slub.c 126.4 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212 213
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
214
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
215
#else
216 217 218
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
219
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220

221
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
222 223
#endif

224
static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 226
{
#ifdef CONFIG_SLUB_STATS
227
	__this_cpu_inc(s->cpu_slab->stat[si]);
228 229 230
#endif
}

C
Christoph Lameter 已提交
231 232 233 234 235 236 237 238 239
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
240
/* Verify that a pointer has an address that is valid within a slab page */
241 242 243 244 245
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

246
	if (!object)
247 248
		return 1;

249
	base = page_address(page);
250
	if (object < base || object >= base + page->objects * s->size ||
251 252 253 254 255 256 257
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

258 259 260 261 262
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

263 264 265 266 267
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

268 269 270 271 272 273 274 275 276 277 278 279
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

280 281 282 283 284 285
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
286 287
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 289 290 291 292 293 294 295
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

296 297 298 299 300 301 302 303
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304
		return s->object_size;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

320 321 322 323 324
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

325
static inline struct kmem_cache_order_objects oo_make(int order,
326
		unsigned long size, int reserved)
327 328
{
	struct kmem_cache_order_objects x = {
329
		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 331 332 333 334 335 336
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
337
	return x.x >> OO_SHIFT;
338 339 340 341
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
342
	return x.x & OO_MASK;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

373 374 375 376 377 378 379
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
380 381
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382
	if (s->flags & __CMPXCHG_DOUBLE) {
383
		if (cmpxchg_double(&page->freelist, &page->counters,
384 385 386 387 388 389 390
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
391 392
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
393
			page->freelist = freelist_new;
394
			set_page_slub_counters(page, counters_new);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

411 412 413 414 415
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
416 417
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418
	if (s->flags & __CMPXCHG_DOUBLE) {
419
		if (cmpxchg_double(&page->freelist, &page->counters,
420 421 422 423 424 425
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
426 427 428
		unsigned long flags;

		local_irq_save(flags);
429
		slab_lock(page);
430 431
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
432
			page->freelist = freelist_new;
433
			set_page_slub_counters(page, counters_new);
434
			slab_unlock(page);
435
			local_irq_restore(flags);
436 437
			return 1;
		}
438
		slab_unlock(page);
439
		local_irq_restore(flags);
440 441 442 443 444 445 446 447 448 449 450 451
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
452
#ifdef CONFIG_SLUB_DEBUG
453 454 455
/*
 * Determine a map of object in use on a page.
 *
456
 * Node listlock must be held to guarantee that the page does
457 458 459 460 461 462 463 464 465 466 467
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
468 469 470
/*
 * Debug settings:
 */
471 472 473
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
474
static int slub_debug;
475
#endif
C
Christoph Lameter 已提交
476 477

static char *slub_debug_slabs;
478
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
479

C
Christoph Lameter 已提交
480 481 482 483 484
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
485 486
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
503
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
504
{
A
Akinobu Mita 已提交
505
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
506 507

	if (addr) {
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
526 527
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
528
		p->pid = current->pid;
C
Christoph Lameter 已提交
529 530 531 532 533 534 535
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
536 537 538
	if (!(s->flags & SLAB_STORE_USER))
		return;

539 540
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
541 542 543 544 545 546 547
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

548
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 551 552 553 554 555 556 557 558 559
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
560 561 562 563 564 565 566 567 568 569 570 571 572
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
573 574 575
	printk(KERN_ERR
	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
	       page, page->objects, page->inuse, page->freelist, page->flags);
576 577 578 579 580 581 582 583 584 585 586 587 588

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
589
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
590 591
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
592

593
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
C
Christoph Lameter 已提交
594 595
}

596 597 598 599 600 601 602 603 604 605 606 607
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
608 609
{
	unsigned int off;	/* Offset of last byte */
610
	u8 *addr = page_address(page);
611 612 613 614 615 616 617 618 619

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
620
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
621

622
	print_section("Object ", p, min_t(unsigned long, s->object_size,
623
				PAGE_SIZE));
C
Christoph Lameter 已提交
624
	if (s->flags & SLAB_RED_ZONE)
625 626
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
627 628 629 630 631 632

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

633
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
634 635 636 637
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
638
		print_section("Padding ", p + off, s->size - off);
639 640

	dump_stack();
C
Christoph Lameter 已提交
641 642 643 644 645
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
646
	slab_bug(s, "%s", reason);
647
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
648 649
}

650 651
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
652 653 654 655
{
	va_list args;
	char buf[100];

656 657
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
658
	va_end(args);
659
	slab_bug(s, "%s", buf);
660
	print_page_info(page);
C
Christoph Lameter 已提交
661 662 663
	dump_stack();
}

664
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
665 666 667 668
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
669 670
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
671 672 673
	}

	if (s->flags & SLAB_RED_ZONE)
674
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
675 676
}

677 678 679 680 681 682 683 684 685
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
686
			u8 *start, unsigned int value, unsigned int bytes)
687 688 689 690
{
	u8 *fault;
	u8 *end;

691
	fault = memchr_inv(start, value, bytes);
692 693 694 695 696 697 698 699 700 701 702 703 704 705
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
706 707 708 709 710 711 712 713 714
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
715
 *
C
Christoph Lameter 已提交
716 717 718
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
719
 * object + s->object_size
C
Christoph Lameter 已提交
720
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
721
 * 	Padding is extended by another word if Redzoning is enabled and
722
 * 	object_size == inuse.
C
Christoph Lameter 已提交
723
 *
C
Christoph Lameter 已提交
724 725 726 727
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
728 729
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
730 731
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
732
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
733
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
734 735 736
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
737 738
 *
 * object + s->size
C
Christoph Lameter 已提交
739
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
740
 *
741
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
742
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

761 762
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
763 764
}

765
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
766 767
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
768 769 770 771 772
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
773 774 775 776

	if (!(s->flags & SLAB_POISON))
		return 1;

777
	start = page_address(page);
778
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 780
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
781 782 783
	if (!remainder)
		return 1;

784
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 786 787 788 789 790
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791
	print_section("Padding ", end - remainder, remainder);
792

E
Eric Dumazet 已提交
793
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794
	return 0;
C
Christoph Lameter 已提交
795 796 797
}

static int check_object(struct kmem_cache *s, struct page *page,
798
					void *object, u8 val)
C
Christoph Lameter 已提交
799 800
{
	u8 *p = object;
801
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
802 803

	if (s->flags & SLAB_RED_ZONE) {
804
		if (!check_bytes_and_report(s, page, object, "Redzone",
805
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
806 807
			return 0;
	} else {
808
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
809
			check_bytes_and_report(s, page, p, "Alignment padding",
810 811
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
812
		}
C
Christoph Lameter 已提交
813 814 815
	}

	if (s->flags & SLAB_POISON) {
816
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817
			(!check_bytes_and_report(s, page, p, "Poison", p,
818
					POISON_FREE, s->object_size - 1) ||
819
			 !check_bytes_and_report(s, page, p, "Poison",
820
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
821 822 823 824 825 826 827
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

828
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
829 830 831 832 833 834 835 836 837 838
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
839
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
840
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
841
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
842
		 */
843
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
844 845 846 847 848 849 850
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
851 852
	int maxobj;

C
Christoph Lameter 已提交
853 854 855
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
856
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
857 858
		return 0;
	}
859

860
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 862 863 864 865 866
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
867
		slab_err(s, page, "inuse %u > max %u",
868
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
869 870 871 872 873 874 875 876
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
877 878
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
879 880 881 882
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
883
	void *fp;
C
Christoph Lameter 已提交
884
	void *object = NULL;
885
	unsigned long max_objects;
C
Christoph Lameter 已提交
886

887
	fp = page->freelist;
888
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
889 890 891 892 893 894
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
895
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
896
			} else {
897
				slab_err(s, page, "Freepointer corrupt");
898
				page->freelist = NULL;
899
				page->inuse = page->objects;
900
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
901 902 903 904 905 906 907 908 909
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

910
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 912
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
913 914 915 916 917 918 919

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
920
	if (page->inuse != page->objects - nr) {
921
		slab_err(s, page, "Wrong object count. Counter is %d but "
922 923
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
924
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
925 926 927 928
	}
	return search == NULL;
}

