722 723 724
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
	 * a non futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non existing task
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
725
	 */
T
Thomas Gleixner 已提交
726 727 728
	get_task_struct(p);

	plist_del(&q->list, &q->list.plist);
L
Linus Torvalds 已提交
729
	/*
T
Thomas Gleixner 已提交
730 731 732 733
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
734
	 */
735
	smp_wmb();
L
Linus Torvalds 已提交
736
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
737 738 739

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
740 741
}

742 743 744 745 746 747 748 749 750
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

751
	spin_lock(&pi_state->pi_mutex.wait_lock);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
	 * This happens when we have stolen the lock and the original
	 * pending owner did not enqueue itself back on the rt_mutex.
	 * Thats not a tragedy. We know that way, that a lock waiter
	 * is on the fly. We make the futex_q waiter the pending owner.
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
768
	if (!(uval & FUTEX_OWNER_DIED)) {
769 770
		int ret = 0;

771
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
772

T
Thomas Gleixner 已提交
773
		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
774

775
		if (curval == -EFAULT)
776
			ret = -EFAULT;
777
		else if (curval != uval)
778 779 780 781 782
			ret = -EINVAL;
		if (ret) {
			spin_unlock(&pi_state->pi_mutex.wait_lock);
			return ret;
		}
783
	}
784

785 786 787 788 789 790 791
	spin_lock_irq(&pi_state->owner->pi_lock);
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
	spin_unlock_irq(&pi_state->owner->pi_lock);

	spin_lock_irq(&new_owner->pi_lock);
	WARN_ON(!list_empty(&pi_state->list));
792 793
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
794 795
	spin_unlock_irq(&new_owner->pi_lock);

796
	spin_unlock(&pi_state->pi_mutex.wait_lock);
797 798 799 800 801 802 803 804 805 806 807 808 809
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
T
Thomas Gleixner 已提交
810
	oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
811 812 813 814 815 816 817 818 819

	if (oldval == -EFAULT)
		return oldval;
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
836 837 838
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
839
	spin_unlock(&hb1->lock);
840 841
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
842 843
}

L
Linus Torvalds 已提交
844
/*
D
Darren Hart 已提交
845
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
846
 */
P
Peter Zijlstra 已提交
847
static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
848
{
849
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
850
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
851
	struct plist_head *head;
852
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
853 854
	int ret;

855 856 857
	if (!bitset)
		return -EINVAL;

858
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
L
Linus Torvalds 已提交
859 860 861
	if (unlikely(ret != 0))
		goto out;

862 863 864
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
865

P
Pierre Peiffer 已提交
866
	plist_for_each_entry_safe(this, next, head, list) {
L
Linus Torvalds 已提交
867
		if (match_futex (&this->key, &key)) {
868
			if (this->pi_state || this->rt_waiter) {
869 870 871
				ret = -EINVAL;
				break;
			}
872 873 874 875 876

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
877 878 879 880 881 882
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

883
	spin_unlock(&hb->lock);
884
	put_futex_key(fshared, &key);
885
out:
L
Linus Torvalds 已提交
886 887 888
	return ret;
}

889 890 891 892
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
893
static int
P
Peter Zijlstra 已提交
894
futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
895
	      int nr_wake, int nr_wake2, int op)
896
{
897
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
898
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
899
	struct plist_head *head;
900
	struct futex_q *this, *next;
D
Darren Hart 已提交
901
	int ret, op_ret;
902

D
Darren Hart 已提交
903
retry:
904
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
905 906
	if (unlikely(ret != 0))
		goto out;
907
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
908
	if (unlikely(ret != 0))
909
		goto out_put_key1;
910

911 912
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
913

I
Ingo Molnar 已提交
914
	double_lock_hb(hb1, hb2);
D
Darren Hart 已提交
915
retry_private:
916
	op_ret = futex_atomic_op_inuser(op, uaddr2);
917 918
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
919
		double_unlock_hb(hb1, hb2);
920

