pci.c 78.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2005-2011 Atheros Communications Inc.
 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/pci.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
22
#include <linux/bitops.h>
23 24 25 26 27 28 29 30 31 32 33 34 35

#include "core.h"
#include "debug.h"

#include "targaddrs.h"
#include "bmi.h"

#include "hif.h"
#include "htc.h"

#include "ce.h"
#include "pci.h"

36 37 38 39 40 41
enum ath10k_pci_irq_mode {
	ATH10K_PCI_IRQ_AUTO = 0,
	ATH10K_PCI_IRQ_LEGACY = 1,
	ATH10K_PCI_IRQ_MSI = 2,
};

42 43 44 45 46
enum ath10k_pci_reset_mode {
	ATH10K_PCI_RESET_AUTO = 0,
	ATH10K_PCI_RESET_WARM_ONLY = 1,
};

47
static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
48
static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
49 50 51 52

module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");

53 54 55
module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");

56 57
/* how long wait to wait for target to initialise, in ms */
#define ATH10K_PCI_TARGET_WAIT 3000
58
#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
59

60
#define QCA988X_2_0_DEVICE_ID	(0x003c)
61
#define QCA6164_2_1_DEVICE_ID	(0x0041)
62
#define QCA6174_2_1_DEVICE_ID	(0x003e)
63
#define QCA99X0_2_0_DEVICE_ID	(0x0040)
64
#define QCA9377_1_0_DEVICE_ID	(0x0042)
65

66
static const struct pci_device_id ath10k_pci_id_table[] = {
67
	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
68
	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
69
	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
70
	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
71
	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
72 73 74
	{0}
};

75 76 77 78 79 80
static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
	/* QCA988X pre 2.0 chips are not supported because they need some nasty
	 * hacks. ath10k doesn't have them and these devices crash horribly
	 * because of that.
	 */
	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
81 82 83 84 85 86 87

	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },

88 89 90 91 92
	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
93

94
	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
95
	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
96 97
};

98
static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
99
static int ath10k_pci_cold_reset(struct ath10k *ar);
100
static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
101
static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
102 103 104 105
static int ath10k_pci_init_irq(struct ath10k *ar);
static int ath10k_pci_deinit_irq(struct ath10k *ar);
static int ath10k_pci_request_irq(struct ath10k *ar);
static void ath10k_pci_free_irq(struct ath10k *ar);
106 107 108
static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
			       struct ath10k_ce_pipe *rx_pipe,
			       struct bmi_xfer *xfer);
109
static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
110
static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
111
static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
112 113
static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
114 115

static const struct ce_attr host_ce_config_wlan[] = {
116 117 118 119 120 121
	/* CE0: host->target HTC control and raw streams */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 16,
		.src_sz_max = 256,
		.dest_nentries = 0,
122
		.send_cb = ath10k_pci_htc_tx_cb,
123 124 125 126 127 128
	},

	/* CE1: target->host HTT + HTC control */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
129
		.src_sz_max = 2048,
130
		.dest_nentries = 512,
131
		.recv_cb = ath10k_pci_htc_rx_cb,
132 133 134 135 136 137 138
	},

	/* CE2: target->host WMI */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 2048,
139
		.dest_nentries = 128,
140
		.recv_cb = ath10k_pci_htc_rx_cb,
141 142 143 144 145 146 147 148
	},

	/* CE3: host->target WMI */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 32,
		.src_sz_max = 2048,
		.dest_nentries = 0,
149
		.send_cb = ath10k_pci_htc_tx_cb,
150 151 152 153 154 155 156 157
	},

	/* CE4: host->target HTT */
	{
		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
		.src_sz_max = 256,
		.dest_nentries = 0,
158
		.send_cb = ath10k_pci_htt_tx_cb,
159 160
	},

161
	/* CE5: target->host HTT (HIF->HTT) */
162 163 164
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
165 166 167
		.src_sz_max = 512,
		.dest_nentries = 512,
		.recv_cb = ath10k_pci_htt_rx_cb,
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
	},