929 930
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
931 932 933 934 935 936 937 938 939
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
940 941
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
942 943 944 945 946

		dump_stack();
	}
}

947 948 949 950
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
951 952 953 954 955 956 957 958 959 960
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

961 962
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
963
	flags &= gfp_allowed_mask;
964 965 966
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

967
	return should_failslab(s->object_size, flags, s->flags);
968 969
}

970 971
static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
972
{
973
	flags &= gfp_allowed_mask;
974
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 977 978 979 980 981
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

982
	/*
X
Xie XiuQi 已提交
983
	 * Trouble is that we may no longer disable interrupts in the fast path
984 985 986 987 988 989 990 991
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
992 993
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
994 995 996
		local_irq_restore(flags);
	}
#endif
997
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
998
		debug_check_no_obj_freed(x, s->object_size);
999 1000
}

1001
/*
C
Christoph Lameter 已提交
1002
 * Tracking of fully allocated slabs for debugging purposes.
1003 1004
 *
 * list_lock must be held.
1005
 */
1006 1007
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1008
{
1009 1010 1011
	if (!(s->flags & SLAB_STORE_USER))
		return;

1012 1013 1014
	list_add(&page->lru, &n->full);
}

1015 1016 1017
/*
 * list_lock must be held.
 */
1018 1019 1020 1021 1022 1023 1024 1025
static void remove_full(struct kmem_cache *s, struct page *page)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	list_del(&page->lru);
}

1026 1027 1028 1029 1030 1031 1032 1033
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1034 1035 1036 1037 1038
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1039
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1040 1041 1042 1043 1044 1045 1046 1047 1048
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1049
	if (likely(n)) {
1050
		atomic_long_inc(&n->nr_slabs);
1051 1052
		atomic_long_add(objects, &n->total_objects);
	}
1053
}
1054
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1055 1056 1057 1058
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1059
	atomic_long_sub(objects, &n->total_objects);
1060 1061 1062
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1063 1064 1065 1066 1067 1068
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1069
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1070 1071 1072
	init_tracking(s, object);
}

1073 1074
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1075
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1076 1077 1078 1079 1080 1081
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1082
		goto bad;
C
Christoph Lameter 已提交
1083 1084
	}

1085
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1086 1087
		goto bad;

C
Christoph Lameter 已提交
1088 1089 1090 1091
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1092
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1093
	return 1;
C
Christoph Lameter 已提交
1094

C
Christoph Lameter 已提交
1095 1096 1097 1098 1099
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1100
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1101
		 */
1102
		slab_fix(s, "Marking all objects used");
1103
		page->inuse = page->objects;
1104
		page->freelist = NULL;
C
Christoph Lameter 已提交
1105 1106 1107 1108
	}
	return 0;
}

1109 1110 1111
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1112
{
1113
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1114

1115
	spin_lock_irqsave(&n->list_lock, *flags);
1116 1117
	slab_lock(page);

C
Christoph Lameter 已提交
1118 1119 1120 1121
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1122
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1123 1124 1125 1126
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1127
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1128 1129 1130
		goto fail;
	}

1131
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1132
		goto out;
C
Christoph Lameter 已提交
1133

1134
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1135
		if (!PageSlab(page)) {
1136 1137
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1138
		} else if (!page->slab_cache) {
C
Christoph Lameter 已提交
1139
			printk(KERN_ERR
1140
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1141
						object);
1142
			dump_stack();
P
Pekka Enberg 已提交
1143
		} else
1144 1145
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1146 1147
		goto fail;
	}
C
Christoph Lameter 已提交
1148 1149 1150 1151

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1152
	init_object(s, object, SLUB_RED_INACTIVE);
1153
out:
1154
	slab_unlock(page);
1155 1156 1157 1158 1159
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1160

C
Christoph Lameter 已提交
1161
fail:
1162 1163
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1164
	slab_fix(s, "Object at 0x%p not freed", object);
1165
	return NULL;
C
Christoph Lameter 已提交
1166 1167
}

C
Christoph Lameter 已提交
1168 1169
static int __init setup_slub_debug(char *str)
{
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1184 1185 1186 1187 1188 1189 1190 1191 1192
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1203
	for (; *str && *str != ','; str++) {
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1220 1221 1222
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1223 1224
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1225
				"unknown. skipped\n", *str);
1226
		}
C
Christoph Lameter 已提交
1227 1228
	}

1229
check_slabs:
C
Christoph Lameter 已提交
1230 1231
	if (*str == ',')
		slub_debug_slabs = str + 1;
1232
out:
C
Christoph Lameter 已提交
1233 1234 1235 1236 1237
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1238
static unsigned long kmem_cache_flags(unsigned long object_size,
1239
	unsigned long flags, const char *name,
1240
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1241 1242
{
	/*
1243
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1244
	 */
1245 1246
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1247
		flags |= slub_debug;
1248 1249

	return flags;
C
Christoph Lameter 已提交
1250 1251
}
#else
C
Christoph Lameter 已提交
1252 1253
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1254

C
Christoph Lameter 已提交
1255
static inline int alloc_debug_processing(struct kmem_cache *s,
1256
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1257

1258 1259 1260
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1261 1262 1263 1264

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1265
			void *object, u8 val) { return 1; }
1266 1267
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1268
static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1269
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1270
	unsigned long flags, const char *name,
1271
	void (*ctor)(void *))
1272 1273 1274
{
	return flags;
}
C
Christoph Lameter 已提交
1275
#define slub_debug 0
1276

1277 1278
#define disable_higher_order_debug 0

1279 1280
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1281 1282
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1283 1284 1285 1286
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1298 1299 1300 1301
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1302 1303 1304 1305 1306
		void *object)
{
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
		flags & gfp_allowed_mask);
}
1307

1308 1309 1310 1311
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
}
1312

1313
#endif /* CONFIG_SLUB_DEBUG */
1314

C
Christoph Lameter 已提交
1315 1316 1317
/*
 * Slab allocation and freeing
 */
1318 1319 1320 1321 1322
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1323 1324
	flags |= __GFP_NOTRACK;

1325
	if (node == NUMA_NO_NODE)
1326 1327
		return alloc_pages(flags, order);
	else
1328
		return alloc_pages_exact_node(node, flags, order);
1329 1330
}

C
Christoph Lameter 已提交
1331 1332
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1333
	struct page *page;
1334
	struct kmem_cache_order_objects oo = s->oo;
1335
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1336

1337 1338 1339 1340 1341
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1342
	flags |= s->allocflags;
1343

1344 1345 1346 1347 1348 1349 1350
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1351 1352 1353 1354 1355 1356 1357
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
C
Christoph Lameter 已提交
1358

1359 1360
		if (page)
			stat(s, ORDER_FALLBACK);
1361
	}
V
Vegard Nossum 已提交
1362

1363
	if (kmemcheck_enabled && page
1364
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1377 1378
	}

1379 1380 1381 1382 1383
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1384
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1385 1386 1387
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1388
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1389 1390 1391 1392 1393 1394 1395

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1396
	setup_object_debug(s, page, object);
1397
	if (unlikely(s->ctor))
1398
		s->ctor(object);
C
Christoph Lameter 已提交
1399 1400 1401 1402 1403 1404 1405 1406
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1407
	int order;
C
Christoph Lameter 已提交
1408

C
Christoph Lameter 已提交
1409
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1410

C
Christoph Lameter 已提交
1411 1412
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1413 1414 1415
	if (!page)
		goto out;

G
Glauber Costa 已提交
1416
	order = compound_order(page);
1417
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1418
	memcg_bind_pages(s, order);
1419
	page->slab_cache = s;
1420
	__SetPageSlab(page);
1421 1422
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1423 1424 1425 1426

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1427
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1428 1429

	last = start;
1430
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1431 1432 1433 1434 1435
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1436
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1437 1438

	page->freelist = start;
1439
	page->inuse = page->objects;
1440
	page->frozen = 1;
C
Christoph Lameter 已提交
1441 1442 1443 1444 1445 1446
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1447 1448
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1449

1450
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1451 1452 1453
		void *p;

		slab_pad_check(s, page);
1454 1455
		for_each_object(p, s, page_address(page),
						page->objects)
1456
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1457 1458
	}

1459
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1460

C
Christoph Lameter 已提交
1461 1462 1463
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1464
		-pages);
C
Christoph Lameter 已提交
1465