921
#ifndef CONFIG_MMU
922 923 924 925
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
926
		ret = op_ret;
927
		goto out_put_keys;
928 929
#endif

930 931
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
932
			goto out_put_keys;
933 934
		}

935
		ret = fault_in_user_writeable(uaddr2);
936
		if (ret)
937
			goto out_put_keys;
938

D
Darren Hart 已提交
939 940 941
		if (!fshared)
			goto retry_private;

942 943
		put_futex_key(fshared, &key2);
		put_futex_key(fshared, &key1);
D
Darren Hart 已提交
944
		goto retry;
945 946
	}

947
	head = &hb1->chain;
948

P
Pierre Peiffer 已提交
949
	plist_for_each_entry_safe(this, next, head, list) {
950 951 952 953 954 955 956 957
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
958
		head = &hb2->chain;
959 960

		op_ret = 0;
P
Pierre Peiffer 已提交
961
		plist_for_each_entry_safe(this, next, head, list) {
962 963 964 965 966 967 968 969 970
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

D
Darren Hart 已提交
971
	double_unlock_hb(hb1, hb2);
972
out_put_keys:
973
	put_futex_key(fshared, &key2);
974
out_put_key1:
975
	put_futex_key(fshared, &key1);
976
out:
977 978 979
	return ret;
}

D
Darren Hart 已提交
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
		q->list.plist.lock = &hb2->lock;
#endif
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
 * q:	the futex_q
 * key:	the key of the requeue target futex
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
 * atomic lock acquisition.  Must be called with the q->lock_ptr held.
 */
static inline
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key)
{
	drop_futex_key_refs(&q->key);
	get_futex_key_refs(key);
	q->key = *key;

	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

T
Thomas Gleixner 已提交
1032
	wake_up_state(q->task, TASK_NORMAL);
1033 1034 1035 1036
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1037 1038 1039 1040 1041 1042 1043
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1044 1045
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1046 1047 1048
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
 *  1 - acquired the lock
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1059
				 struct futex_pi_state **ps, int set_waiters)
1060
{
1061
	struct futex_q *top_waiter = NULL;
1062 1063 1064 1065 1066 1067
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1068 1069 1070 1071 1072 1073 1074 1075
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1076 1077 1078 1079 1080 1081 1082
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

	/*
1083 1084 1085
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1086
	 */
1087 1088
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	if (ret == 1)
		requeue_pi_wake_futex(top_waiter, key2);

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
 * uaddr1:	source futex user address
 * uaddr2:	target futex user address
 * nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * requeue_pi:	if we are attempting to requeue from a non-pi futex to a
 * 		pi futex (pi to pi requeue is not supported)
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
L
Linus Torvalds 已提交
1110
 */
P
Peter Zijlstra 已提交
1111
static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1112 1113
			 int nr_wake, int nr_requeue, u32 *cmpval,
			 int requeue_pi)
L
Linus Torvalds 已提交
1114
{
1115
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1116 1117
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1118
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
1119
	struct plist_head *head1;
L
Linus Torvalds 已提交
1120
	struct futex_q *this, *next;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1143

1144
retry:
1145 1146 1147 1148 1149 1150 1151 1152 1153
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1154
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1155 1156
	if (unlikely(ret != 0))
		goto out;
1157 1158
	ret = get_futex_key(uaddr2, fshared, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1159
	if (unlikely(ret != 0))
1160
		goto out_put_key1;
L
Linus Torvalds 已提交
1161

1162 1163
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1164

D
Darren Hart 已提交
1165
retry_private:
I
Ingo Molnar 已提交
1166
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1167

1168 1169
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1170

1171
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1172 1173

		if (unlikely(ret)) {
D
Darren Hart 已提交
1174
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1175

1176
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1177 1178
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1179

D
Darren Hart 已提交
1180 1181
			if (!fshared)
				goto retry_private;
L
Linus Torvalds 已提交
1182