	/* CE6: target autonomous hif_memcpy */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 0,
		.dest_nentries = 0,
	},

	/* CE7: ce_diag, the Diagnostic Window */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 2,
		.src_sz_max = DIAG_TRANSFER_LIMIT,
		.dest_nentries = 2,
	},
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

	/* CE8: target->host pktlog */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 2048,
		.dest_nentries = 128,
	},

	/* CE9 target autonomous qcache memcpy */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 0,
		.dest_nentries = 0,
	},

	/* CE10: target autonomous hif memcpy */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 0,
		.dest_nentries = 0,
	},

	/* CE11: target autonomous hif memcpy */
	{
		.flags = CE_ATTR_FLAGS,
		.src_nentries = 0,
		.src_sz_max = 0,
		.dest_nentries = 0,
	},
217 218 219 220
};

/* Target firmware's Copy Engine configuration. */
static const struct ce_pipe_config target_ce_config_wlan[] = {
221 222
	/* CE0: host->target HTC control and raw streams */
	{
223 224 225 226 227 228
		.pipenum = __cpu_to_le32(0),
		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
		.nentries = __cpu_to_le32(32),
		.nbytes_max = __cpu_to_le32(256),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
229 230 231 232
	},

	/* CE1: target->host HTT + HTC control */
	{
233 234 235
		.pipenum = __cpu_to_le32(1),
		.pipedir = __cpu_to_le32(PIPEDIR_IN),
		.nentries = __cpu_to_le32(32),
236
		.nbytes_max = __cpu_to_le32(2048),
237 238
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
239 240 241 242
	},

	/* CE2: target->host WMI */
	{
243 244
		.pipenum = __cpu_to_le32(2),
		.pipedir = __cpu_to_le32(PIPEDIR_IN),
245
		.nentries = __cpu_to_le32(64),
246 247 248
		.nbytes_max = __cpu_to_le32(2048),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
249 250 251 252
	},

	/* CE3: host->target WMI */
	{
253 254 255 256 257 258
		.pipenum = __cpu_to_le32(3),
		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
		.nentries = __cpu_to_le32(32),
		.nbytes_max = __cpu_to_le32(2048),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
259 260 261 262
	},

	/* CE4: host->target HTT */
	{
263 264 265 266 267 268
		.pipenum = __cpu_to_le32(4),
		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
		.nentries = __cpu_to_le32(256),
		.nbytes_max = __cpu_to_le32(256),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
269 270
	},

271
	/* NB: 50% of src nentries, since tx has 2 frags */
272

273
	/* CE5: target->host HTT (HIF->HTT) */
274
	{
275
		.pipenum = __cpu_to_le32(5),
276
		.pipedir = __cpu_to_le32(PIPEDIR_IN),
277
		.nentries = __cpu_to_le32(32),
278
		.nbytes_max = __cpu_to_le32(512),
279 280
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
281 282 283 284
	},

	/* CE6: Reserved for target autonomous hif_memcpy */
	{
285 286 287 288 289 290
		.pipenum = __cpu_to_le32(6),
		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
		.nentries = __cpu_to_le32(32),
		.nbytes_max = __cpu_to_le32(4096),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
		.reserved = __cpu_to_le32(0),
291 292
	},

293
	/* CE7 used only by Host */
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
	{
		.pipenum = __cpu_to_le32(7),
		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
		.nentries = __cpu_to_le32(0),
		.nbytes_max = __cpu_to_le32(0),
		.flags = __cpu_to_le32(0),
		.reserved = __cpu_to_le32(0),
	},

	/* CE8 target->host packtlog */
	{
		.pipenum = __cpu_to_le32(8),
		.pipedir = __cpu_to_le32(PIPEDIR_IN),
		.nentries = __cpu_to_le32(64),
		.nbytes_max = __cpu_to_le32(2048),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
		.reserved = __cpu_to_le32(0),
	},

