rt2400pci.c 48.5 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2400pci
	Abstract: rt2400pci device specific routines.
	Supported chipsets: RT2460.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2400pci.h"

/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2x00pci_register_read and rt2x00pci_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
52 53 54 55
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56

A
Adam Baker 已提交
57
static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 59 60 61
				const unsigned int word, const u8 value)
{
	u32 reg;

62 63
	mutex_lock(&rt2x00dev->csr_mutex);

64
	/*
65 66
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
67
	 */
68 69 70 71 72 73 74 75 76
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);

		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
	}
77 78

	mutex_unlock(&rt2x00dev->csr_mutex);
79 80
}

A
Adam Baker 已提交
81
static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 83 84 85
			       const unsigned int word, u8 *value)
{
	u32 reg;

86 87
	mutex_lock(&rt2x00dev->csr_mutex);

88
	/*
89 90 91 92 93 94
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
95
	 */
96 97 98 99 100
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101

102
		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103

104 105
		WAIT_FOR_BBP(rt2x00dev, &reg);
	}
106 107

	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108 109

	mutex_unlock(&rt2x00dev->csr_mutex);
110 111
}

A
Adam Baker 已提交
112
static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 114 115 116
			       const unsigned int word, const u32 value)
{
	u32 reg;

117 118
	mutex_lock(&rt2x00dev->csr_mutex);

119 120 121 122 123 124 125 126 127 128 129 130 131
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);

		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
132 133
	}

134
	mutex_unlock(&rt2x00dev->csr_mutex);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
}

static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
}

static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt2400pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
171 172 173 174
		.read		= rt2x00pci_register_read,
		.write		= rt2x00pci_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
175 176 177 178 179 180
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
181
		.word_base	= EEPROM_BASE,
182 183 184 185 186 187
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2400pci_bbp_read,
		.write		= rt2400pci_bbp_write,
188
		.word_base	= BBP_BASE,
189 190 191 192 193 194
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2400pci_rf_write,
195
		.word_base	= RF_BASE,
196 197 198 199 200 201 202 203 204 205 206 207 208 209
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
}

210
#ifdef CONFIG_RT2X00_LIB_LEDS
211
static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
212 213 214 215 216 217 218 219 220
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);

221
	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
222
		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
223 224
	else if (led->type == LED_TYPE_ACTIVITY)
		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
225 226 227

	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
}
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

static int rt2400pci_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);

	return 0;
}
244 245 246 247 248 249 250 251 252 253 254

static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00_led *led,
			       enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2400pci_brightness_set;
	led->led_dev.blink_set = rt2400pci_blink_set;
	led->flags = LED_INITIALIZED;
}
255
#endif /* CONFIG_RT2X00_LIB_LEDS */
256

257 258 259
/*
 * Configuration handlers.
 */
I
Ivo van Doorn 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * since there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
280 281
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
282 283 284 285
	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

286 287 288 289
static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
290
{
291 292
	unsigned int bcn_preload;
	u32 reg;
293

294 295 296 297
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable beacon config
		 */
298
		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
299 300 301
		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
302

303 304 305 306
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
307
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
308
		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
309
		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
310 311
		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
	}
312

313 314 315
	if (flags & CONFIG_UPDATE_MAC)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
					      conf->mac, sizeof(conf->mac));
316

317 318 319
	if (flags & CONFIG_UPDATE_BSSID)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
					      conf->bssid, sizeof(conf->bssid));
320 321
}

I
Ivo van Doorn 已提交
322 323
static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
				 struct rt2x00lib_erp *erp)
324
{
325
	int preamble_mask;
326 327
	u32 reg;

328 329 330
	/*
	 * When short preamble is enabled, we should set bit 0x08
	 */
331
	preamble_mask = erp->short_preamble << 3;
332 333

	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
334 335
	rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
	rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
336 337
	rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
	rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
338 339 340
	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
341
	rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
342
	rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
343
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
344 345 346
	rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
347
	rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
348
	rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
349
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
350 351 352
	rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
353
	rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
354
	rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
355
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
356 357 358
	rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
359
	rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
360
	rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
361
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
362
	rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
363 364 365 366 367 368 369

	rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);

