kfd_device_queue_manager.c 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/slab.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/printk.h>
#include <linux/bitops.h>
29
#include <linux/sched.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_mqd_manager.h"
#include "cik_regs.h"
#include "kfd_kernel_queue.h"

/* Size of the per-pipe EOP queue */
#define CIK_HPD_EOP_BYTES_LOG2 11
#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)

static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
					unsigned int pasid, unsigned int vmid);

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd);
46

47
static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 49
static int destroy_queues_cpsch(struct device_queue_manager *dqm,
				bool preempt_static_queues, bool lock);
50

51 52 53 54 55 56
static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd);

static void deallocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int sdma_queue_id);
57

58 59
static inline
enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
60
{
61
	if (type == KFD_QUEUE_TYPE_SDMA)
62 63
		return KFD_MQD_TYPE_SDMA;
	return KFD_MQD_TYPE_CP;
64 65
}

66
unsigned int get_first_pipe(struct device_queue_manager *dqm)
67
{
68
	BUG_ON(!dqm || !dqm->dev);
69 70 71
	return dqm->dev->shared_resources.first_compute_pipe;
}

72 73 74 75 76 77
unsigned int get_pipes_num(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm || !dqm->dev);
	return dqm->dev->shared_resources.compute_pipe_count;
}

78 79 80 81 82
static inline unsigned int get_pipes_num_cpsch(void)
{
	return PIPE_PER_ME_CP_SCHEDULING;
}

83
void program_sh_mem_settings(struct device_queue_manager *dqm,
84 85
					struct qcm_process_device *qpd)
{
86 87
	return dqm->dev->kfd2kgd->program_sh_mem_settings(
						dqm->dev->kgd, qpd->vmid,
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
						qpd->sh_mem_config,
						qpd->sh_mem_ape1_base,
						qpd->sh_mem_ape1_limit,
						qpd->sh_mem_bases);
}

static int allocate_vmid(struct device_queue_manager *dqm,
			struct qcm_process_device *qpd,
			struct queue *q)
{
	int bit, allocated_vmid;

	if (dqm->vmid_bitmap == 0)
		return -ENOMEM;

	bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
	clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);

	/* Kaveri kfd vmid's starts from vmid 8 */
	allocated_vmid = bit + KFD_VMID_START_OFFSET;
	pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
	qpd->vmid = allocated_vmid;
	q->properties.vmid = allocated_vmid;

	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
	program_sh_mem_settings(dqm, qpd);

	return 0;
}

static void deallocate_vmid(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int bit = qpd->vmid - KFD_VMID_START_OFFSET;

124 125 126
	/* Release the vmid mapping */
	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
	qpd->vmid = 0;
	q->properties.vmid = 0;
}

static int create_queue_nocpsch(struct device_queue_manager *dqm,
				struct queue *q,
				struct qcm_process_device *qpd,
				int *allocated_vmid)
{
	int retval;

	BUG_ON(!dqm || !q || !qpd || !allocated_vmid);

	pr_debug("kfd: In func %s\n", __func__);
	print_queue(q);

	mutex_lock(&dqm->lock);

146 147 148 149 150 151 152
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
				dqm->total_queue_count);
		mutex_unlock(&dqm->lock);
		return -EPERM;
	}

153 154 155 156 157 158 159 160 161 162
	if (list_empty(&qpd->queues_list)) {
		retval = allocate_vmid(dqm, qpd, q);
		if (retval != 0) {
			mutex_unlock(&dqm->lock);
			return retval;
		}
	}
	*allocated_vmid = qpd->vmid;
	q->properties.vmid = qpd->vmid;

163 164 165 166
	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
		retval = create_compute_queue_nocpsch(dqm, q, qpd);
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
167 168 169 170 171 172 173 174 175 176 177

	if (retval != 0) {
		if (list_empty(&qpd->queues_list)) {
			deallocate_vmid(dqm, qpd, q);
			*allocated_vmid = 0;
		}
		mutex_unlock(&dqm->lock);
		return retval;
	}

	list_add(&q->list, &qpd->queues_list);
178 179
	if (q->properties.is_active)
		dqm->queue_count++;
180