	/* CE9 target autonomous qcache memcpy */
	{
		.pipenum = __cpu_to_le32(9),
		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
		.nentries = __cpu_to_le32(32),
		.nbytes_max = __cpu_to_le32(2048),
		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
		.reserved = __cpu_to_le32(0),
	},

	/* It not necessary to send target wlan configuration for CE10 & CE11
	 * as these CEs are not actively used in target.
	 */
326 327
};

328 329 330 331 332 333 334
/*
 * Map from service/endpoint to Copy Engine.
 * This table is derived from the CE_PCI TABLE, above.
 * It is passed to the Target at startup for use by firmware.
 */
static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
	{
335 336 337
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(3),
338 339
	},
	{
340 341 342
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(2),
343 344
	},
	{
345 346 347
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(3),
348 349
	},
	{
350 351 352
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(2),
353 354
	},
	{
355 356 357
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(3),
358 359
	},
	{
360 361 362
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(2),
363 364
	},
	{
365 366 367
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(3),
368 369
	},
	{
370 371 372
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(2),
373 374
	},
	{
375 376 377
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(3),
378 379
	},
	{
380 381 382
		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(2),
383 384
	},
	{
385 386 387
		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(0),
388 389
	},
	{
390 391 392
		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(1),
393
	},
394 395 396 397
	{ /* not used */
		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(0),
398
	},
399 400 401 402
	{ /* not used */
		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
		__cpu_to_le32(1),
403 404
	},
	{
405 406 407
		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
		__cpu_to_le32(4),
408 409
	},
	{
410 411
		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
412
		__cpu_to_le32(5),
413 414 415 416
	},

	/* (Additions here) */

417 418 419 420
	{ /* must be last */
		__cpu_to_le32(0),
		__cpu_to_le32(0),
		__cpu_to_le32(0),
421 422 423
	},
};

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
static bool ath10k_pci_is_awake(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
			   RTC_STATE_ADDRESS);

	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
}

static void __ath10k_pci_wake(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	lockdep_assert_held(&ar_pci->ps_lock);

	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);

	iowrite32(PCIE_SOC_WAKE_V_MASK,
		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
		  PCIE_SOC_WAKE_ADDRESS);
}

static void __ath10k_pci_sleep(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	lockdep_assert_held(&ar_pci->ps_lock);

	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);

	iowrite32(PCIE_SOC_WAKE_RESET,
		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
		  PCIE_SOC_WAKE_ADDRESS);
	ar_pci->ps_awake = false;
}

static int ath10k_pci_wake_wait(struct ath10k *ar)
{
	int tot_delay = 0;
	int curr_delay = 5;

	while (tot_delay < PCIE_WAKE_TIMEOUT) {
468 469 470 471
		if (ath10k_pci_is_awake(ar)) {
			if (tot_delay > PCIE_WAKE_LATE_US)
				ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
					    tot_delay / 1000);
472
			return 0;
473
		}
474 475 476 477 478 479 480 481 482 483 484

		udelay(curr_delay);
		tot_delay += curr_delay;

		if (curr_delay < 50)
			curr_delay += 5;
	}

	return -ETIMEDOUT;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static int ath10k_pci_force_wake(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&ar_pci->ps_lock, flags);

	if (!ar_pci->ps_awake) {
		iowrite32(PCIE_SOC_WAKE_V_MASK,
			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
			  PCIE_SOC_WAKE_ADDRESS);

		ret = ath10k_pci_wake_wait(ar);
		if (ret == 0)
			ar_pci->ps_awake = true;
	}

	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);

	return ret;
}

static void ath10k_pci_force_sleep(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;

	spin_lock_irqsave(&ar_pci->ps_lock, flags);

	iowrite32(PCIE_SOC_WAKE_RESET,
		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
		  PCIE_SOC_WAKE_ADDRESS);
	ar_pci->ps_awake = false;