1466
	__ClearPageSlabPfmemalloc(page);
1467
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1468 1469

	memcg_release_pages(s, order);
1470
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1471 1472
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1473
	__free_memcg_kmem_pages(page, order);
C
Christoph Lameter 已提交
1474 1475
}

1476 1477 1478
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1479 1480 1481 1482
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1483 1484 1485 1486 1487
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1488
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1489 1490 1491 1492 1493
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1508 1509 1510 1511 1512 1513 1514 1515

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1516
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1517 1518 1519 1520
	free_slab(s, page);
}

/*
1521 1522 1523
 * Management of partially allocated slabs.
 *
 * list_lock must be held.
C
Christoph Lameter 已提交
1524
 */
1525
static inline void add_partial(struct kmem_cache_node *n,
1526
				struct page *page, int tail)
C
Christoph Lameter 已提交
1527
{
C
Christoph Lameter 已提交
1528
	n->nr_partial++;
1529
	if (tail == DEACTIVATE_TO_TAIL)
1530 1531 1532
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1533 1534
}

1535 1536 1537 1538
/*
 * list_lock must be held.
 */
static inline void remove_partial(struct kmem_cache_node *n,
1539 1540 1541 1542 1543 1544
					struct page *page)
{
	list_del(&page->lru);
	n->nr_partial--;
}

C
Christoph Lameter 已提交
1545
/*
1546 1547
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1548
 *
1549 1550
 * Returns a list of objects or NULL if it fails.
 *
1551
 * Must hold list_lock since we modify the partial list.
C
Christoph Lameter 已提交
1552
 */
1553
static inline void *acquire_slab(struct kmem_cache *s,
1554
		struct kmem_cache_node *n, struct page *page,
1555
		int mode, int *objects)
C
Christoph Lameter 已提交
1556
{
1557 1558 1559 1560 1561 1562 1563 1564 1565
	void *freelist;
	unsigned long counters;
	struct page new;

	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1566 1567 1568
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1569
	*objects = new.objects - new.inuse;
1570
	if (mode) {
1571
		new.inuse = page->objects;
1572 1573 1574 1575
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1576

1577
	VM_BUG_ON(new.frozen);
1578
	new.frozen = 1;
1579

1580
	if (!__cmpxchg_double_slab(s, page,
1581
			freelist, counters,
1582
			new.freelist, new.counters,
1583 1584
			"acquire_slab"))
		return NULL;
1585 1586

	remove_partial(n, page);
1587
	WARN_ON(!freelist);
1588
	return freelist;
C
Christoph Lameter 已提交
1589 1590
}

1591
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1592
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1593

C
Christoph Lameter 已提交
1594
/*
C
Christoph Lameter 已提交
1595
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1596
 */
1597 1598
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1599
{
1600 1601
	struct page *page, *page2;
	void *object = NULL;
1602 1603
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1604 1605 1606 1607

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1608 1609
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1610 1611 1612 1613 1614
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1615
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1616
		void *t;
1617

1618 1619 1620
		if (!pfmemalloc_match(page, flags))
			continue;

1621
		t = acquire_slab(s, n, page, object == NULL, &objects);
1622 1623 1624
		if (!t)
			break;

1625
		available += objects;
1626
		if (!object) {
1627 1628 1629 1630
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1631
			put_cpu_partial(s, page, 0);
1632
			stat(s, CPU_PARTIAL_NODE);
1633
		}
1634 1635
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1636 1637
			break;

1638
	}
C
Christoph Lameter 已提交
1639
	spin_unlock(&n->list_lock);
1640
	return object;
C
Christoph Lameter 已提交
1641 1642 1643
}

/*
C
Christoph Lameter 已提交
1644
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1645
 */
1646
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1647
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1648 1649 1650
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1651
	struct zoneref *z;
1652 1653
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1654
	void *object;
1655
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1656 1657

	/*
C
Christoph Lameter 已提交
1658 1659 1660 1661
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1662
	 *
C
Christoph Lameter 已提交
1663 1664 1665 1666
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1667
	 *
C
Christoph Lameter 已提交
1668
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1669 1670 1671 1672 1673
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1674
	 */
1675 1676
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1677 1678
		return NULL;

1679 1680
	do {
		cpuset_mems_cookie = get_mems_allowed();
1681
		zonelist = node_zonelist(slab_node(), flags);
1682 1683 1684 1685 1686 1687 1688
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1689
				object = get_partial_node(s, n, c, flags);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
				if (object) {
					/*
					 * Return the object even if
					 * put_mems_allowed indicated that
					 * the cpuset mems_allowed was
					 * updated in parallel. It's a
					 * harmless race between the alloc
					 * and the cpuset update.
					 */
					put_mems_allowed(cpuset_mems_cookie);
					return object;
				}
1702
			}
C
Christoph Lameter 已提交
1703
		}
1704
	} while (!put_mems_allowed(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1705 1706 1707 1708 1709 1710 1711
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1712
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1713
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1714
{
1715
	void *object;
1716
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1717

1718
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1719 1720
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1721

1722
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1723 1724
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1781
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1782 1783
}

1784
static void init_kmem_cache_cpus(struct kmem_cache *s)
1785 1786 1787 1788 1789 1790
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1791

C
Christoph Lameter 已提交
1792 1793 1794
/*
 * Remove the cpu slab
 */
1795 1796
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1797
{
1798 1799 1800 1801 1802
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1803
	int tail = DEACTIVATE_TO_HEAD;
1804 1805 1806 1807
	struct page new;
	struct page old;

	if (page->freelist) {
1808
		stat(s, DEACTIVATE_REMOTE_FREES);
1809
		tail = DEACTIVATE_TO_TAIL;
1810 1811
	}

1812
	/*
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1830
			VM_BUG_ON(!new.frozen);
1831

1832
		} while (!__cmpxchg_double_slab(s, page,
1833 1834 1835 1836 1837 1838 1839
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1840
	/*
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1853
	 */
1854
redo:
1855

1856 1857
	old.freelist = page->freelist;
	old.counters = page->counters;
1858
	VM_BUG_ON(!old.frozen);
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1871
	if (!new.inuse && n->nr_partial > s->min_partial)
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1904

1905 1906 1907 1908 1909
			remove_full(s, page);

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1910
			stat(s, tail);
1911 1912

		} else if (m == M_FULL) {
1913

1914 1915 1916 1917 1918 1919 1920
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1921
	if (!__cmpxchg_double_slab(s, page,
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1934
	}
C
Christoph Lameter 已提交
1935 1936
}

1937 1938 1939
/*
 * Unfreeze all the cpu partial slabs.
 *
1940 1941 1942
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1943
 */
1944 1945
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1946
{
1947
#ifdef CONFIG_SLUB_CPU_PARTIAL
1948
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1949
	struct page *page, *discard_page = NULL;
1950 1951 1952 1953 1954 1955

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1956 1957 1958 1959 1960 1961 1962 1963 1964

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1965 1966 1967 1968 1969

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1970
			VM_BUG_ON(!old.frozen);
1971 1972 1973 1974 1975 1976

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1977
		} while (!__cmpxchg_double_slab(s, page,
1978 1979 1980 1981
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1982
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1983 1984
			page->next = discard_page;
			discard_page = page;
1985 1986 1987
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1988 1989 1990 1991 1992
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1993 1994 1995 1996 1997 1998 1999 2000 2001

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2002
#endif
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2014
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2015
{
2016
#ifdef CONFIG_SLUB_CPU_PARTIAL
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2036
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2037
				local_irq_restore(flags);
2038
				oldpage = NULL;
2039 2040
				pobjects = 0;
				pages = 0;
2041
				stat(s, CPU_PARTIAL_DRAIN);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2052 2053
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2054
#endif
2055 2056
}

2057
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2058
{
2059
	stat(s, CPUSLAB_FLUSH);
2060 2061 2062 2063 2064
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2065 2066 2067 2068
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2069
 *
C
Christoph Lameter 已提交
2070 2071
 * Called from IPI handler with interrupts disabled.
 */
2072
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2073
{
2074
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2075

2076 2077 2078 2079
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2080
		unfreeze_partials(s, c);
2081
	}
C
Christoph Lameter 已提交
2082 2083 2084 2085 2086 2087
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2088
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2089 2090
}

2091 2092 2093 2094 2095
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2096
	return c->page || c->partial;
2097 2098
}