181 182
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		dqm->sdma_queue_count++;
183

184 185 186 187 188 189 190 191
	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

192 193 194 195 196 197 198
	mutex_unlock(&dqm->lock);
	return 0;
}

static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
{
	bool set;
199
	int pipe, bit, i;
200 201 202

	set = false;

203 204
	for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
			pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
		if (dqm->allocated_queues[pipe] != 0) {
			bit = find_first_bit(
				(unsigned long *)&dqm->allocated_queues[pipe],
				QUEUES_PER_PIPE);

			clear_bit(bit,
				(unsigned long *)&dqm->allocated_queues[pipe]);
			q->pipe = pipe;
			q->queue = bit;
			set = true;
			break;
		}
	}

	if (set == false)
		return -EBUSY;

	pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
				__func__, q->pipe, q->queue);
	/* horizontal hqd allocation */
	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);

	return 0;
}

static inline void deallocate_hqd(struct device_queue_manager *dqm,
				struct queue *q)
{
	set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
}

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

245
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
246 247 248 249 250 251 252 253 254 255 256 257 258 259
	if (mqd == NULL)
		return -ENOMEM;

	retval = allocate_hqd(dqm, q);
	if (retval != 0)
		return retval;

	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0) {
		deallocate_hqd(dqm, q);
		return retval;
	}

260 261 262 263 264
	pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
			q->pipe,
			q->queue);

	retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
265
			q->queue, (uint32_t __user *) q->properties.write_ptr);
266 267 268 269 270 271
	if (retval != 0) {
		deallocate_hqd(dqm, q);
		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
		return retval;
	}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	return 0;
}

static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !q->mqd || !qpd);

	retval = 0;

	pr_debug("kfd: In Func %s\n", __func__);

	mutex_lock(&dqm->lock);

290
	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
291
		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
292 293 294 295 296 297
		if (mqd == NULL) {
			retval = -ENOMEM;
			goto out;
		}
		deallocate_hqd(dqm, q);
	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
298
		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
299 300 301 302 303 304
		if (mqd == NULL) {
			retval = -ENOMEM;
			goto out;
		}
		dqm->sdma_queue_count--;
		deallocate_sdma_queue(dqm, q->sdma_id);
305 306 307 308
	} else {
		pr_debug("q->properties.type is invalid (%d)\n",
				q->properties.type);
		retval = -EINVAL;
309 310 311 312
		goto out;
	}

	retval = mqd->destroy_mqd(mqd, q->mqd,
313
				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
314 315 316 317 318 319 320 321 322 323 324
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
				q->pipe, q->queue);

	if (retval != 0)
		goto out;

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);

	list_del(&q->list);
	if (list_empty(&qpd->queues_list))
		deallocate_vmid(dqm, qpd, q);
325 326
	if (q->properties.is_active)
		dqm->queue_count--;
327 328 329 330 331 332 333 334 335

	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type
	 */
	dqm->total_queue_count--;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

336 337 338 339 340 341 342 343 344
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int update_queue(struct device_queue_manager *dqm, struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;
345
	bool prev_active = false;
346 347 348 349

	BUG_ON(!dqm || !q || !q->mqd);

	mutex_lock(&dqm->lock);
O
Oded Gabbay 已提交
350 351
	mqd = dqm->ops.get_mqd_manager(dqm,
			get_mqd_type_from_queue_type(q->properties.type));
352 353 354 355 356 357
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

	if (q->properties.is_active == true)
358 359 360 361 362 363 364 365 366
		prev_active = true;

	/*
	 *
	 * check active state vs. the previous state
	 * and modify counter accordingly
	 */
	retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
	if ((q->properties.is_active == true) && (prev_active == false))
367
		dqm->queue_count++;
368
	else if ((q->properties.is_active == false) && (prev_active == true))
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
		dqm->queue_count--;

	if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
		retval = execute_queues_cpsch(dqm, false);

	mutex_unlock(&dqm->lock);
	return retval;
}

static struct mqd_manager *get_mqd_manager_nocpsch(
		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
{
	struct mqd_manager *mqd;

	BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);

	pr_debug("kfd: In func %s mqd type %d\n", __func__, type);

	mqd = dqm->mqds[type];
	if (!mqd) {
		mqd = mqd_manager_init(type, dqm->dev);
		if (mqd == NULL)
			pr_err("kfd: mqd manager is NULL");
		dqm->mqds[type] = mqd;
	}

	return mqd;
}

static int register_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	struct device_process_node *n;
402
	int retval;
403 404 405 406 407 408 409 410 411 412 413 414 415 416

	BUG_ON(!dqm || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
	if (!n)
		return -ENOMEM;

	n->qpd = qpd;

	mutex_lock(&dqm->lock);
	list_add(&n->list, &dqm->queues);

417 418
	retval = dqm->ops_asic_specific.register_process(dqm, qpd);

419 420 421 422
	dqm->processes_count++;

	mutex_unlock(&dqm->lock);

423
	return retval;
424 425 426 427 428 429 430 431 432 433
}

static int unregister_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	int retval;
	struct device_process_node *cur, *next;

	BUG_ON(!dqm || !qpd);

434
	pr_debug("In func %s\n", __func__);
435

436 437
	pr_debug("qpd->queues_list is %s\n",
			list_empty(&qpd->queues_list) ? "empty" : "not empty");
438 439 440 441 442 443 444

	retval = 0;
	mutex_lock(&dqm->lock);

	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
		if (qpd == cur->qpd) {
			list_del(&cur->list);
445
			kfree(cur);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
			dqm->processes_count--;
			goto out;
		}
	}
	/* qpd not found in dqm list */
	retval = 1;
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int
set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
			unsigned int vmid)
{
	uint32_t pasid_mapping;

463 464 465 466 467 468
	pasid_mapping = (pasid == 0) ? 0 :
		(uint32_t)pasid |
		ATC_VMID_PASID_MAPPING_VALID;

	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
						dqm->dev->kgd, pasid_mapping,
469 470 471
						vmid);
}

472
int init_pipelines(struct device_queue_manager *dqm,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
			unsigned int pipes_num, unsigned int first_pipe)
{
	void *hpdptr;
	struct mqd_manager *mqd;
	unsigned int i, err, inx;
	uint64_t pipe_hpd_addr;

	BUG_ON(!dqm || !dqm->dev);

	pr_debug("kfd: In func %s\n", __func__);

	/*
	 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
	 * The driver never accesses this memory after zeroing it.
	 * It doesn't even have to be saved/restored on suspend/resume
	 * because it contains no data when there are no active queues.
	 */

491 492
	err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
					&dqm->pipeline_mem);
493 494 495 496 497 498 499 500 501 502 503 504

	if (err) {
		pr_err("kfd: error allocate vidmem num pipes: %d\n",
			pipes_num);
		return -ENOMEM;
	}

	hpdptr = dqm->pipeline_mem->cpu_ptr;
	dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;

	memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);

505
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
506
	if (mqd == NULL) {
507
		kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
508 509 510 511 512
		return -ENOMEM;
	}

	for (i = 0; i < pipes_num; i++) {
		inx = i + first_pipe;
513 514 515 516
		/*
		 * HPD buffer on GTT is allocated by amdkfd, no need to waste
		 * space in GTT for pipelines we don't initialize
		 */
517 518 519
		pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
		pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
		/* = log2(bytes/4)-1 */
520
		dqm->dev->kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
521 522 523 524 525 526
				CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
	}

	return 0;
}

527 528 529 530 531 532 533 534 535 536 537
static void init_interrupts(struct device_queue_manager *dqm)
{
	unsigned int i;

	BUG_ON(dqm == NULL);

	for (i = 0 ; i < get_pipes_num(dqm) ; i++)
		dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd,
				i + get_first_pipe(dqm));
}