	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}

523 524 525 526 527 528
static int ath10k_pci_wake(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;
	int ret = 0;

529 530 531
	if (ar_pci->pci_ps == 0)
		return ret;

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	spin_lock_irqsave(&ar_pci->ps_lock, flags);

	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);

	/* This function can be called very frequently. To avoid excessive
	 * CPU stalls for MMIO reads use a cache var to hold the device state.
	 */
	if (!ar_pci->ps_awake) {
		__ath10k_pci_wake(ar);

		ret = ath10k_pci_wake_wait(ar);
		if (ret == 0)
			ar_pci->ps_awake = true;
	}

	if (ret == 0) {
		ar_pci->ps_wake_refcount++;
		WARN_ON(ar_pci->ps_wake_refcount == 0);
	}

	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);

	return ret;
}

static void ath10k_pci_sleep(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;

563 564 565
	if (ar_pci->pci_ps == 0)
		return;

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	spin_lock_irqsave(&ar_pci->ps_lock, flags);

	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);

	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
		goto skip;

	ar_pci->ps_wake_refcount--;

	mod_timer(&ar_pci->ps_timer, jiffies +
		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));

skip:
	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}

static void ath10k_pci_ps_timer(unsigned long ptr)
{
	struct ath10k *ar = (void *)ptr;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;

	spin_lock_irqsave(&ar_pci->ps_lock, flags);

	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);

	if (ar_pci->ps_wake_refcount > 0)
		goto skip;

	__ath10k_pci_sleep(ar);

skip:
	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}

static void ath10k_pci_sleep_sync(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;

608 609 610 611 612
	if (ar_pci->pci_ps == 0) {
		ath10k_pci_force_sleep(ar);
		return;
	}

613 614 615 616 617 618 619 620 621 622 623 624 625
	del_timer_sync(&ar_pci->ps_timer);

	spin_lock_irqsave(&ar_pci->ps_lock, flags);
	WARN_ON(ar_pci->ps_wake_refcount > 0);
	__ath10k_pci_sleep(ar);
	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}

void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

626 627 628 629 630 631
	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
			    offset, offset + sizeof(value), ar_pci->mem_len);
		return;
	}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	ret = ath10k_pci_wake(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
			    value, offset, ret);
		return;
	}

	iowrite32(value, ar_pci->mem + offset);
	ath10k_pci_sleep(ar);
}

u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	u32 val;
	int ret;

649 650 651 652 653 654
	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
			    offset, offset + sizeof(val), ar_pci->mem_len);
		return 0;
	}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	ret = ath10k_pci_wake(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
			    offset, ret);
		return 0xffffffff;
	}

	val = ioread32(ar_pci->mem + offset);
	ath10k_pci_sleep(ar);

	return val;
}

u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
{
	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
}

void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
{
	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
}

u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
{
	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
}

void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
{
	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
}

688 689 690 691 692 693 694 695 696 697 698 699 700
static bool ath10k_pci_irq_pending(struct ath10k *ar)
{
	u32 cause;

	/* Check if the shared legacy irq is for us */
	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
				  PCIE_INTR_CAUSE_ADDRESS);
	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
		return true;

	return false;
}

701 702 703 704 705 706 707 708 709 710 711 712
static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
{
	/* IMPORTANT: INTR_CLR register has to be set after
	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
	 * really cleared. */
	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
			   0);
	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);

	/* IMPORTANT: this extra read transaction is required to
	 * flush the posted write buffer. */
713 714
	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
				PCIE_INTR_ENABLE_ADDRESS);
715 716 717 718 719 720 721 722 723 724
}

static void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
{
	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
			   PCIE_INTR_ENABLE_ADDRESS,
			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);

	/* IMPORTANT: this extra read transaction is required to
	 * flush the posted write buffer. */
725 726
	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
				PCIE_INTR_ENABLE_ADDRESS);
727 728
}

729
static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
730 731 732
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