D
Darren Hart 已提交
1183 1184 1185
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			goto retry;
L
Linus Torvalds 已提交
1186
		}
1187
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1188 1189 1190 1191 1192
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1193
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1194 1195 1196 1197 1198 1199
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1200
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1201
						 &key2, &pi_state, nr_requeue);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
1225
			ret = fault_in_user_writeable(uaddr2);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1241
	head1 = &hb1->chain;
P
Pierre Peiffer 已提交
1242
	plist_for_each_entry_safe(this, next, head1, list) {
1243 1244 1245 1246
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1247
			continue;
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

		WARN_ON(!requeue_pi && this->rt_waiter);
		WARN_ON(requeue_pi && !this->rt_waiter);

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1258
			wake_futex(this);
1259 1260
			continue;
		}
L
Linus Torvalds 已提交
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
				requeue_pi_wake_futex(this, &key2);
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1283
		}
1284 1285
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1286 1287 1288
	}

out_unlock:
D
Darren Hart 已提交
1289
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1290

1291 1292 1293 1294 1295 1296
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1297
	while (--drop_count >= 0)
1298
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1299

1300
out_put_keys:
1301
	put_futex_key(fshared, &key2);
1302
out_put_key1:
1303
	put_futex_key(fshared, &key1);
1304
out:
1305 1306 1307
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1308 1309 1310
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1311
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
L
Linus Torvalds 已提交
1312
{
1313
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1314

1315
	get_futex_key_refs(&q->key);
1316 1317
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1318

1319 1320
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
1321 1322
}

E
Eric Sesterhenn 已提交
1323
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
1324
{
P
Pierre Peiffer 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
	q->list.plist.lock = &hb->lock;
#endif
	plist_add(&q->list, &hb->chain);
1342
	q->task = current;
1343
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1344 1345 1346
}

static inline void
1347
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
1348
{
1349
	spin_unlock(&hb->lock);
1350
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
}

/*
 * queue_me and unqueue_me must be called as a pair, each
 * exactly once.  They are called with the hashed spinlock held.
 */

/* Return 1 if we were still queued (ie. 0 means we were woken) */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1362
	int ret = 0;
L
Linus Torvalds 已提交
1363 1364

	/* In the common case we don't take the spinlock, which is nice. */
1365
retry:
L
Linus Torvalds 已提交
1366
	lock_ptr = q->lock_ptr;
1367
	barrier();
1368
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
P
Pierre Peiffer 已提交
1387 1388
		WARN_ON(plist_node_empty(&q->list));
		plist_del(&q->list, &q->list.plist);
1389 1390 1391

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1392 1393 1394 1395
		spin_unlock(lock_ptr);
		ret = 1;
	}

1396
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1397 1398 1399
	return ret;
}

1400 1401
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1402 1403
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1404
 */
P
Pierre Peiffer 已提交
1405
static void unqueue_me_pi(struct futex_q *q)
1406
{
P
Pierre Peiffer 已提交
1407 1408
	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);
1409 1410 1411 1412 1413

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1414
	spin_unlock(q->lock_ptr);
1415

1416
	drop_futex_key_refs(&q->key);
1417 1418
}

P
Pierre Peiffer 已提交
1419
/*
1420
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1421
 *
1422 1423
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1424
 */
1425
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
P
Peter Zijlstra 已提交
1426
				struct task_struct *newowner, int fshared)
P
Pierre Peiffer 已提交
1427
{
1428
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1429
	struct futex_pi_state *pi_state = q->pi_state;
1430
	struct task_struct *oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
1431
	u32 uval, curval, newval;
D
Darren Hart 已提交
1432
	int ret;
P
Pierre Peiffer 已提交
1433 1434