538 539 540 541 542 543 544 545
static int init_scheduler(struct device_queue_manager *dqm)
{
	int retval;

	BUG_ON(!dqm);

	pr_debug("kfd: In %s\n", __func__);

546
	retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	return retval;
}

static int initialize_nocpsch(struct device_queue_manager *dqm)
{
	int i;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
			__func__, get_pipes_num(dqm));

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
562
	dqm->sdma_queue_count = 0;
563 564 565 566 567 568 569 570 571 572 573
	dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
					sizeof(unsigned int), GFP_KERNEL);
	if (!dqm->allocated_queues) {
		mutex_destroy(&dqm->lock);
		return -ENOMEM;
	}

	for (i = 0; i < get_pipes_num(dqm); i++)
		dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;

	dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
574
	dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
575 576 577 578 579 580 581

	init_scheduler(dqm);
	return 0;
}

static void uninitialize_nocpsch(struct device_queue_manager *dqm)
{
582 583
	int i;

584 585 586 587 588
	BUG_ON(!dqm);

	BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);

	kfree(dqm->allocated_queues);
589 590
	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
		kfree(dqm->mqds[i]);
591
	mutex_destroy(&dqm->lock);
592
	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
593 594 595 596
}

static int start_nocpsch(struct device_queue_manager *dqm)
{
597
	init_interrupts(dqm);
598 599 600 601 602 603 604 605
	return 0;
}

static int stop_nocpsch(struct device_queue_manager *dqm)
{
	return 0;
}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static int allocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int *sdma_queue_id)
{
	int bit;

	if (dqm->sdma_bitmap == 0)
		return -ENOMEM;

	bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
				CIK_SDMA_QUEUES);

	clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
	*sdma_queue_id = bit;

	return 0;
}

static void deallocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int sdma_queue_id)
{
626
	if (sdma_queue_id >= CIK_SDMA_QUEUES)
627 628 629 630 631 632 633 634 635 636 637
		return;
	set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
}

static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd)
{
	struct mqd_manager *mqd;
	int retval;

638
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
639 640 641 642 643 644 645 646 647 648 649 650 651 652
	if (!mqd)
		return -ENOMEM;

	retval = allocate_sdma_queue(dqm, &q->sdma_id);
	if (retval != 0)
		return retval;

	q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
	q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;

	pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
	pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
	pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);

653
	dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
654 655 656 657 658 659 660
	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0) {
		deallocate_sdma_queue(dqm, q->sdma_id);
		return retval;
	}

661 662 663 664 665 666 667 668
	retval = mqd->load_mqd(mqd, q->mqd, 0,
				0, NULL);
	if (retval != 0) {
		deallocate_sdma_queue(dqm, q->sdma_id);
		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
		return retval;
	}

669 670 671
	return 0;
}

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
/*
 * Device Queue Manager implementation for cp scheduler
 */

static int set_sched_resources(struct device_queue_manager *dqm)
{
	struct scheduling_resources res;
	unsigned int queue_num, queue_mask;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s\n", __func__);

	queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
	queue_mask = (1 << queue_num) - 1;
	res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
	res.vmid_mask <<= KFD_VMID_START_OFFSET;
	res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
	res.gws_mask = res.oac_mask = res.gds_heap_base =
						res.gds_heap_size = 0;

	pr_debug("kfd: scheduling resources:\n"
			"      vmid mask: 0x%8X\n"
			"      queue mask: 0x%8llX\n",
			res.vmid_mask, res.queue_mask);

	return pm_send_set_resources(&dqm->packets, &res);
}

static int initialize_cpsch(struct device_queue_manager *dqm)
{
	int retval;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
			__func__, get_pipes_num_cpsch());

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->processes_count = 0;
713
	dqm->sdma_queue_count = 0;
714
	dqm->active_runlist = false;
715
	retval = dqm->ops_asic_specific.initialize(dqm);
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
	if (retval != 0)
		goto fail_init_pipelines;

	return 0;

fail_init_pipelines:
	mutex_destroy(&dqm->lock);
	return retval;
}

static int start_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	int retval;