733 734
	if (ar_pci->num_msi_intrs > 1)
		return "msi-x";
735 736

	if (ar_pci->num_msi_intrs == 1)
737
		return "msi";
738 739

	return "legacy";
740 741
}

742
static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
743
{
744
	struct ath10k *ar = pipe->hif_ce_state;
745
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
746 747 748
	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
	struct sk_buff *skb;
	dma_addr_t paddr;
749 750
	int ret;

751 752 753 754 755 756 757 758 759 760
	skb = dev_alloc_skb(pipe->buf_sz);
	if (!skb)
		return -ENOMEM;

	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");

	paddr = dma_map_single(ar->dev, skb->data,
			       skb->len + skb_tailroom(skb),
			       DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
761
		ath10k_warn(ar, "failed to dma map pci rx buf\n");
762 763 764 765
		dev_kfree_skb_any(skb);
		return -EIO;
	}

766
	ATH10K_SKB_RXCB(skb)->paddr = paddr;
767

768
	spin_lock_bh(&ar_pci->ce_lock);
769
	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
770
	spin_unlock_bh(&ar_pci->ce_lock);
771
	if (ret) {
772 773 774
		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
				 DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
775 776 777 778 779 780
		return ret;
	}

	return 0;
}

781
static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
782
{
783 784 785 786 787 788 789 790 791 792 793
	struct ath10k *ar = pipe->hif_ce_state;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
	int ret, num;

	if (pipe->buf_sz == 0)
		return;

	if (!ce_pipe->dest_ring)
		return;

794
	spin_lock_bh(&ar_pci->ce_lock);
795
	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
796
	spin_unlock_bh(&ar_pci->ce_lock);
797 798 799
	while (num--) {
		ret = __ath10k_pci_rx_post_buf(pipe);
		if (ret) {
800 801
			if (ret == -ENOSPC)
				break;
802
			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
803 804 805 806 807 808 809 810 811 812 813 814 815
			mod_timer(&ar_pci->rx_post_retry, jiffies +
				  ATH10K_PCI_RX_POST_RETRY_MS);
			break;
		}
	}
}

static void ath10k_pci_rx_post(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int i;

	for (i = 0; i < CE_COUNT; i++)
816
		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
817 818 819 820 821 822 823
}

static void ath10k_pci_rx_replenish_retry(unsigned long ptr)
{
	struct ath10k *ar = (void *)ptr;

	ath10k_pci_rx_post(ar);
824 825
}

826 827 828 829 830 831 832
static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
{
	u32 val = 0;

	switch (ar->hw_rev) {
	case ATH10K_HW_QCA988X:
	case ATH10K_HW_QCA6174:
833
	case ATH10K_HW_QCA9377:
834 835
		val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
					  CORE_CTRL_ADDRESS) &
836
		       0x7ff) << 21;
837 838 839 840 841 842 843 844 845 846
		break;
	case ATH10K_HW_QCA99X0:
		val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
		break;
	}

	val |= 0x100000 | (addr & 0xfffff);
	return val;
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860
/*
 * Diagnostic read/write access is provided for startup/config/debug usage.
 * Caller must guarantee proper alignment, when applicable, and single user
 * at any moment.
 */
static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
				    int nbytes)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret = 0;
	u32 buf;
	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
	unsigned int id;
	unsigned int flags;
861
	struct ath10k_ce_pipe *ce_diag;
862 863 864 865 866 867
	/* Host buffer address in CE space */
	u32 ce_data;
	dma_addr_t ce_data_base = 0;
	void *data_buf = NULL;
	int i;

868 869
	spin_lock_bh(&ar_pci->ce_lock);

870 871 872 873 874 875 876 877 878
	ce_diag = ar_pci->ce_diag;