C
Christoph Lameter 已提交
2099 2100
static void flush_all(struct kmem_cache *s)
{
2101
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2102 2103
}

2104 2105 2106 2107
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2108
static inline int node_match(struct page *page, int node)
2109 2110
{
#ifdef CONFIG_NUMA
2111
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2112 2113 2114 2115 2116
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2136 2137 2138 2139 2140 2141 2142 2143 2144
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2154
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2155 2156
		s->size, oo_order(s->oo), oo_order(s->min));

2157
	if (oo_order(s->min) > get_order(s->object_size))
2158 2159 2160
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2170 2171 2172
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2173 2174 2175 2176 2177 2178 2179

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2180 2181 2182
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2183
	void *freelist;
2184 2185
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2186

2187
	freelist = get_partial(s, flags, node, c);
2188

2189 2190 2191 2192
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2193 2194 2195 2196 2197 2198 2199 2200 2201
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2202
		freelist = page->freelist;
2203 2204 2205 2206 2207 2208
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2209
		freelist = NULL;
2210

2211
	return freelist;
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2222
/*
2223 2224
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2225 2226 2227 2228
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2229 2230
 *
 * This function must be called with interrupt disabled.
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2241

2242
		new.counters = counters;
2243
		VM_BUG_ON(!new.frozen);
2244 2245 2246 2247

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2248
	} while (!__cmpxchg_double_slab(s, page,
2249 2250 2251 2252 2253 2254 2255
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2256
/*
2257 2258 2259 2260 2261 2262
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2263
 *
2264 2265 2266
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2267
 *
2268
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2269 2270
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2271
 */
2272 2273
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2274
{
2275
	void *freelist;
2276
	struct page *page;
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2288

2289 2290
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2291
		goto new_slab;
2292
redo:
2293

2294
	if (unlikely(!node_match(page, node))) {
2295
		stat(s, ALLOC_NODE_MISMATCH);
2296
		deactivate_slab(s, page, c->freelist);
2297 2298
		c->page = NULL;
		c->freelist = NULL;
2299 2300
		goto new_slab;
	}
C
Christoph Lameter 已提交
2301

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2314
	/* must check again c->freelist in case of cpu migration or IRQ */
2315 2316
	freelist = c->freelist;
	if (freelist)
2317
		goto load_freelist;
2318

2319
	stat(s, ALLOC_SLOWPATH);
2320

2321
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2322

2323
	if (!freelist) {
2324 2325
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2326
		goto new_slab;
2327
	}
C
Christoph Lameter 已提交
2328

2329
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2330

2331
load_freelist:
2332 2333 2334 2335 2336
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2337
	VM_BUG_ON(!c->page->frozen);
2338
	c->freelist = get_freepointer(s, freelist);
2339 2340
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2341
	return freelist;
C
Christoph Lameter 已提交
2342 2343

new_slab:
2344

2345
	if (c->partial) {
2346 2347
		page = c->page = c->partial;
		c->partial = page->next;
2348 2349 2350
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2351 2352
	}

2353
	freelist = new_slab_objects(s, gfpflags, node, &c);
2354

2355 2356 2357
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2358

2359 2360
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2361
	}
2362

2363
	page = c->page;
2364
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2365
		goto load_freelist;
2366

2367
	/* Only entered in the debug case */
2368 2369
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2370
		goto new_slab;	/* Slab failed checks. Next slab needed */
2371

2372
	deactivate_slab(s, page, get_freepointer(s, freelist));
2373 2374
	c->page = NULL;
	c->freelist = NULL;
2375
	local_irq_restore(flags);
2376
	return freelist;
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2389
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2390
		gfp_t gfpflags, int node, unsigned long addr)
2391 2392
{
	void **object;
2393
	struct kmem_cache_cpu *c;
2394
	struct page *page;
2395
	unsigned long tid;
2396

2397
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2398
		return NULL;
2399

2400
	s = memcg_kmem_get_cache(s, gfpflags);
2401 2402 2403 2404 2405 2406
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2407 2408 2409 2410 2411
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2412
	 */
2413
	preempt_disable();
2414
	c = __this_cpu_ptr(s->cpu_slab);
2415 2416 2417 2418 2419 2420 2421 2422

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2423
	preempt_enable();
2424

2425
	object = c->freelist;
2426
	page = c->page;
L
Libin 已提交
2427
	if (unlikely(!object || !node_match(page, node)))
2428
		object = __slab_alloc(s, gfpflags, node, addr, c);
2429 2430

	else {
2431 2432
		void *next_object = get_freepointer_safe(s, object);

2433
		/*
L
Lucas De Marchi 已提交
2434
		 * The cmpxchg will only match if there was no additional
2435 2436
		 * operation and if we are on the right processor.
		 *
2437 2438
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2439 2440 2441 2442
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2443 2444 2445
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2446
		 */
2447
		if (unlikely(!this_cpu_cmpxchg_double(
2448 2449
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2450
				next_object, next_tid(tid)))) {
2451 2452 2453 2454

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2455
		prefetch_freepointer(s, next_object);
2456
		stat(s, ALLOC_FASTPATH);
2457
	}
2458

2459
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2460
		memset(object, 0, s->object_size);
2461

2462
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2463

2464
	return object;
C
Christoph Lameter 已提交
2465 2466
}

2467 2468 2469 2470 2471 2472
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2473 2474
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2475
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2476

2477 2478
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2479 2480

	return ret;
C
Christoph Lameter 已提交
2481 2482 2483
}
EXPORT_SYMBOL(kmem_cache_alloc);

2484
#ifdef CONFIG_TRACING
2485 2486
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2487
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2488 2489 2490 2491
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2492 2493
#endif

C
Christoph Lameter 已提交
2494 2495 2496
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2497
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2498

2499
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2500
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2501 2502

	return ret;
C
Christoph Lameter 已提交
2503 2504 2505
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2506
#ifdef CONFIG_TRACING
2507
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2508
				    gfp_t gfpflags,
2509
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2510
{
2511
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2512 2513 2514 2515

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2516
}
2517
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2518
#endif
2519
#endif
E
Eduard - Gabriel Munteanu 已提交
2520

C
Christoph Lameter 已提交
2521
/*
2522 2523
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2524
 *
2525 2526 2527
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2528
 */
2529
static void __slab_free(struct kmem_cache *s, struct page *page,
2530
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2531 2532 2533
{
	void *prior;
	void **object = (void *)x;
2534 2535 2536 2537
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2538
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2539

2540
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2541

2542 2543
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2544
		return;
C
Christoph Lameter 已提交
2545

2546
	do {
2547 2548 2549 2550
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2551 2552 2553 2554 2555 2556
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2557
		if ((!new.inuse || !prior) && !was_frozen) {
2558

2559
			if (kmem_cache_has_cpu_partial(s) && !prior)
2560 2561

				/*
2562 2563 2564 2565
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
				 */
				new.frozen = 1;

			else { /* Needs to be taken off a list */

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2583
		}
C
Christoph Lameter 已提交
2584

2585 2586 2587 2588
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2589

2590
	if (likely(!n)) {
2591 2592 2593 2594 2595

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2596
		if (new.frozen && !was_frozen) {
2597
			put_cpu_partial(s, page, 1);
2598 2599
			stat(s, CPU_PARTIAL_FREE);
		}
2600
		/*
2601 2602 2603 2604 2605
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2606
                return;
2607
        }
C
Christoph Lameter 已提交
2608

2609 2610 2611
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2612
	/*
2613 2614
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2615
	 */
2616 2617 2618
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
			remove_full(s, page);
2619 2620
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2621
	}
2622
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2623 2624 2625
	return;

slab_empty:
2626
	if (prior) {
C
Christoph Lameter 已提交
2627
		/*
2628
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2629
		 */
2630
		remove_partial(n, page);
2631
		stat(s, FREE_REMOVE_PARTIAL);
2632 2633 2634
	} else
		/* Slab must be on the full list */
		remove_full(s, page);
2635

2636
	spin_unlock_irqrestore(&n->list_lock, flags);
2637
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2638 2639 2640
	discard_slab(s, page);
}

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2652
static __always_inline void slab_free(struct kmem_cache *s,
2653
			struct page *page, void *x, unsigned long addr)
2654 2655
{
	void **object = (void *)x;
2656
	struct kmem_cache_cpu *c;
2657
	unsigned long tid;
2658