370 371 372 373 374
	rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
	rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
	rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
	rt2x00pci_register_write(rt2x00dev, CSR12, reg);

375 376 377 378 379 380 381 382 383
	rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
	rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
	rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
	rt2x00pci_register_write(rt2x00dev, CSR18, reg);

	rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
	rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
	rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
	rt2x00pci_register_write(rt2x00dev, CSR19, reg);
384 385
}

386 387
static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
				 struct antenna_setup *ant)
388
{
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	u8 r1;
	u8 r4;

	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
	rt2400pci_bbp_read(rt2x00dev, 1, &r1);

	/*
	 * Configure the TX antenna.
	 */
	switch (ant->tx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
		break;
	}

	rt2400pci_bbp_write(rt2x00dev, 4, r4);
	rt2400pci_bbp_write(rt2x00dev, 1, r1);
436 437 438
}

static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
439
				     struct rf_channel *rf)
440 441 442 443
{
	/*
	 * Switch on tuning bits.
	 */
444 445
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
446

447 448 449
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
450 451 452 453

	/*
	 * RF2420 chipset don't need any additional actions.
	 */
454
	if (rt2x00_rf(rt2x00dev, RF2420))
455 456 457 458 459 460 461
		return;

	/*
	 * For the RT2421 chipsets we need to write an invalid
	 * reference clock rate to activate auto_tune.
	 * After that we set the value back to the correct channel.
	 */
462
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
463
	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
464
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
465 466 467

	msleep(1);

468 469 470
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
471 472 473 474 475 476

	msleep(1);

	/*
	 * Switch off tuning bits.
	 */
477 478
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
479

480 481
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
482 483 484 485

	/*
	 * Clear false CRC during channel switch.
	 */
486
	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
487 488 489 490 491 492 493
}

static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
{
	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
}

494 495
static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00lib_conf *libconf)
496
{
497
	u32 reg;
498

499 500 501 502 503 504
	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
505 506
}

I
Ivo van Doorn 已提交
507 508 509 510 511 512 513 514 515 516 517
static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
518
				   (rt2x00dev->beacon_int - 20) * 16);
I
Ivo van Doorn 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532
		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);

		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
	}

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
}

533
static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
534 535
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
536
{
537
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
538
		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
539
	if (flags & IEEE80211_CONF_CHANGE_POWER)
540 541
		rt2400pci_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
542 543
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt2400pci_config_retry_limit(rt2x00dev, libconf);
I
Ivo van Doorn 已提交
544 545
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2400pci_config_ps(rt2x00dev, libconf);
546 547 548
}

static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
I
Ivo van Doorn 已提交
549
				const int cw_min, const int cw_max)
550 551 552 553
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
I
Ivo van Doorn 已提交
554 555
	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
556 557 558 559 560 561
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
}

/*
 * Link tuning
 */
562 563
static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
564 565 566 567 568 569 570 571
{
	u32 reg;
	u8 bbp;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
572
	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
573 574 575 576 577

	/*
	 * Update False CCA count from register.
	 */
	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
578
	qual->false_cca = bbp;
579 580
}

581 582
static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				     struct link_qual *qual, u8 vgc_level)
583 584
{
	rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
585 586
	qual->vgc_level = vgc_level;
	qual->vgc_level_reg = vgc_level;
587 588
}

589 590
static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				  struct link_qual *qual)
591
{
592
	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
593 594
}

595 596
static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual, const u32 count)
597 598 599 600 601
{
	/*
	 * The link tuner should not run longer then 60 seconds,
	 * and should run once every 2 seconds.
	 */
602
	if (count > 60 || !(count & 1))
603 604 605 606 607
		return;

	/*
	 * Base r13 link tuning on the false cca count.
	 */
608 609 610 611
	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
612 613 614 615 616
}

/*
 * Initialization functions.
 */
617
static bool rt2400pci_get_entry_state(struct queue_entry *entry)
618
{
619
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
620 621
	u32 word;

622 623
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
624

625 626 627
		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
628

629 630 631
		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
632 633
}

634
static void rt2400pci_clear_entry(struct queue_entry *entry)
635
{
636
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
637
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
638 639
	u32 word;