	/*
	 * Allocate a temporary bounce buffer to hold caller's data
	 * to be DMA'ed from Target. This guarantees
	 *   1) 4-byte alignment
	 *   2) Buffer in DMA-able space
	 */
	orig_nbytes = nbytes;
879 880 881 882
	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
						       orig_nbytes,
						       &ce_data_base,
						       GFP_ATOMIC);
883 884 885 886 887 888 889 890 891 892 893 894 895

	if (!data_buf) {
		ret = -ENOMEM;
		goto done;
	}
	memset(data_buf, 0, orig_nbytes);

	remaining_bytes = orig_nbytes;
	ce_data = ce_data_base;
	while (remaining_bytes) {
		nbytes = min_t(unsigned int, remaining_bytes,
			       DIAG_TRANSFER_LIMIT);

896
		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
897 898 899 900 901 902 903 904 905 906 907 908
		if (ret != 0)
			goto done;

		/* Request CE to send from Target(!) address to Host buffer */
		/*
		 * The address supplied by the caller is in the
		 * Target CPU virtual address space.
		 *
		 * In order to use this address with the diagnostic CE,
		 * convert it from Target CPU virtual address space
		 * to CE address space
		 */
909
		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
910

911 912
		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
					    0);
913 914 915 916
		if (ret)
			goto done;

		i = 0;
917 918
		while (ath10k_ce_completed_send_next_nolock(ce_diag,
							    NULL) != 0) {
919 920 921 922 923 924 925 926
			mdelay(1);
			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
				ret = -EBUSY;
				goto done;
			}
		}

		i = 0;
927 928 929
		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
							    &completed_nbytes,
							    &id, &flags) != 0) {
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
			mdelay(1);

			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
				ret = -EBUSY;
				goto done;
			}
		}

		if (nbytes != completed_nbytes) {
			ret = -EIO;
			goto done;
		}

		if (buf != ce_data) {
			ret = -EIO;
			goto done;
		}

		remaining_bytes -= nbytes;
		address += nbytes;
		ce_data += nbytes;
	}

done:
954 955 956
	if (ret == 0)
		memcpy(data, data_buf, orig_nbytes);
	else
957
		ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
958
			    address, ret);
959 960

	if (data_buf)
961 962
		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
				  ce_data_base);
963

964 965
	spin_unlock_bh(&ar_pci->ce_lock);

966 967 968
	return ret;
}

969 970
static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
{
971 972 973 974 975 976 977
	__le32 val = 0;
	int ret;

	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
	*value = __le32_to_cpu(val);

	return ret;
978 979 980 981 982 983 984 985 986 987 988 989
}

static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
				     u32 src, u32 len)
{
	u32 host_addr, addr;
	int ret;

	host_addr = host_interest_item_address(src);

	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
	if (ret != 0) {
990
		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
991 992 993 994 995 996
			    src, ret);
		return ret;
	}

	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
	if (ret != 0) {
997
		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
998 999 1000 1001 1002 1003 1004 1005
			    addr, len, ret);
		return ret;
	}

	return 0;
}

#define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1006
	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016
static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
				     const void *data, int nbytes)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret = 0;
	u32 buf;
	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
	unsigned int id;
	unsigned int flags;
1017
	struct ath10k_ce_pipe *ce_diag;
1018 1019 1020 1021 1022
	void *data_buf = NULL;
	u32 ce_data;	/* Host buffer address in CE space */
	dma_addr_t ce_data_base = 0;
	int i;

1023 1024
	spin_lock_bh(&ar_pci->ce_lock);

1025 1026 1027 1028 1029 1030 1031 1032 1033
	ce_diag = ar_pci->ce_diag;

	/*
	 * Allocate a temporary bounce buffer to hold caller's data
	 * to be DMA'ed to Target. This guarantees
	 *   1) 4-byte alignment
	 *   2) Buffer in DMA-able space
	 */
	orig_nbytes = nbytes;
1034 1035 1036 1037
	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
						       orig_nbytes,
						       &ce_data_base,
						       GFP_ATOMIC);
1038 1039 1040 1041 1042 1043
	if (!data_buf) {
		ret = -ENOMEM;
		goto done;
	}