2659 2660
	slab_free_hook(s, x);

2661 2662 2663 2664 2665 2666 2667
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2668
	preempt_disable();
2669
	c = __this_cpu_ptr(s->cpu_slab);
2670

2671
	tid = c->tid;
2672
	preempt_enable();
2673

2674
	if (likely(page == c->page)) {
2675
		set_freepointer(s, object, c->freelist);
2676

2677
		if (unlikely(!this_cpu_cmpxchg_double(
2678 2679 2680 2681 2682 2683 2684
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2685
		stat(s, FREE_FASTPATH);
2686
	} else
2687
		__slab_free(s, page, x, addr);
2688 2689 2690

}

C
Christoph Lameter 已提交
2691 2692
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2693 2694
	s = cache_from_obj(s, x);
	if (!s)
2695
		return;
2696
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2697
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2698 2699 2700 2701
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2702 2703 2704 2705
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2706 2707 2708 2709
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2710
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2721
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2722
static int slub_min_objects;
C
Christoph Lameter 已提交
2723 2724 2725

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2726
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2727 2728 2729 2730 2731 2732
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2733 2734 2735 2736
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2737
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2738 2739 2740 2741 2742 2743
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2744
 *
C
Christoph Lameter 已提交
2745 2746 2747 2748
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2749
 *
C
Christoph Lameter 已提交
2750 2751 2752 2753
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2754
 */
2755
static inline int slab_order(int size, int min_objects,
2756
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2757 2758 2759
{
	int order;
	int rem;
2760
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2761

2762
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2763
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2764

2765
	for (order = max(min_order,
2766 2767
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2768

2769
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2770

2771
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2772 2773
			continue;

2774
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2775

2776
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2777 2778 2779
			break;

	}
C
Christoph Lameter 已提交
2780

C
Christoph Lameter 已提交
2781 2782 2783
	return order;
}

2784
static inline int calculate_order(int size, int reserved)
2785 2786 2787 2788
{
	int order;
	int min_objects;
	int fraction;
2789
	int max_objects;
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2800 2801
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2802
	max_objects = order_objects(slub_max_order, size, reserved);
2803 2804
	min_objects = min(min_objects, max_objects);

2805
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2806
		fraction = 16;
2807 2808
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2809
					slub_max_order, fraction, reserved);
2810 2811 2812 2813
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2814
		min_objects--;
2815 2816 2817 2818 2819 2820
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2821
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2822 2823 2824 2825 2826 2827
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2828
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2829
	if (order < MAX_ORDER)
2830 2831 2832 2833
		return order;
	return -ENOSYS;
}

2834
static void
2835
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2836 2837 2838 2839
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2840
#ifdef CONFIG_SLUB_DEBUG
2841
	atomic_long_set(&n->nr_slabs, 0);
2842
	atomic_long_set(&n->total_objects, 0);
2843
	INIT_LIST_HEAD(&n->full);
2844
#endif
C
Christoph Lameter 已提交
2845 2846
}

2847
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2848
{
2849
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2850
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2851

2852
	/*
2853 2854
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2855
	 */
2856 2857
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2858 2859 2860 2861 2862

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2863

2864
	return 1;
2865 2866
}

2867 2868
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2869 2870 2871 2872 2873
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2874 2875
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2876
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2877
 */
2878
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2879 2880 2881 2882
{
	struct page *page;
	struct kmem_cache_node *n;

2883
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2884

2885
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2886 2887

	BUG_ON(!page);
2888 2889 2890 2891 2892 2893 2894
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2895 2896
	n = page->freelist;
	BUG_ON(!n);
2897
	page->freelist = get_freepointer(kmem_cache_node, n);
2898
	page->inuse = 1;
2899
	page->frozen = 0;
2900
	kmem_cache_node->node[node] = n;
2901
#ifdef CONFIG_SLUB_DEBUG
2902
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2903
	init_tracking(kmem_cache_node, n);
2904
#endif
2905
	init_kmem_cache_node(n);
2906
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2907

2908
	add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2909 2910 2911 2912 2913 2914
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2915
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2916
		struct kmem_cache_node *n = s->node[node];
2917

2918
		if (n)
2919 2920
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2921 2922 2923 2924
		s->node[node] = NULL;
	}
}

2925
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2926 2927 2928
{
	int node;

C
Christoph Lameter 已提交
2929
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2930 2931
		struct kmem_cache_node *n;

2932
		if (slab_state == DOWN) {
2933
			early_kmem_cache_node_alloc(node);
2934 2935
			continue;
		}
2936
		n = kmem_cache_alloc_node(kmem_cache_node,
2937
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2938

2939 2940 2941
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2942
		}
2943

C
Christoph Lameter 已提交
2944
		s->node[node] = n;
2945
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2946 2947 2948 2949
	}
	return 1;
}

2950
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2951 2952 2953 2954 2955 2956 2957 2958
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2959 2960 2961 2962
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2963
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2964 2965
{
	unsigned long flags = s->flags;
2966
	unsigned long size = s->object_size;
2967
	int order;
C
Christoph Lameter 已提交
2968

2969 2970 2971 2972 2973 2974 2975 2976
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2977 2978 2979 2980 2981 2982
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2983
			!s->ctor)
C
Christoph Lameter 已提交
2984 2985 2986 2987 2988 2989
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2990
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2991
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2992
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2993
	 */
2994
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2995
		size += sizeof(void *);
C
Christoph Lameter 已提交
2996
#endif
C
Christoph Lameter 已提交
2997 2998

	/*
C
Christoph Lameter 已提交
2999 3000
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3001 3002 3003 3004
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3005
		s->ctor)) {
C
Christoph Lameter 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3018
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3019 3020 3021 3022 3023 3024 3025
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3026
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3027 3028 3029 3030
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3031
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3032 3033 3034
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3035
#endif
C
Christoph Lameter 已提交
3036

C
Christoph Lameter 已提交
3037 3038 3039 3040 3041
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3042
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3043
	s->size = size;
3044 3045 3046
	if (forced_order >= 0)
		order = forced_order;
	else
3047
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3048

3049
	if (order < 0)
C
Christoph Lameter 已提交
3050 3051
		return 0;

3052
	s->allocflags = 0;
3053
	if (order)
3054 3055 3056
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3057
		s->allocflags |= GFP_DMA;
3058 3059 3060 3061

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3062 3063 3064
	/*
	 * Determine the number of objects per slab
	 */
3065 3066
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3067 3068
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3069

3070
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3071 3072
}

3073
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3074
{
3075
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3076
	s->reserved = 0;
C
Christoph Lameter 已提交
3077

3078 3079
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3080

3081
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3082
		goto error;
3083 3084 3085 3086 3087
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3088
		if (get_order(s->size) > get_order(s->object_size)) {
3089 3090 3091 3092 3093 3094
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3095

3096 3097
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3098 3099 3100 3101 3102
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3103 3104 3105 3106
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3122
	 * B) The number of objects in cpu partial slabs to extract from the
3123 3124
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3125
	 */
3126
	if (!kmem_cache_has_cpu_partial(s))
3127 3128
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3129 3130 3131 3132 3133 3134 3135 3136
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3137
#ifdef CONFIG_NUMA
3138
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3139
#endif
3140
	if (!init_kmem_cache_nodes(s))
3141
		goto error;
C
Christoph Lameter 已提交
3142

3143
	if (alloc_kmem_cache_cpus(s))
3144
		return 0;
3145

3146
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3147 3148 3149 3150
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3151 3152
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3153
	return -EINVAL;
C
Christoph Lameter 已提交
3154 3155
}

3156 3157 3158 3159 3160 3161
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3162 3163
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3164 3165
	if (!map)
		return;
3166
	slab_err(s, page, text, s->name);
3167 3168
	slab_lock(page);

3169
	get_map(s, page, map);
3170 3171 3172 3173 3174 3175 3176 3177 3178
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3179
	kfree(map);
3180 3181 3182
#endif
}

C
Christoph Lameter 已提交
3183
/*
C
Christoph Lameter 已提交
3184
 * Attempt to free all partial slabs on a node.
3185 3186
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3187
 */
C
Christoph Lameter 已提交
3188
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3189 3190 3191
{
	struct page *page, *h;