	/* Owner died? */
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
	 * pending owner or we are the pending owner which failed to
	 * get the rtmutex. We have to replace the pending owner TID
	 * in the user space variable. This must be atomic as we have
	 * to preserve the owner died bit here.
	 *
D
Darren Hart 已提交
1445 1446 1447
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

		if (curval == -EFAULT)
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1475 1476 1477 1478 1479
	if (pi_state->owner != NULL) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);
1480
	}
P
Pierre Peiffer 已提交
1481

1482
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1483

1484
	spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1485
	WARN_ON(!list_empty(&pi_state->list));
1486 1487
	list_add(&pi_state->list, &newowner->pi_state_list);
	spin_unlock_irq(&newowner->pi_lock);
1488
	return 0;
P
Pierre Peiffer 已提交
1489 1490

	/*
1491 1492 1493 1494 1495 1496 1497 1498
	 * To handle the page fault we need to drop the hash bucket
	 * lock here. That gives the other task (either the pending
	 * owner itself or the task which stole the rtmutex) the
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1499
	 */
1500 1501
handle_fault:
	spin_unlock(q->lock_ptr);
1502

1503
	ret = fault_in_user_writeable(uaddr);
1504

1505
	spin_lock(q->lock_ptr);
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1517 1518
}

E
Eric Dumazet 已提交
1519 1520
/*
 * In case we must use restart_block to restart a futex_wait,
1521
 * we encode in the 'flags' shared capability
E
Eric Dumazet 已提交
1522
 */
1523 1524
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
1525
#define FLAGS_HAS_TIMEOUT	0x04
E
Eric Dumazet 已提交
1526

N
Nick Piggin 已提交
1527
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
		       int locked)
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
			ret = fixup_pi_state_owner(uaddr, q, current, fshared);
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
		 * rt_mutex. Too late. We can access the rt_mutex_owner without
		 * locking, as the other task is now blocked on the hash bucket
		 * lock. Fix the state up.
		 */
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
		ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
	 * the owner, nor the pending owner, of the rt_mutex.
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1602 1603 1604 1605 1606 1607 1608
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1609
				struct hrtimer_sleeper *timeout)
1610 1611 1612 1613 1614 1615 1616
{
	queue_me(q, hb);

	/*
	 * There might have been scheduling since the queue_me(), as we
	 * cannot hold a spinlock across the get_user() in case it
	 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
T
Thomas Gleixner 已提交
1617
	 * queueing ourselves into the futex hash. This code thus has to
1618 1619 1620
	 * rely on the futex_wake() code removing us from hash when it
	 * wakes us up.
	 */
T
Thomas Gleixner 已提交
1621
	set_current_state(TASK_INTERRUPTIBLE);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
	 * !plist_node_empty() is safe here without any lock.
	 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
 */
static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1665
{
1666 1667
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1668 1669

	/*
D
Darren Hart 已提交
1670
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 */
1686 1687
retry:
	q->key = FUTEX_KEY_INIT;
1688
	ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1689
	if (unlikely(ret != 0))
1690
		return ret;
1691 1692 1693 1694

retry_private:
	*hb = queue_lock(q);

1695
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1696

1697 1698
	if (ret) {
		queue_unlock(q, *hb);
L
Linus Torvalds 已提交
1699

1700
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1701
		if (ret)
1702
			goto out;
L
Linus Torvalds 已提交
1703

D
Darren Hart 已提交
1704 1705 1706
		if (!fshared)
			goto retry_private;

1707
		put_futex_key(fshared, &q->key);
D
Darren Hart 已提交
1708
		goto retry;
L
Linus Torvalds 已提交
1709
	}
1710

1711 1712 1713
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
1714
	}
L
Linus Torvalds 已提交
1715

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
out:
	if (ret)
		put_futex_key(fshared, &q->key);
	return ret;
}

static int futex_wait(u32 __user *uaddr, int fshared,
		      u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
	struct futex_q q;
	int ret;

	if (!bitset)
		return -EINVAL;

	q.pi_state = NULL;
	q.bitset = bitset;
1736
	q.rt_waiter = NULL;
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	if (abs_time) {
		to = &timeout;