	/* Copy caller's data to allocated DMA buf */
1044
	memcpy(data_buf, data, orig_nbytes);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	/*
	 * The address supplied by the caller is in the
	 * Target CPU virtual address space.
	 *
	 * In order to use this address with the diagnostic CE,
	 * convert it from
	 *    Target CPU virtual address space
	 * to
	 *    CE address space
	 */
1056
	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1057 1058 1059 1060 1061 1062 1063 1064

	remaining_bytes = orig_nbytes;
	ce_data = ce_data_base;
	while (remaining_bytes) {
		/* FIXME: check cast */
		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);

		/* Set up to receive directly into Target(!) address */
1065
		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, address);
1066 1067 1068 1069 1070 1071 1072
		if (ret != 0)
			goto done;

		/*
		 * Request CE to send caller-supplied data that
		 * was copied to bounce buffer to Target(!) address.
		 */
1073 1074
		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
					    nbytes, 0, 0);
1075 1076 1077 1078
		if (ret != 0)
			goto done;

		i = 0;
1079 1080
		while (ath10k_ce_completed_send_next_nolock(ce_diag,
							    NULL) != 0) {
1081 1082 1083 1084 1085 1086 1087 1088 1089
			mdelay(1);

			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
				ret = -EBUSY;
				goto done;
			}
		}

		i = 0;
1090 1091 1092
		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
							    &completed_nbytes,
							    &id, &flags) != 0) {
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
			mdelay(1);

			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
				ret = -EBUSY;
				goto done;
			}
		}

		if (nbytes != completed_nbytes) {
			ret = -EIO;
			goto done;
		}

		if (buf != address) {
			ret = -EIO;
			goto done;
		}

		remaining_bytes -= nbytes;
		address += nbytes;
		ce_data += nbytes;
	}

done:
	if (data_buf) {
1118 1119
		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
				  ce_data_base);
1120 1121 1122
	}

	if (ret != 0)
1123
		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1124
			    address, ret);
1125

1126 1127
	spin_unlock_bh(&ar_pci->ce_lock);

1128 1129 1130
	return ret;
}

1131 1132 1133 1134 1135 1136 1137
static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
{
	__le32 val = __cpu_to_le32(value);

	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
}

1138
/* Called by lower (CE) layer when a send to Target completes. */
1139
static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1140 1141
{
	struct ath10k *ar = ce_state->ar;
1142 1143
	struct sk_buff_head list;
	struct sk_buff *skb;
1144

1145
	__skb_queue_head_init(&list);
1146
	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1147
		/* no need to call tx completion for NULL pointers */
1148
		if (skb == NULL)
1149 1150
			continue;

1151
		__skb_queue_tail(&list, skb);
1152
	}
1153 1154

	while ((skb = __skb_dequeue(&list)))
1155
		ath10k_htc_tx_completion_handler(ar, skb);
1156 1157
}

1158 1159 1160
static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
				     void (*callback)(struct ath10k *ar,
						      struct sk_buff *skb))
1161 1162 1163
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1164
	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1165
	struct sk_buff *skb;
1166
	struct sk_buff_head list;
1167 1168
	void *transfer_context;
	u32 ce_data;
1169
	unsigned int nbytes, max_nbytes;
1170 1171
	unsigned int transfer_id;
	unsigned int flags;
1172

1173
	__skb_queue_head_init(&list);
1174 1175 1176
	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
					     &ce_data, &nbytes, &transfer_id,
					     &flags) == 0) {
1177
		skb = transfer_context;
1178
		max_nbytes = skb->len + skb_tailroom(skb);
1179
		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1180 1181 1182
				 max_nbytes, DMA_FROM_DEVICE);

		if (unlikely(max_nbytes < nbytes)) {
1183
			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1184 1185 1186 1187
				    nbytes, max_nbytes);
			dev_kfree_skb_any(skb);
			continue;
		}
1188