3192
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3193
		if (!page->inuse) {
3194
			remove_partial(n, page);
C
Christoph Lameter 已提交
3195
			discard_slab(s, page);
3196 3197
		} else {
			list_slab_objects(s, page,
3198
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3199
		}
3200
	}
C
Christoph Lameter 已提交
3201 3202 3203
}

/*
C
Christoph Lameter 已提交
3204
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3205
 */
3206
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3207 3208 3209 3210 3211
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3212
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3213 3214
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3215 3216
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3217 3218
			return 1;
	}
3219
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3220 3221 3222 3223
	free_kmem_cache_nodes(s);
	return 0;
}

3224
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3225
{
3226
	int rc = kmem_cache_close(s);
3227

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	if (!rc) {
		/*
		 * We do the same lock strategy around sysfs_slab_add, see
		 * __kmem_cache_create. Because this is pretty much the last
		 * operation we do and the lock will be released shortly after
		 * that in slab_common.c, we could just move sysfs_slab_remove
		 * to a later point in common code. We should do that when we
		 * have a common sysfs framework for all allocators.
		 */
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3238
		sysfs_slab_remove(s);
3239 3240
		mutex_lock(&slab_mutex);
	}
3241 3242

	return rc;
C
Christoph Lameter 已提交
3243 3244 3245 3246 3247 3248 3249 3250
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3251
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3252 3253 3254 3255 3256 3257 3258 3259

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3260
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3261
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3262 3263 3264 3265 3266 3267 3268 3269

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3270
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3287
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3288
	void *ret;
C
Christoph Lameter 已提交
3289

3290
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3291
		return kmalloc_large(size, flags);
3292

3293
	s = kmalloc_slab(size, flags);
3294 3295

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3296 3297
		return s;

3298
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3299

3300
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3301 3302

	return ret;
C
Christoph Lameter 已提交
3303 3304 3305
}
EXPORT_SYMBOL(__kmalloc);

3306
#ifdef CONFIG_NUMA
3307 3308
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3309
	struct page *page;
3310
	void *ptr = NULL;
3311

3312
	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3313
	page = alloc_pages_node(node, flags, get_order(size));
3314
	if (page)
3315 3316
		ptr = page_address(page);

3317
	kmalloc_large_node_hook(ptr, size, flags);
3318
	return ptr;
3319 3320
}

C
Christoph Lameter 已提交
3321 3322
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3323
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3324
	void *ret;
C
Christoph Lameter 已提交
3325

3326
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3327 3328
		ret = kmalloc_large_node(size, flags, node);

3329 3330 3331
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3332 3333 3334

		return ret;
	}
3335

3336
	s = kmalloc_slab(size, flags);
3337 3338

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3339 3340
		return s;

3341
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3342

3343
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3344 3345

	return ret;
C
Christoph Lameter 已提交
3346 3347 3348 3349 3350 3351
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3352
	struct page *page;
C
Christoph Lameter 已提交
3353

3354
	if (unlikely(object == ZERO_SIZE_PTR))
3355 3356
		return 0;

3357 3358
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3359 3360
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3361
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3362
	}
C
Christoph Lameter 已提交
3363

3364
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3365
}
K
Kirill A. Shutemov 已提交
3366
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3367 3368 3369 3370

void kfree(const void *x)
{
	struct page *page;
3371
	void *object = (void *)x;
C
Christoph Lameter 已提交
3372

3373 3374
	trace_kfree(_RET_IP_, x);

3375
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3376 3377
		return;

3378
	page = virt_to_head_page(x);
3379
	if (unlikely(!PageSlab(page))) {
3380
		BUG_ON(!PageCompound(page));
3381
		kfree_hook(x);
3382
		__free_memcg_kmem_pages(page, compound_order(page));
3383 3384
		return;
	}
3385
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3386 3387 3388
}
EXPORT_SYMBOL(kfree);

3389
/*
C
Christoph Lameter 已提交
3390 3391 3392 3393 3394 3395 3396 3397
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3398 3399 3400 3401 3402 3403 3404 3405
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3406
	int objects = oo_objects(s->max);
3407
	struct list_head *slabs_by_inuse =
3408
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3409 3410 3411 3412 3413 3414
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3415
	for_each_node_state(node, N_NORMAL_MEMORY) {
3416 3417 3418 3419 3420
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3421
		for (i = 0; i < objects; i++)
3422 3423 3424 3425 3426
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3427
		 * Build lists indexed by the items in use in each slab.
3428
		 *
C
Christoph Lameter 已提交
3429 3430
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3431 3432
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3433 3434 3435
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3436 3437 3438
		}

		/*
C
Christoph Lameter 已提交
3439 3440
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3441
		 */
3442
		for (i = objects - 1; i > 0; i--)
3443 3444 3445
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3446 3447 3448 3449

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3450 3451 3452 3453 3454 3455 3456
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3457 3458 3459 3460
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3461
	mutex_lock(&slab_mutex);
3462 3463
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3464
	mutex_unlock(&slab_mutex);
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3476
	offline_node = marg->status_change_nid_normal;
3477 3478 3479 3480 3481 3482 3483 3484

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3485
	mutex_lock(&slab_mutex);
3486 3487 3488 3489 3490 3491
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3492
			 * and offline_pages() function shouldn't call this
3493 3494
			 * callback. So, we must fail.
			 */
3495
			BUG_ON(slabs_node(s, offline_node));
3496 3497

			s->node[offline_node] = NULL;
3498
			kmem_cache_free(kmem_cache_node, n);
3499 3500
		}
	}
3501
	mutex_unlock(&slab_mutex);
3502 3503 3504 3505 3506 3507 3508
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3509
	int nid = marg->status_change_nid_normal;
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3520
	 * We are bringing a node online. No memory is available yet. We must
3521 3522 3523
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3524
	mutex_lock(&slab_mutex);
3525 3526 3527 3528 3529 3530
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3531
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3532 3533 3534 3535
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3536
		init_kmem_cache_node(n);
3537 3538 3539
		s->node[nid] = n;
	}
out:
3540
	mutex_unlock(&slab_mutex);
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3564 3565 3566 3567
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3568 3569 3570
	return ret;
}

3571 3572 3573 3574
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3575

C
Christoph Lameter 已提交
3576 3577 3578 3579
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3580 3581
/*
 * Used for early kmem_cache structures that were allocated using
3582 3583
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3584 3585
 */

3586
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3587 3588
{
	int node;
3589
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3590

3591
	memcpy(s, static_cache, kmem_cache->object_size);
3592

3593 3594 3595 3596 3597 3598
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3599 3600 3601 3602 3603 3604
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3605
				p->slab_cache = s;
3606

L
Li Zefan 已提交
3607
#ifdef CONFIG_SLUB_DEBUG
3608
			list_for_each_entry(p, &n->full, lru)
3609
				p->slab_cache = s;
3610 3611 3612
#endif
		}
	}
3613 3614
	list_add(&s->list, &slab_caches);
	return s;
3615 3616
}

C
Christoph Lameter 已提交
3617 3618
void __init kmem_cache_init(void)
{
3619 3620
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3621

3622 3623 3624
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3625 3626
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3627

3628 3629
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3630

3631
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3632 3633 3634 3635

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3636 3637 3638 3639
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3640

3641
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3642

3643 3644 3645 3646 3647
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3648
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3649 3650

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3651
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3652 3653 3654

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3655
#endif
C
Christoph Lameter 已提交
3656

I
Ingo Molnar 已提交
3657
	printk(KERN_INFO
3658
		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3659
		" CPUs=%d, Nodes=%d\n",
3660
		cache_line_size(),
C
Christoph Lameter 已提交
3661 3662 3663 3664
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3665 3666 3667 3668
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3669 3670 3671 3672 3673 3674 3675 3676
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3677
	if (s->ctor)
C
Christoph Lameter 已提交
3678 3679
		return 1;

3680 3681 3682 3683 3684 3685
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3686 3687 3688
	return 0;
}

3689
static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3690
		size_t align, unsigned long flags, const char *name,
3691
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3692
{
3693
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3694 3695 3696 3697

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3698
	if (ctor)
C
Christoph Lameter 已提交
3699 3700 3701 3702 3703
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3704
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3705

3706
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3707 3708 3709 3710 3711 3712
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3713
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3714 3715 3716 3717 3718
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3719
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3720 3721 3722 3723 3724
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

3725 3726 3727
		if (!cache_match_memcg(s, memcg))
			continue;