		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
	if (ret)
		goto out;

1753
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
1754
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
1755 1756

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
1757
	ret = 0;
L
Linus Torvalds 已提交
1758
	if (!unqueue_me(&q))
P
Peter Zijlstra 已提交
1759 1760
		goto out_put_key;
	ret = -ETIMEDOUT;
1761
	if (to && !to->task)
P
Peter Zijlstra 已提交
1762
		goto out_put_key;
N
Nick Piggin 已提交
1763

1764 1765 1766 1767
	/*
	 * We expect signal_pending(current), but another thread may
	 * have handled it for us already.
	 */
P
Peter Zijlstra 已提交
1768
	ret = -ERESTARTSYS;
1769
	if (!abs_time)
P
Peter Zijlstra 已提交
1770
		goto out_put_key;
L
Linus Torvalds 已提交
1771

P
Peter Zijlstra 已提交
1772 1773 1774 1775 1776 1777
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
	restart->futex.uaddr = (u32 *)uaddr;
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
1778
	restart->futex.flags = FLAGS_HAS_TIMEOUT;
P
Peter Zijlstra 已提交
1779 1780 1781 1782 1783

	if (fshared)
		restart->futex.flags |= FLAGS_SHARED;
	if (clockrt)
		restart->futex.flags |= FLAGS_CLOCKRT;
1784

P
Peter Zijlstra 已提交
1785 1786 1787 1788
	ret = -ERESTART_RESTARTBLOCK;

out_put_key:
	put_futex_key(fshared, &q.key);
1789
out:
1790 1791 1792 1793
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
1794 1795 1796
	return ret;
}

N
Nick Piggin 已提交
1797 1798 1799

static long futex_wait_restart(struct restart_block *restart)
{
1800
	u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
P
Peter Zijlstra 已提交
1801
	int fshared = 0;
1802
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
1803

1804 1805 1806 1807
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
1808
	restart->fn = do_no_restart_syscall;
1809
	if (restart->futex.flags & FLAGS_SHARED)
P
Peter Zijlstra 已提交
1810
		fshared = 1;
1811
	return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1812 1813
				restart->futex.bitset,
				restart->futex.flags & FLAGS_CLOCKRT);
N
Nick Piggin 已提交
1814 1815 1816
}


1817 1818 1819 1820 1821 1822
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
P
Peter Zijlstra 已提交
1823
static int futex_lock_pi(u32 __user *uaddr, int fshared,
E
Eric Dumazet 已提交
1824
			 int detect, ktime_t *time, int trylock)
1825
{
1826
	struct hrtimer_sleeper timeout, *to = NULL;
1827 1828
	struct futex_hash_bucket *hb;
	struct futex_q q;
1829
	int res, ret;
1830 1831 1832 1833

	if (refill_pi_state_cache())
		return -ENOMEM;

1834
	if (time) {
1835
		to = &timeout;
1836 1837
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
1838
		hrtimer_init_sleeper(to, current);
1839
		hrtimer_set_expires(&to->timer, *time);
1840 1841
	}

1842
	q.pi_state = NULL;
1843
	q.rt_waiter = NULL;
1844
retry:
1845
	q.key = FUTEX_KEY_INIT;
1846
	ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1847
	if (unlikely(ret != 0))
1848
		goto out;
1849

D
Darren Hart 已提交
1850
retry_private:
E
Eric Sesterhenn 已提交
1851
	hb = queue_lock(&q);
1852

1853
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1854
	if (unlikely(ret)) {
1855
		switch (ret) {
1856 1857 1858 1859 1860 1861
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
1862 1863 1864 1865 1866 1867
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
1868
			put_futex_key(fshared, &q.key);
1869 1870 1871
			cond_resched();
			goto retry;
		default:
1872
			goto out_unlock_put_key;
1873 1874 1875 1876 1877 1878
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
1879
	queue_me(&q, hb);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