	BUG_ON(!dqm);

	retval = 0;

	retval = pm_init(&dqm->packets, dqm);
	if (retval != 0)
		goto fail_packet_manager_init;

	retval = set_sched_resources(dqm);
	if (retval != 0)
		goto fail_set_sched_resources;

	pr_debug("kfd: allocating fence memory\n");

	/* allocate fence memory on the gart */
746 747
	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
					&dqm->fence_mem);
748 749 750 751 752 753

	if (retval != 0)
		goto fail_allocate_vidmem;

	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
754 755 756

	init_interrupts(dqm);

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	list_for_each_entry(node, &dqm->queues, list)
		if (node->qpd->pqm->process && dqm->dev)
			kfd_bind_process_to_device(dqm->dev,
						node->qpd->pqm->process);

	execute_queues_cpsch(dqm, true);

	return 0;
fail_allocate_vidmem:
fail_set_sched_resources:
	pm_uninit(&dqm->packets);
fail_packet_manager_init:
	return retval;
}

static int stop_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	struct kfd_process_device *pdd;

	BUG_ON(!dqm);

779
	destroy_queues_cpsch(dqm, true, true);
780 781

	list_for_each_entry(node, &dqm->queues, list) {
782
		pdd = qpd_to_pdd(node->qpd);
783 784
		pdd->bound = false;
	}
785
	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
786 787 788 789 790 791 792 793 794 795 796 797 798 799
	pm_uninit(&dqm->packets);

	return 0;
}

static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
				dqm->total_queue_count);
		mutex_unlock(&dqm->lock);
		return -EPERM;
	}

	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	list_add(&kq->list, &qpd->priv_queue_list);
	dqm->queue_count++;
	qpd->is_debug = true;
	execute_queues_cpsch(dqm, false);
	mutex_unlock(&dqm->lock);

	return 0;
}

static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq);

	pr_debug("kfd: In %s\n", __func__);

	mutex_lock(&dqm->lock);
833 834
	/* here we actually preempt the DIQ */
	destroy_queues_cpsch(dqm, true, false);
835 836 837 838
	list_del(&kq->list);
	dqm->queue_count--;
	qpd->is_debug = false;
	execute_queues_cpsch(dqm, false);
839 840 841 842
	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type.
	 */
843
	dqm->total_queue_count--;
844 845
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);
846 847 848
	mutex_unlock(&dqm->lock);
}

849 850 851 852 853 854 855 856
static void select_sdma_engine_id(struct queue *q)
{
	static int sdma_id;

	q->sdma_id = sdma_id;
	sdma_id = (sdma_id + 1) % 2;
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
			struct qcm_process_device *qpd, int *allocate_vmid)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

	retval = 0;

	if (allocate_vmid)
		*allocate_vmid = 0;

	mutex_lock(&dqm->lock);

872 873 874 875 876 877 878
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
				dqm->total_queue_count);
		retval = -EPERM;
		goto out;
	}

879 880 881
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		select_sdma_engine_id(q);

882
	mqd = dqm->ops.get_mqd_manager(dqm,
883 884
			get_mqd_type_from_queue_type(q->properties.type));

885 886 887 888 889
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

890
	dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
891 892 893 894 895 896 897 898 899 900 901
	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0)
		goto out;

	list_add(&q->list, &qpd->queues_list);
	if (q->properties.is_active) {
		dqm->queue_count++;
		retval = execute_queues_cpsch(dqm, false);
	}

902 903
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
			dqm->sdma_queue_count++;
904 905 906 907 908 909 910 911 912
	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;

	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

913 914 915 916 917
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

918
int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
919 920
				unsigned int fence_value,
				unsigned long timeout)
921 922 923 924 925 926 927 928 929
{
	BUG_ON(!fence_addr);
	timeout += jiffies;

	while (*fence_addr != fence_value) {
		if (time_after(jiffies, timeout)) {
			pr_err("kfd: qcm fence wait loop timeout expired\n");
			return -ETIME;
		}
930
		schedule();
931 932 933 934 935
	}

	return 0;
}

936 937 938 939
static int destroy_sdma_queues(struct device_queue_manager *dqm,
				unsigned int sdma_engine)
{
	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
940
			KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false,
941 942 943
			sdma_engine);
}