C
Christoph Lameter 已提交
3728 3729 3730 3731 3732
		return s;
	}
	return NULL;
}

3733 3734 3735
struct kmem_cache *
__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
		   size_t align, unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3736 3737 3738
{
	struct kmem_cache *s;

3739
	s = find_mergeable(memcg, size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3740 3741 3742 3743 3744 3745
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3746
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3747
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3748

3749 3750
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3751
			s = NULL;
3752
		}
3753
	}
C
Christoph Lameter 已提交
3754

3755 3756
	return s;
}
P
Pekka Enberg 已提交
3757

3758
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3759
{
3760 3761 3762 3763 3764
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3765

3766 3767 3768 3769
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3770
	memcg_propagate_slab_attrs(s);
3771 3772 3773
	mutex_unlock(&slab_mutex);
	err = sysfs_slab_add(s);
	mutex_lock(&slab_mutex);
3774

3775 3776
	if (err)
		kmem_cache_close(s);
3777

3778
	return err;
C
Christoph Lameter 已提交
3779 3780 3781 3782
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3783 3784
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3785
 */
3786
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3787 3788 3789
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3790 3791
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3792 3793 3794

	switch (action) {
	case CPU_UP_CANCELED:
3795
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3796
	case CPU_DEAD:
3797
	case CPU_DEAD_FROZEN:
3798
		mutex_lock(&slab_mutex);
3799 3800 3801 3802 3803
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3804
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3805 3806 3807 3808 3809 3810 3811
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3812
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3813
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3814
};
C
Christoph Lameter 已提交
3815 3816 3817

#endif

3818
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3819
{
3820
	struct kmem_cache *s;
3821
	void *ret;
3822

3823
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3824 3825
		return kmalloc_large(size, gfpflags);

3826
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3827

3828
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3829
		return s;
C
Christoph Lameter 已提交
3830

3831
	ret = slab_alloc(s, gfpflags, caller);
3832

L
Lucas De Marchi 已提交
3833
	/* Honor the call site pointer we received. */
3834
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3835 3836

	return ret;
C
Christoph Lameter 已提交
3837 3838
}

3839
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3840
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3841
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3842
{
3843
	struct kmem_cache *s;
3844
	void *ret;
3845

3846
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3847 3848 3849 3850 3851 3852 3853 3854
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3855

3856
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3857

3858
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3859
		return s;
C
Christoph Lameter 已提交
3860

3861
	ret = slab_alloc_node(s, gfpflags, node, caller);
3862

L
Lucas De Marchi 已提交
3863
	/* Honor the call site pointer we received. */
3864
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3865 3866

	return ret;
C
Christoph Lameter 已提交
3867
}
3868
#endif
C
Christoph Lameter 已提交
3869

3870
#ifdef CONFIG_SYSFS
3871 3872 3873 3874 3875 3876 3877 3878 3879
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3880
#endif
3881

3882
#ifdef CONFIG_SLUB_DEBUG
3883 3884
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3885 3886
{
	void *p;
3887
	void *addr = page_address(page);
3888 3889 3890 3891 3892 3893

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3894
	bitmap_zero(map, page->objects);
3895

3896 3897 3898 3899 3900
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3901 3902
	}

3903
	for_each_object(p, s, addr, page->objects)
3904
		if (!test_bit(slab_index(p, s, addr), map))
3905
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3906 3907 3908 3909
				return 0;
	return 1;
}

3910 3911
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3912
{
3913 3914 3915
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3916 3917
}

3918 3919
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3920 3921 3922 3923 3924 3925 3926 3927
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3928
		validate_slab_slab(s, page, map);
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3939
		validate_slab_slab(s, page, map);
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3952
static long validate_slab_cache(struct kmem_cache *s)
3953 3954 3955
{
	int node;
	unsigned long count = 0;
3956
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3957 3958 3959 3960
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3961 3962

	flush_all(s);
C
Christoph Lameter 已提交
3963
	for_each_node_state(node, N_NORMAL_MEMORY) {
3964 3965
		struct kmem_cache_node *n = get_node(s, node);

3966
		count += validate_slab_node(s, n, map);
3967
	}
3968
	kfree(map);
3969 3970
	return count;
}
3971
/*
C
Christoph Lameter 已提交
3972
 * Generate lists of code addresses where slabcache objects are allocated
3973 3974 3975 3976 3977
 * and freed.
 */

struct location {
	unsigned long count;
3978
	unsigned long addr;
3979 3980 3981 3982 3983
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3984
	DECLARE_BITMAP(cpus, NR_CPUS);
3985
	nodemask_t nodes;
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4001
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4002 4003 4004 4005 4006 4007
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4008
	l = (void *)__get_free_pages(flags, order);
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4022
				const struct track *track)
4023 4024 4025
{
	long start, end, pos;
	struct location *l;
4026
	unsigned long caddr;
4027
	unsigned long age = jiffies - track->when;
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4059 4060
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4061 4062
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4063 4064 4065
			return 1;
		}

4066
		if (track->addr < caddr)
4067 4068 4069 4070 4071 4072
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4073
	 * Not found. Insert new tracking element.
4074
	 */
4075
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4076 4077 4078 4079 4080 4081 4082 4083
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4084 4085 4086 4087 4088 4089
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4090 4091
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4092 4093
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4094 4095 4096 4097
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4098
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4099
		unsigned long *map)
4100
{
4101
	void *addr = page_address(page);
4102 4103
	void *p;

4104
	bitmap_zero(map, page->objects);
4105
	get_map(s, page, map);
4106

4107
	for_each_object(p, s, addr, page->objects)
4108 4109
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4110 4111 4112 4113 4114
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4115
	int len = 0;
4116
	unsigned long i;
4117
	struct loc_track t = { 0, 0, NULL };
4118
	int node;
E
Eric Dumazet 已提交
4119 4120
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4121

E
Eric Dumazet 已提交
4122 4123 4124
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4125
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4126
	}
4127 4128 4129
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4130
	for_each_node_state(node, N_NORMAL_MEMORY) {
4131 4132 4133 4134
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4135
		if (!atomic_long_read(&n->nr_slabs))
4136 4137 4138 4139
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4140
			process_slab(&t, s, page, alloc, map);
4141
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4142
			process_slab(&t, s, page, alloc, map);
4143 4144 4145 4146
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4147
		struct location *l = &t.loc[i];
4148

H
Hugh Dickins 已提交
4149
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4150
			break;
4151
		len += sprintf(buf + len, "%7ld ", l->count);
4152 4153

		if (l->addr)
J
Joe Perches 已提交
4154
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4155
		else
4156
			len += sprintf(buf + len, "<not-available>");
4157 4158

		if (l->sum_time != l->min_time) {
4159
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4160 4161 4162
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4163
		} else
4164
			len += sprintf(buf + len, " age=%ld",
4165 4166 4167
				l->min_time);

		if (l->min_pid != l->max_pid)
4168
			len += sprintf(buf + len, " pid=%ld-%ld",
4169 4170
				l->min_pid, l->max_pid);
		else
4171
			len += sprintf(buf + len, " pid=%ld",
4172 4173
				l->min_pid);

R
Rusty Russell 已提交
4174 4175
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4176 4177
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4178 4179
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4180
						 to_cpumask(l->cpus));
4181 4182
		}

4183
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4184 4185
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4186 4187 4188
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4189 4190
		}

4191
		len += sprintf(buf + len, "\n");
4192 4193 4194
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4195
	kfree(map);
4196
	if (!t.count)
4197 4198
		len += sprintf(buf, "No data\n");
	return len;
4199
}
4200
#endif
4201

4202 4203 4204 4205 4206
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4207
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4264
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4265
enum slab_stat_type {
4266 4267 4268 4269 4270
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4271 4272
};

4273
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4274 4275 4276
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4277
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4278

4279 4280
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4281 4282 4283 4284 4285 4286
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4287
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4288 4289
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4290

4291 4292
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4293

4294
		for_each_possible_cpu(cpu) {
4295 4296
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4297
			int node;
4298
			struct page *page;
4299

4300
			page = ACCESS_ONCE(c->page);
4301 4302
			if (!page)
				continue;
4303

4304 4305 4306 4307 4308 4309 4310
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4311