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 2, &word);
		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
		rt2x00_desc_write(entry_priv->desc, 2, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 1, word);

		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
658 659
}

I
Ivo van Doorn 已提交
660
static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
661
{
662
	struct queue_entry_priv_pci *entry_priv;
663 664 665 666 667 668
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
I
Ivo van Doorn 已提交
669 670 671 672
	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
673 674
	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);

675
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
676
	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
677
	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
678
			   entry_priv->desc_dma);
679 680
	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);

681
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
682
	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
683
	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
684
			   entry_priv->desc_dma);
685 686
	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);

687
	entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
688
	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
689
	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
690
			   entry_priv->desc_dma);
691 692
	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);

693
	entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
694
	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
695
	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
696
			   entry_priv->desc_dma);
697 698 699 700
	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
I
Ivo van Doorn 已提交
701
	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
702 703
	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);

704
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
705
	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
706 707
	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
			   entry_priv->desc_dma);
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);

	return 0;
}

static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);

	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
			   (rt2x00dev->rx->data_size / 128));
	rt2x00pci_register_write(rt2x00dev, CSR9, reg);

733 734 735 736 737 738 739 740 741 742 743
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);

	rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
	rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);

	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);

	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	/*
	 * We must clear the FCS and FIFO error count.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);

	return 0;
}

803
static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
804 805 806 807 808 809 810
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2400pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
811
			return 0;
812 813 814 815 816
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
817 818 819 820 821 822 823 824 825 826 827
}

static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
867 868
			   (state == STATE_RADIO_RX_OFF) ||
			   (state == STATE_RADIO_RX_OFF_LINK));
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_OFF);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
}

static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
905 906 907
	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
		     rt2400pci_init_registers(rt2x00dev) ||
		     rt2400pci_init_bbp(rt2x00dev)))
908 909 910 911 912 913 914 915
		return -EIO;

	return 0;
}

static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
916
	 * Disable power
917
	 */
918
	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
}

static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	u32 reg;
	unsigned int i;
	char put_to_sleep;
	char bbp_state;
	char rf_state;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
		bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
		rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
		if (bbp_state == state && rf_state == state)
			return 0;
		msleep(10);
	}

	return -EBUSY;
}

static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2400pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2400pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_RX_ON:
969
	case STATE_RADIO_RX_ON_LINK:
970
	case STATE_RADIO_RX_OFF:
971
	case STATE_RADIO_RX_OFF_LINK:
972 973 974 975 976
		rt2400pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2400pci_toggle_irq(rt2x00dev, state);
977 978 979 980 981 982 983 984 985 986 987 988
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2400pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

989 990 991 992
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

993 994 995 996 997 998 999
	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1000
				    struct sk_buff *skb,
1001
				    struct txentry_desc *txdesc)
1002
{
I
Ivo van Doorn 已提交
1003
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1004
	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1005
	__le32 *txd = skbdesc->desc;
1006 1007 1008 1009 1010
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
1011
	rt2x00_desc_read(entry_priv->desc, 1, &word);
1012
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1013 1014
	rt2x00_desc_write(entry_priv->desc, 1, word);

1015
	rt2x00_desc_read(txd, 2, &word);
1016 1017
	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1018 1019 1020
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
I
Ivo van Doorn 已提交
1021
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1022 1023
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
I
Ivo van Doorn 已提交
1024
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1025 1026
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1027 1028 1029
	rt2x00_desc_write(txd, 3, word);

	rt2x00_desc_read(txd, 4, &word);
I
Ivo van Doorn 已提交
1030
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1031 1032
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
I
Ivo van Doorn 已提交
1033
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1034 1035
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1036 1037 1038 1039 1040 1041
	rt2x00_desc_write(txd, 4, word);

	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
I
Ivo van Doorn 已提交
1042
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1043
	rt2x00_set_field32(&word, TXD_W0_ACK,
I
Ivo van Doorn 已提交
1044
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1045
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
I
Ivo van Doorn 已提交
1046
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1047
	rt2x00_set_field32(&word, TXD_W0_RTS,
I
Ivo van Doorn 已提交
1048 1049
			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1050
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
I
Ivo van Doorn 已提交
1051
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1052 1053 1054 1055 1056 1057
	rt2x00_desc_write(txd, 0, word);
}