944 945
static int destroy_queues_cpsch(struct device_queue_manager *dqm,
				bool preempt_static_queues, bool lock)
946 947
{
	int retval;
948
	enum kfd_preempt_type_filter preempt_type;
949
	struct kfd_process_device *pdd;
950 951 952 953 954 955 956 957 958

	BUG_ON(!dqm);

	retval = 0;

	if (lock)
		mutex_lock(&dqm->lock);
	if (dqm->active_runlist == false)
		goto out;
959 960 961 962 963 964 965 966 967

	pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
		dqm->sdma_queue_count);

	if (dqm->sdma_queue_count > 0) {
		destroy_sdma_queues(dqm, 0);
		destroy_sdma_queues(dqm, 1);
	}

968 969 970 971
	preempt_type = preempt_static_queues ?
			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES :
			KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES;

972
	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
973
			preempt_type, 0, false, 0);
974 975 976 977 978 979 980
	if (retval != 0)
		goto out;

	*dqm->fence_addr = KFD_FENCE_INIT;
	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
				KFD_FENCE_COMPLETED);
	/* should be timed out */
981
	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
982
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
983
	if (retval != 0) {
984 985 986
		pdd = kfd_get_process_device_data(dqm->dev,
				kfd_get_process(current));
		pdd->reset_wavefronts = true;
987 988
		goto out;
	}
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	pm_release_ib(&dqm->packets);
	dqm->active_runlist = false;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
	int retval;

	BUG_ON(!dqm);

	if (lock)
		mutex_lock(&dqm->lock);

1007
	retval = destroy_queues_cpsch(dqm, false, false);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	if (retval != 0) {
		pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
		goto out;
	}

	if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
		retval = 0;
		goto out;
	}

	if (dqm->active_runlist) {
		retval = 0;
		goto out;
	}

	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
	if (retval != 0) {
		pr_err("kfd: failed to execute runlist");
		goto out;
	}
	dqm->active_runlist = true;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int destroy_queue_cpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;
1042
	bool preempt_all_queues;
1043 1044 1045

	BUG_ON(!dqm || !qpd || !q);

1046 1047
	preempt_all_queues = false;

1048 1049 1050 1051
	retval = 0;

	/* remove queue from list to prevent rescheduling after preemption */
	mutex_lock(&dqm->lock);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

	if (qpd->is_debug) {
		/*
		 * error, currently we do not allow to destroy a queue
		 * of a currently debugged process
		 */
		retval = -EBUSY;
		goto failed_try_destroy_debugged_queue;

	}

1063
	mqd = dqm->ops.get_mqd_manager(dqm,
1064
			get_mqd_type_from_queue_type(q->properties.type));
1065 1066 1067 1068 1069
	if (!mqd) {
		retval = -ENOMEM;
		goto failed;
	}

1070 1071 1072
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		dqm->sdma_queue_count--;

1073
	list_del(&q->list);
1074 1075
	if (q->properties.is_active)
		dqm->queue_count--;
1076 1077 1078 1079

	execute_queues_cpsch(dqm, false);

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1080 1081 1082 1083 1084 1085 1086 1087

	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type
	 */
	dqm->total_queue_count--;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);
1088 1089 1090 1091 1092 1093

	mutex_unlock(&dqm->lock);

	return 0;

failed:
1094 1095
failed_try_destroy_debugged_queue:

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	mutex_unlock(&dqm->lock);
	return retval;
}