1893
	spin_lock(q.lock_ptr);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
	res = fixup_owner(uaddr, fshared, &q, !ret);
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
1905

1906
	/*
1907 1908
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
1909 1910 1911 1912
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

1913 1914
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
1915

1916
	goto out;
1917

1918
out_unlock_put_key:
1919 1920
	queue_unlock(&q, hb);

1921
out_put_key:
1922
	put_futex_key(fshared, &q.key);
1923
out:
1924 1925
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
1926
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
1927

1928
uaddr_faulted:
1929 1930
	queue_unlock(&q, hb);

1931
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
1932 1933
	if (ret)
		goto out_put_key;
1934

D
Darren Hart 已提交
1935 1936 1937 1938 1939
	if (!fshared)
		goto retry_private;

	put_futex_key(fshared, &q.key);
	goto retry;
1940 1941 1942 1943 1944 1945 1946
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
P
Peter Zijlstra 已提交
1947
static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1948 1949 1950 1951
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	u32 uval;
P
Pierre Peiffer 已提交
1952
	struct plist_head *head;
1953
	union futex_key key = FUTEX_KEY_INIT;
D
Darren Hart 已提交
1954
	int ret;
1955 1956 1957 1958 1959 1960 1961

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
1962
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1963 1964
		return -EPERM;

1965
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
T
Thomas Gleixner 已提交
1977
	if (!(uval & FUTEX_OWNER_DIED))
1978
		uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
T
Thomas Gleixner 已提交
1979

1980 1981 1982 1983 1984 1985 1986

	if (unlikely(uval == -EFAULT))
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
1987
	if (unlikely(uval == task_pid_vnr(current)))
1988 1989 1990 1991 1992 1993 1994 1995
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

P
Pierre Peiffer 已提交
1996
	plist_for_each_entry_safe(this, next, head, list) {
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2012 2013 2014 2015 2016
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2017 2018 2019

out_unlock:
	spin_unlock(&hb->lock);
2020
	put_futex_key(fshared, &key);
2021

2022
out:
2023 2024 2025
	return ret;

pi_faulted:
2026
	spin_unlock(&hb->lock);
D
Darren Hart 已提交
2027
	put_futex_key(fshared, &key);
2028

2029
	ret = fault_in_user_writeable(uaddr);
2030
	if (!ret)
2031 2032
		goto retry;

L
Linus Torvalds 已提交
2033 2034 2035
	return ret;
}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
2050
 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
		plist_del(&q->list, &q->list.plist);
		drop_futex_key_refs(&q->key);

		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
2077 2078
		else
			ret = -ERESTARTNOINTR;
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
 * @uaddr:	the futex we initialyl wait on (non-pi)
 * @fshared:	whether the futexes are shared (1) or not (0).  They must be
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all.
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
 * complete the acquisition of the rt_mutex prior to returning to userspace.
 * This ensures the rt_mutex maintains an owner when it has waiters; without
 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
 * need to.
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
 * 2) wakeup on uaddr2 after a requeue and subsequent unlock
 * 3) signal (before or after requeue)
 * 4) timeout (before or after requeue)
 *
 * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function.
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
 * If 6, we setup a restart_block with futex_lock_pi() as the function.
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
				 u32 val, ktime_t *abs_time, u32 bitset,
				 int clockrt, u32 __user *uaddr2)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
	union futex_key key2;
	struct futex_q q;
	int res, ret;

	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

	q.pi_state = NULL;
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;

	key2 = FUTEX_KEY_INIT;
2160
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2161 2162 2163 2164 2165
	if (unlikely(ret != 0))
		goto out;

	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
T
Thomas Gleixner 已提交
2166 2167
	if (ret)
		goto out_key2;
2168 2169