/*
 * TX data initialization
 */
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static void rt2400pci_write_beacon(struct queue_entry *entry)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	u32 word;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

	/*
	 * Replace rt2x00lib allocated descriptor with the
	 * pointer to the _real_ hardware descriptor.
	 * After that, map the beacon to DMA and update the
	 * descriptor.
	 */
	memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
	skbdesc->desc = entry_priv->desc;

	rt2x00queue_map_txskb(rt2x00dev, entry->skb);

	rt2x00_desc_read(entry_priv->desc, 1, &word);
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
	rt2x00_desc_write(entry_priv->desc, 1, word);
}

1090
static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1091
				    const enum data_queue_qid queue)
1092 1093 1094
{
	u32 reg;

1095
	if (queue == QID_BEACON) {
1096 1097
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
		if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1098 1099
			rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
			rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1100 1101 1102 1103 1104 1105 1106
			rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
			rt2x00pci_register_write(rt2x00dev, CSR14, reg);
		}
		return;
	}

	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1107 1108 1109
	rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
	rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
	rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1110 1111 1112
	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
				    const enum data_queue_qid qid)
{
	u32 reg;

	if (qid == QID_BEACON) {
		rt2x00pci_register_write(rt2x00dev, CSR14, 0);
	} else {
		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
	}
}

1127 1128 1129
/*
 * RX control handlers
 */
I
Ivo van Doorn 已提交
1130 1131
static void rt2400pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
1132
{
1133
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1134
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1135 1136
	u32 word0;
	u32 word2;
I
Ivo van Doorn 已提交
1137
	u32 word3;
1138 1139 1140 1141
	u32 word4;
	u64 tsf;
	u32 rx_low;
	u32 rx_high;
1142

1143 1144 1145
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 2, &word2);
	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1146
	rt2x00_desc_read(entry_priv->desc, 4, &word4);
1147

1148
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1149
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1150
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
I
Ivo van Doorn 已提交
1151
		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	/*
	 * We only get the lower 32bits from the timestamp,
	 * to get the full 64bits we must complement it with
	 * the timestamp from get_tsf().
	 * Note that when a wraparound of the lower 32bits
	 * has occurred between the frame arrival and the get_tsf()
	 * call, we must decrease the higher 32bits with 1 to get
	 * to correct value.
	 */
	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
	rx_high = upper_32_bits(tsf);

	if ((u32)tsf <= rx_low)
		rx_high--;

1169 1170
	/*
	 * Obtain the status about this packet.
1171 1172
	 * The signal is the PLCP value, and needs to be stripped
	 * of the preamble bit (0x08).
1173
	 */
1174
	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1175
	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
I
Ivo van Doorn 已提交
1176
	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
I
Ivo van Doorn 已提交
1177 1178
	    entry->queue->rt2x00dev->rssi_offset;
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1179

1180
	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1181 1182
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
1183 1184 1185 1186 1187
}

/*
 * Interrupt functions.
 */
I
Ivo van Doorn 已提交
1188
static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1189
			     const enum data_queue_qid queue_idx)
1190
{
I
Ivo van Doorn 已提交
1191
	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1192
	struct queue_entry_priv_pci *entry_priv;
I
Ivo van Doorn 已提交
1193 1194
	struct queue_entry *entry;
	struct txdone_entry_desc txdesc;
1195 1196
	u32 word;

I
Ivo van Doorn 已提交
1197 1198
	while (!rt2x00queue_empty(queue)) {
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1199 1200
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1201 1202 1203 1204 1205 1206 1207 1208

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			break;

		/*
		 * Obtain the status about this packet.
		 */
I
Ivo van Doorn 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		txdesc.flags = 0;
		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
		case 0: /* Success */
		case 1: /* Success with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 2: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
I
Ivo van Doorn 已提交
1221
		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1222

I
Ivo van Doorn 已提交
1223
		rt2x00lib_txdone(entry, &txdesc);
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	}
}

static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
	rt2x00pci_register_write(rt2x00dev, CSR7, reg);

	if (!reg)
		return IRQ_NONE;