4312 4313 4314 4315
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4316 4317
			if (page) {
				x = page->pobjects;
4318 4319
				total += x;
				nodes[node] += x;
4320
			}
C
Christoph Lameter 已提交
4321 4322 4323
		}
	}

4324
	lock_memory_hotplug();
4325
#ifdef CONFIG_SLUB_DEBUG
4326 4327 4328 4329
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

4330 4331 4332 4333 4334
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4335
			else
4336
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4337 4338 4339 4340
			total += x;
			nodes[node] += x;
		}

4341 4342 4343
	} else
#endif
	if (flags & SO_PARTIAL) {
4344 4345
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4346

4347 4348 4349 4350
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4351
			else
4352
				x = n->nr_partial;
C
Christoph Lameter 已提交
4353 4354 4355 4356 4357 4358
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4359
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4360 4361 4362 4363
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4364
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4365 4366 4367 4368
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4369
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4370 4371 4372 4373
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4374
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4375 4376
		struct kmem_cache_node *n = get_node(s, node);

4377 4378 4379
		if (!n)
			continue;

4380
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4381 4382 4383 4384
			return 1;
	}
	return 0;
}
4385
#endif
C
Christoph Lameter 已提交
4386 4387

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4388
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4389 4390 4391 4392 4393 4394 4395 4396

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4397 4398
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4399 4400 4401

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4402
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4418
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4419 4420 4421 4422 4423
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4424
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4425 4426 4427
}
SLAB_ATTR_RO(objs_per_slab);

4428 4429 4430
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4431 4432 4433
	unsigned long order;
	int err;

4434
	err = kstrtoul(buf, 10, &order);
4435 4436
	if (err)
		return err;
4437 4438 4439 4440 4441 4442 4443 4444

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4445 4446
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4447
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4448
}
4449
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4450

4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4462
	err = kstrtoul(buf, 10, &min);
4463 4464 4465
	if (err)
		return err;

4466
	set_min_partial(s, min);
4467 4468 4469 4470
	return length;
}
SLAB_ATTR(min_partial);

4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4482
	err = kstrtoul(buf, 10, &objects);
4483 4484
	if (err)
		return err;
4485
	if (objects && !kmem_cache_has_cpu_partial(s))
4486
		return -EINVAL;
4487 4488 4489 4490 4491 4492 4493

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4494 4495
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4496 4497 4498
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4510
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4511 4512 4513 4514 4515
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4516
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4517 4518 4519 4520 4521
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4522
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4523 4524 4525
}
SLAB_ATTR_RO(objects);

4526 4527 4528 4529 4530 4531
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4598 4599 4600 4601 4602 4603
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4604
#ifdef CONFIG_SLUB_DEBUG
4605 4606 4607 4608 4609 4610
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4611 4612 4613 4614 4615 4616
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4626 4627
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4628
		s->flags |= SLAB_DEBUG_FREE;
4629
	}
C
Christoph Lameter 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4643 4644
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4645
		s->flags |= SLAB_TRACE;
4646
	}
C
Christoph Lameter 已提交
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4663 4664
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4665
		s->flags |= SLAB_RED_ZONE;
4666
	}
4667
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4684 4685
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4686
		s->flags |= SLAB_POISON;
4687
	}
4688
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4705 4706
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4707
		s->flags |= SLAB_STORE_USER;
4708
	}
4709
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4710 4711 4712 4713
	return length;
}
SLAB_ATTR(store_user);

4714 4715 4716 4717 4718 4719 4720 4721
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4722 4723 4724 4725 4726 4727 4728 4729
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4730 4731
}
SLAB_ATTR(validate);
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4765
#endif
4766

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4786
#ifdef CONFIG_NUMA
4787
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4788
{
4789
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4790 4791
}

4792
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4793 4794
				const char *buf, size_t length)
{
4795 4796 4797
	unsigned long ratio;
	int err;

4798
	err = kstrtoul(buf, 10, &ratio);
4799 4800 4801
	if (err)
		return err;

4802
	if (ratio <= 100)
4803
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4804 4805 4806

	return length;
}
4807
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4808 4809
#endif

4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4822
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4823 4824 4825 4826 4827 4828 4829

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4830
#ifdef CONFIG_SMP
4831 4832
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4833
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4834
	}
4835
#endif
4836 4837 4838 4839
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4840 4841 4842 4843 4844
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4845
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4846 4847
}

4848 4849 4850 4851 4852
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4873
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4874 4875 4876 4877 4878 4879 4880
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4881
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4882
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4883 4884
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4885 4886
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4887 4888
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4889 4890
#endif

P
Pekka Enberg 已提交
4891
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4892 4893 4894 4895
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4896
	&min_partial_attr.attr,
4897
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4898
	&objects_attr.attr,
4899
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4900 4901 4902 4903 4904 4905 4906 4907
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4908
	&shrink_attr.attr,
4909
	&reserved_attr.attr,
4910
	&slabs_cpu_partial_attr.attr,
4911
#ifdef CONFIG_SLUB_DEBUG
4912 4913 4914 4915
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4916 4917 4918
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4919
	&validate_attr.attr,
4920 4921
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4922
#endif
C
Christoph Lameter 已提交
4923 4924 4925 4926
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4927
	&remote_node_defrag_ratio_attr.attr,
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4940
	&alloc_node_mismatch_attr.attr,
4941 4942 4943 4944 4945 4946 4947
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4948
	&deactivate_bypass_attr.attr,
4949
	&order_fallback_attr.attr,
4950 4951
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4952 4953
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4954 4955
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4956
#endif
4957 4958 4959 4960
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5002 5003 5004
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
5005

5006 5007 5008 5009
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5027
		for_each_memcg_cache_index(i) {
5028
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5029 5030 5031 5032 5033 5034
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5035 5036 5037
	return err;
}

5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;

	if (!is_root_cache(s))
		return;

	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
	if (!s->max_attr_size)
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

		attr->show(s->memcg_params->root_cache, buf);
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5091
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5109
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5110 5111 5112
	.filter = uevent_filter,
};

5113
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5114 5115 5116 5117

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5118 5119
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5142 5143
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5144 5145 5146
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5147 5148 5149

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5150 5151
		p += sprintf(p, "-%08d",
				memcg_cache_id(s->memcg_params->memcg));
5152 5153
#endif

C
Christoph Lameter 已提交
5154 5155 5156 5157 5158 5159 5160 5161
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5162
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5163 5164 5165 5166 5167 5168 5169

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5170
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5171 5172 5173 5174 5175 5176 5177 5178 5179
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5180
	s->kobj.kset = slab_kset;
5181 5182 5183
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5184
		return err;
5185
	}
C
Christoph Lameter 已提交
5186 5187

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5188 5189 5190
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5191
		return err;
5192
	}
C
Christoph Lameter 已提交
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5204
	if (slab_state < FULL)
5205 5206 5207 5208 5209 5210
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

C
Christoph Lameter 已提交
5211 5212
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5213
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5214 5215 5216 5217
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5218
 * available lest we lose that information.
C
Christoph Lameter 已提交
5219 5220 5221 5222 5223 5224 5225
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5226
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5227 5228 5229 5230 5231

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5232
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5233 5234 5235
		/*
		 * If we have a leftover link then remove it.
		 */
5236 5237
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5253
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5254 5255
	int err;

5256
	mutex_lock(&slab_mutex);
5257

5258
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5259
	if (!slab_kset) {
5260
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5261 5262 5263 5264
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5265
	slab_state = FULL;
5266

5267
	list_for_each_entry(s, &slab_caches, list) {
5268
		err = sysfs_slab_add(s);
5269 5270 5271
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5272
	}
C
Christoph Lameter 已提交
5273 5274 5275 5276 5277 5278

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5279 5280
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5281
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5282 5283 5284
		kfree(al);
	}

5285
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5286 5287 5288 5289 5290
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5291
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5292 5293 5294 5295

/*
 * The /proc/slabinfo ABI
 */
5296
#ifdef CONFIG_SLABINFO
5297
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5298 5299
{
	unsigned long nr_slabs = 0;
5300 5301
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5302 5303 5304 5305 5306 5307 5308 5309
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5310 5311
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5312
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5313 5314
	}

5315 5316 5317 5318 5319 5320
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5321 5322
}

5323
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5324 5325 5326
{
}

5327 5328
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5329
{
5330
	return -EIO;
5331
}
5332
#endif /* CONFIG_SLABINFO */