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2170
	futex_wait_queue_me(hb, &q, to);
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
	 * race with the atomic proxy lock acquition by the requeue code.
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
			ret = fixup_pi_state_owner(uaddr2, &q, current,
						   fshared);
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
		WARN_ON(!&q.pi_state);
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
		res = fixup_owner(uaddr2, fshared, &q, !ret);
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
		 * acquired the lock, clear our -ETIMEDOUT or -EINTR.
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
		if (rt_mutex_owner(pi_mutex) == current)
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2234 2235 2236 2237 2238 2239 2240 2241
		 * We've already been requeued, but we have no way to
		 * restart by calling futex_lock_pi() directly. We
		 * could restart the syscall, but that will look at
		 * the user space value and return right away. So we
		 * drop back with EWOULDBLOCK to tell user space that
		 * "val" has been changed. That's the same what the
		 * restart of the syscall would do in
		 * futex_wait_setup().
2242
		 */
2243
		ret = -EWOULDBLOCK;
2244 2245 2246 2247
	}

out_put_keys:
	put_futex_key(fshared, &q.key);
T
Thomas Gleixner 已提交
2248
out_key2:
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	put_futex_key(fshared, &key2);

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2259 2260 2261 2262 2263 2264 2265
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2266
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
 * sys_set_robust_list - set the robust-futex list head of a task
 * @head: pointer to the list-head
 * @len: length of the list-head, as userspace expects
 */
2279 2280
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2281
{
2282 2283
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
 * sys_get_robust_list - get the robust-futex list head of a task
 * @pid: pid of the process [zero for current task]
 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
 * @len_ptr: pointer to a length field, the kernel fills in the header size
 */
2301 2302 2303
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2304
{
A
Al Viro 已提交
2305
	struct robust_list_head __user *head;
2306
	unsigned long ret;
2307
	const struct cred *cred = current_cred(), *pcred;
2308

2309 2310 2311
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2312 2313 2314 2315 2316 2317
	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
2318
		rcu_read_lock();
2319
		p = find_task_by_vpid(pid);
2320 2321 2322
		if (!p)
			goto err_unlock;
		ret = -EPERM;
2323 2324 2325
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid &&
2326
		    !capable(CAP_SYS_PTRACE))
2327 2328
			goto err_unlock;
		head = p->robust_list;
2329
		rcu_read_unlock();
2330 2331 2332 2333 2334 2335 2336
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2337
	rcu_read_unlock();
2338 2339 2340 2341 2342 2343 2344 2345

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2346
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2347
{
2348
	u32 uval, nval, mval;
2349

2350 2351
retry:
	if (get_user(uval, uaddr))
2352 2353
		return -1;

2354
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2365 2366 2367
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
		nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);

2368 2369 2370 2371
		if (nval == -EFAULT)
			return -1;

		if (nval != uval)
2372
			goto retry;
2373

2374 2375 2376 2377
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2378
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2379
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2380 2381 2382 2383
	}
	return 0;
}

2384 2385 2386 2387
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2388 2389
				     struct robust_list __user * __user *head,
				     int *pi)
2390 2391 2392
{
	unsigned long uentry;

A
Al Viro 已提交
2393
	if (get_user(uentry, (unsigned long __user *)head))
2394 2395
		return -EFAULT;

A
Al Viro 已提交
2396
	*entry = (void __user *)(uentry & ~1UL);
2397 2398 2399 2400 2401
	*pi = uentry & 1;

	return 0;
}

2402 2403 2404 2405 2406 2407 2408 2409 2410
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2411 2412
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2413
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2414
	int rc;
2415

2416 2417 2418
	if (!futex_cmpxchg_enabled)
		return;

2419 2420 2421 2422
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2423
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2434
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2435
		return;
2436