1242
	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		return IRQ_HANDLED;

	/*
	 * Handle interrupts, walk through all bits
	 * and run the tasks, the bits are checked in order of
	 * priority.
	 */

	/*
	 * 1 - Beacon timer expired interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
		rt2x00lib_beacondone(rt2x00dev);

	/*
	 * 2 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_RXDONE))
		rt2x00pci_rxdone(rt2x00dev);

	/*
	 * 3 - Atim ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1267
		rt2400pci_txdone(rt2x00dev, QID_ATIM);
1268 1269 1270 1271 1272

	/*
	 * 4 - Priority ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1273
		rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1274 1275 1276 1277 1278

	/*
	 * 5 - Tx ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1279
		rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2400pci_eepromregister_read;
	eeprom.register_write = rt2400pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
J
Johannes Berg 已提交
1315
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
		return -EINVAL;
	}

	return 0;
}

static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1343
	rt2x00_set_chip_rf(rt2x00dev, value, reg);
1344
	rt2x00_print_chip(rt2x00dev);
1345

1346
	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1347 1348 1349 1350 1351 1352 1353
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
1354
	rt2x00dev->default_ant.tx =
1355
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1356
	rt2x00dev->default_ant.rx =
1357 1358
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	/*
	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
	 * I am not 100% sure about this, but the legacy drivers do not
	 * indicate antenna swapping in software is required when
	 * diversity is enabled.
	 */
	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;

1370 1371 1372
	/*
	 * Store led mode, for correct led behaviour.
	 */
1373
#ifdef CONFIG_RT2X00_LIB_LEDS
1374 1375
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

1376
	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1377 1378 1379
	if (value == LED_MODE_TXRX_ACTIVITY ||
	    value == LED_MODE_DEFAULT ||
	    value == LED_MODE_ASUS)
1380 1381
		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				   LED_TYPE_ACTIVITY);
1382
#endif /* CONFIG_RT2X00_LIB_LEDS */
1383 1384 1385 1386 1387

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1388
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

	/*
	 * Check if the BBP tuning should be enabled.
	 */
	if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
		__set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);

	return 0;
}

/*
 * RF value list for RF2420 & RF2421
 * Supports: 2.4 GHz
 */
1403
static const struct rf_channel rf_vals_b[] = {
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
};

1420
static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1421 1422
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
1423 1424
	struct channel_info *info;
	char *tx_power;
1425 1426 1427 1428 1429
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
1430
	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1431 1432 1433
			       IEEE80211_HW_SIGNAL_DBM |
			       IEEE80211_HW_SUPPORTS_PS |
			       IEEE80211_HW_PS_NULLFUNC_STACK;
1434

1435
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1436 1437 1438 1439 1440 1441 1442
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Initialize hw_mode information.
	 */
1443 1444
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK;
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	spec->num_channels = ARRAY_SIZE(rf_vals_b);
	spec->channels = rf_vals_b;

	/*
	 * Create channel information array
	 */
	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
	for (i = 0; i < 14; i++)
		info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);

	return 0;
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
}

static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2400pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2400pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
1483 1484 1485
	retval = rt2400pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
1486 1487

	/*
1488
	 * This device requires the atim queue and DMA-mapped skbs.
1489
	 */
I
Ivo van Doorn 已提交
1490
	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1491
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
J
Johannes Berg 已提交
1504
static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1505 1506 1507 1508 1509 1510 1511 1512 1513
			     const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;

	/*
	 * We don't support variating cw_min and cw_max variables
	 * per queue. So by default we only configure the TX queue,
	 * and ignore all other configurations.
	 */
J
Johannes Berg 已提交
1514
	if (queue != 0)
1515 1516 1517 1518 1519 1520 1521 1522
		return -EINVAL;

	if (rt2x00mac_conf_tx(hw, queue, params))
		return -EINVAL;