/*
 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
 * stay in user mode.
 */
#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
/* APE1 limit is inclusive and 64K aligned. */
#define APE1_LIMIT_ALIGNMENT 0xFFFF

static bool set_cache_memory_policy(struct device_queue_manager *dqm,
				   struct qcm_process_device *qpd,
				   enum cache_policy default_policy,
				   enum cache_policy alternate_policy,
				   void __user *alternate_aperture_base,
				   uint64_t alternate_aperture_size)
{
1115
	bool retval;
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);

	if (alternate_aperture_size == 0) {
		/* base > limit disables APE1 */
		qpd->sh_mem_ape1_base = 1;
		qpd->sh_mem_ape1_limit = 0;
	} else {
		/*
		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
		 * Verify that the base and size parameters can be
		 * represented in this format and convert them.
		 * Additionally restrict APE1 to user-mode addresses.
		 */

		uint64_t base = (uintptr_t)alternate_aperture_base;
		uint64_t limit = base + alternate_aperture_size - 1;

		if (limit <= base)
			goto out;

		if ((base & APE1_FIXED_BITS_MASK) != 0)
			goto out;

		if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
			goto out;

		qpd->sh_mem_ape1_base = base >> 16;
		qpd->sh_mem_ape1_limit = limit >> 16;
	}

1152 1153 1154 1155 1156 1157 1158
	retval = dqm->ops_asic_specific.set_cache_memory_policy(
			dqm,
			qpd,
			default_policy,
			alternate_policy,
			alternate_aperture_base,
			alternate_aperture_size);
1159 1160 1161 1162 1163 1164 1165 1166 1167

	if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
		program_sh_mem_settings(dqm, qpd);

	pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
		qpd->sh_mem_ape1_limit);

	mutex_unlock(&dqm->lock);
1168
	return retval;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

out:
	mutex_unlock(&dqm->lock);
	return false;
}

struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
{
	struct device_queue_manager *dqm;

	BUG_ON(!dev);

1181 1182
	pr_debug("kfd: loading device queue manager\n");

1183 1184 1185 1186 1187 1188 1189 1190 1191
	dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
	if (!dqm)
		return NULL;

	dqm->dev = dev;
	switch (sched_policy) {
	case KFD_SCHED_POLICY_HWS:
	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
		/* initialize dqm for cp scheduling */
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		dqm->ops.create_queue = create_queue_cpsch;
		dqm->ops.initialize = initialize_cpsch;
		dqm->ops.start = start_cpsch;
		dqm->ops.stop = stop_cpsch;
		dqm->ops.destroy_queue = destroy_queue_cpsch;
		dqm->ops.update_queue = update_queue;
		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->ops.register_process = register_process_nocpsch;
		dqm->ops.unregister_process = unregister_process_nocpsch;
		dqm->ops.uninitialize = uninitialize_nocpsch;
		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1205 1206 1207
		break;
	case KFD_SCHED_POLICY_NO_HWS:
		/* initialize dqm for no cp scheduling */
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		dqm->ops.start = start_nocpsch;
		dqm->ops.stop = stop_nocpsch;
		dqm->ops.create_queue = create_queue_nocpsch;
		dqm->ops.destroy_queue = destroy_queue_nocpsch;
		dqm->ops.update_queue = update_queue;
		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->ops.register_process = register_process_nocpsch;
		dqm->ops.unregister_process = unregister_process_nocpsch;
		dqm->ops.initialize = initialize_nocpsch;
		dqm->ops.uninitialize = uninitialize_nocpsch;
		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1219 1220 1221 1222 1223 1224
		break;
	default:
		BUG();
		break;
	}

1225 1226 1227
	switch (dev->device_info->asic_family) {
	case CHIP_CARRIZO:
		device_queue_manager_init_vi(&dqm->ops_asic_specific);
1228 1229
		break;

1230 1231
	case CHIP_KAVERI:
		device_queue_manager_init_cik(&dqm->ops_asic_specific);
1232
		break;
1233 1234
	}

1235
	if (dqm->ops.initialize(dqm) != 0) {
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		kfree(dqm);
		return NULL;
	}

	return dqm;
}

void device_queue_manager_uninit(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm);

1247
	dqm->ops.uninitialize(dqm);
1248 1249
	kfree(dqm);
}