M
Martin Schwidefsky 已提交
2437
	next_entry = NULL;	/* avoid warning with gcc */
2438
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2439 2440 2441 2442 2443
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2444 2445
		/*
		 * A pending lock might already be on the list, so
2446
		 * don't process it twice:
2447 2448
		 */
		if (entry != pending)
A
Al Viro 已提交
2449
			if (handle_futex_death((void __user *)entry + futex_offset,
2450
						curr, pi))
2451
				return;
M
Martin Schwidefsky 已提交
2452
		if (rc)
2453
			return;
M
Martin Schwidefsky 已提交
2454 2455
		entry = next_entry;
		pi = next_pi;
2456 2457 2458 2459 2460 2461 2462 2463
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2464 2465 2466 2467

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2468 2469
}

2470
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2471
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2472
{
2473
	int clockrt, ret = -ENOSYS;
E
Eric Dumazet 已提交
2474
	int cmd = op & FUTEX_CMD_MASK;
P
Peter Zijlstra 已提交
2475
	int fshared = 0;
E
Eric Dumazet 已提交
2476 2477

	if (!(op & FUTEX_PRIVATE_FLAG))
P
Peter Zijlstra 已提交
2478
		fshared = 1;
L
Linus Torvalds 已提交
2479

2480
	clockrt = op & FUTEX_CLOCK_REALTIME;
2481
	if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2482
		return -ENOSYS;
L
Linus Torvalds 已提交
2483

E
Eric Dumazet 已提交
2484
	switch (cmd) {
L
Linus Torvalds 已提交
2485
	case FUTEX_WAIT:
2486 2487
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
2488
		ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
L
Linus Torvalds 已提交
2489 2490
		break;
	case FUTEX_WAKE:
2491 2492 2493
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
		ret = futex_wake(uaddr, fshared, val, val3);
L
Linus Torvalds 已提交
2494 2495
		break;
	case FUTEX_REQUEUE:
2496
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2497 2498
		break;
	case FUTEX_CMP_REQUEUE:
2499 2500
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    0);
L
Linus Torvalds 已提交
2501
		break;
2502
	case FUTEX_WAKE_OP:
E
Eric Dumazet 已提交
2503
		ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2504
		break;
2505
	case FUTEX_LOCK_PI:
2506 2507
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2508 2509
		break;
	case FUTEX_UNLOCK_PI:
2510 2511
		if (futex_cmpxchg_enabled)
			ret = futex_unlock_pi(uaddr, fshared);
2512 2513
		break;
	case FUTEX_TRYLOCK_PI:
2514 2515
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2516
		break;
2517 2518 2519 2520 2521 2522 2523 2524 2525
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
		ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
					    clockrt, uaddr2);
		break;
	case FUTEX_CMP_REQUEUE_PI:
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    1);
		break;
L
Linus Torvalds 已提交
2526 2527 2528 2529 2530 2531 2532
	default:
		ret = -ENOSYS;
	}
	return ret;
}


2533 2534 2535
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2536
{
2537 2538
	struct timespec ts;
	ktime_t t, *tp = NULL;
2539
	u32 val2 = 0;
E
Eric Dumazet 已提交
2540
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2541

2542
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2543 2544
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2545
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2546
			return -EFAULT;
2547
		if (!timespec_valid(&ts))
2548
			return -EINVAL;
2549 2550

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2551
		if (cmd == FUTEX_WAIT)
2552
			t = ktime_add_safe(ktime_get(), t);
2553
		tp = &t;
L
Linus Torvalds 已提交
2554 2555
	}
	/*
2556
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2557
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2558
	 */
2559
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2560
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2561
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2562

2563
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2564 2565
}

2566
static int __init futex_init(void)
L
Linus Torvalds 已提交
2567
{
2568
	u32 curval;
T
Thomas Gleixner 已提交
2569
	int i;
A
Akinobu Mita 已提交
2570

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non functional ones will return
	 * -ENOSYS.
	 */
	curval = cmpxchg_futex_value_locked(NULL, 0, 0);
	if (curval == -EFAULT)
		futex_cmpxchg_enabled = 1;

T
Thomas Gleixner 已提交
2585 2586 2587 2588 2589
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2590 2591
	return 0;
}
2592
__initcall(futex_init);