	/*
	 * Write configuration to register.
	 */
I
Ivo van Doorn 已提交
1523 1524
	rt2400pci_config_cw(rt2x00dev,
			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

	return 0;
}

static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);

	return tsf;
}

static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
}

static const struct ieee80211_ops rt2400pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
1554 1555
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
1556 1557 1558
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
I
Ivo van Doorn 已提交
1559
	.configure_filter	= rt2x00mac_configure_filter,
1560
	.set_tim		= rt2x00mac_set_tim,
1561
	.get_stats		= rt2x00mac_get_stats,
1562
	.bss_info_changed	= rt2x00mac_bss_info_changed,
1563 1564 1565 1566
	.conf_tx		= rt2400pci_conf_tx,
	.get_tx_stats		= rt2x00mac_get_tx_stats,
	.get_tsf		= rt2400pci_get_tsf,
	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1567
	.rfkill_poll		= rt2x00mac_rfkill_poll,
1568 1569 1570 1571 1572 1573 1574
};

static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
	.irq_handler		= rt2400pci_interrupt,
	.probe_hw		= rt2400pci_probe_hw,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
1575 1576
	.get_entry_state	= rt2400pci_get_entry_state,
	.clear_entry		= rt2400pci_clear_entry,
1577 1578 1579 1580 1581 1582 1583
	.set_device_state	= rt2400pci_set_device_state,
	.rfkill_poll		= rt2400pci_rfkill_poll,
	.link_stats		= rt2400pci_link_stats,
	.reset_tuner		= rt2400pci_reset_tuner,
	.link_tuner		= rt2400pci_link_tuner,
	.write_tx_desc		= rt2400pci_write_tx_desc,
	.write_tx_data		= rt2x00pci_write_tx_data,
1584
	.write_beacon		= rt2400pci_write_beacon,
1585
	.kick_tx_queue		= rt2400pci_kick_tx_queue,
1586
	.kill_tx_queue		= rt2400pci_kill_tx_queue,
1587
	.fill_rxdone		= rt2400pci_fill_rxdone,
I
Ivo van Doorn 已提交
1588
	.config_filter		= rt2400pci_config_filter,
1589
	.config_intf		= rt2400pci_config_intf,
1590
	.config_erp		= rt2400pci_config_erp,
1591
	.config_ant		= rt2400pci_config_ant,
1592 1593 1594
	.config			= rt2400pci_config,
};

I
Ivo van Doorn 已提交
1595 1596 1597 1598
static const struct data_queue_desc rt2400pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
1599
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1600 1601 1602 1603 1604 1605
};

static const struct data_queue_desc rt2400pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1606
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1607 1608 1609 1610 1611 1612
};

static const struct data_queue_desc rt2400pci_queue_bcn = {
	.entry_num		= BEACON_ENTRIES,
	.data_size		= MGMT_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1613
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1614 1615 1616 1617 1618 1619
};

static const struct data_queue_desc rt2400pci_queue_atim = {
	.entry_num		= ATIM_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1620
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1621 1622
};

1623
static const struct rt2x00_ops rt2400pci_ops = {
G
Gertjan van Wingerde 已提交
1624 1625 1626 1627 1628 1629
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 1,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1630
	.extra_tx_headroom	= 0,
G
Gertjan van Wingerde 已提交
1631 1632 1633 1634 1635 1636
	.rx			= &rt2400pci_queue_rx,
	.tx			= &rt2400pci_queue_tx,
	.bcn			= &rt2400pci_queue_bcn,
	.atim			= &rt2400pci_queue_atim,
	.lib			= &rt2400pci_rt2x00_ops,
	.hw			= &rt2400pci_mac80211_ops,
1637
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1638
	.debugfs		= &rt2400pci_rt2x00debug,
1639 1640 1641 1642 1643 1644
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2400pci module information.
 */
1645
static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	{ PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
MODULE_LICENSE("GPL");

static struct pci_driver rt2400pci_driver = {
1658
	.name		= KBUILD_MODNAME,
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	.id_table	= rt2400pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt2400pci_init(void)
{
	return pci_register_driver(&rt2400pci_driver);
}

static void __exit rt2400pci_exit(void)
{
	pci_unregister_driver(&rt2400pci_driver);
}

module_init(rt2400pci_init);
module_exit(rt2400pci_exit);