1189
		skb_put(skb, nbytes);
1190 1191
		__skb_queue_tail(&list, skb);
	}
1192

1193
	while ((skb = __skb_dequeue(&list))) {
1194 1195 1196 1197 1198
		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
			   ce_state->id, skb->len);
		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
				skb->data, skb->len);

1199
		callback(ar, skb);
1200
	}
1201

1202
	ath10k_pci_rx_post_pipe(pipe_info);
1203 1204
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/* Called by lower (CE) layer when data is received from the Target. */
static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
{
	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
}

/* Called by lower (CE) layer when a send to HTT Target completes. */
static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
{
	struct ath10k *ar = ce_state->ar;
	struct sk_buff *skb;

1217
	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		/* no need to call tx completion for NULL pointers */
		if (!skb)
			continue;

		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
				 skb->len, DMA_TO_DEVICE);
		ath10k_htt_hif_tx_complete(ar, skb);
	}
}

static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
{
	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
	ath10k_htt_t2h_msg_handler(ar, skb);
}

/* Called by lower (CE) layer when HTT data is received from the Target. */
static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
{
	/* CE4 polling needs to be done whenever CE pipe which transports
	 * HTT Rx (target->host) is processed.
	 */
	ath10k_ce_per_engine_service(ce_state->ar, 4);

	ath10k_pci_process_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
}

1245 1246
static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
				struct ath10k_hif_sg_item *items, int n_items)
1247 1248
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1249 1250 1251
	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1252 1253 1254
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
1255
	int err, i = 0;
1256

1257
	spin_lock_bh(&ar_pci->ce_lock);
1258

1259 1260 1261 1262
	nentries_mask = src_ring->nentries_mask;
	sw_index = src_ring->sw_index;
	write_index = src_ring->write_index;

1263 1264 1265
	if (unlikely(CE_RING_DELTA(nentries_mask,
				   write_index, sw_index - 1) < n_items)) {
		err = -ENOBUFS;
1266
		goto err;
1267
	}
1268

1269
	for (i = 0; i < n_items - 1; i++) {
1270
		ath10k_dbg(ar, ATH10K_DBG_PCI,
1271 1272
			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
			   i, items[i].paddr, items[i].len, n_items);
1273
		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1274
				items[i].vaddr, items[i].len);
1275

1276 1277 1278 1279 1280 1281 1282
		err = ath10k_ce_send_nolock(ce_pipe,
					    items[i].transfer_context,
					    items[i].paddr,
					    items[i].len,
					    items[i].transfer_id,
					    CE_SEND_FLAG_GATHER);
		if (err)
1283
			goto err;
1284 1285 1286 1287
	}

	/* `i` is equal to `n_items -1` after for() */

1288
	ath10k_dbg(ar, ATH10K_DBG_PCI,
1289 1290
		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
		   i, items[i].paddr, items[i].len, n_items);
1291
	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1292 1293 1294 1295 1296 1297 1298 1299 1300
			items[i].vaddr, items[i].len);

	err = ath10k_ce_send_nolock(ce_pipe,
				    items[i].transfer_context,
				    items[i].paddr,
				    items[i].len,
				    items[i].transfer_id,
				    0);
	if (err)
1301 1302 1303 1304 1305 1306 1307 1308
		goto err;

	spin_unlock_bh(&ar_pci->ce_lock);
	return 0;

err:
	for (; i > 0; i--)
		__ath10k_ce_send_revert(ce_pipe);
1309 1310 1311

	spin_unlock_bh(&ar_pci->ce_lock);
	return err;
1312 1313
}

1314 1315 1316 1317 1318 1319
static int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
				    size_t buf_len)
{
	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
}

1320 1321 1322
static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1323

1324
	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1325

1326
	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1327 1328
}

1329 1330
static void ath10k_pci_dump_registers(struct ath10k *ar,
				      struct ath10k_fw_crash_data *crash_data)
1331
{
1332 1333
	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
	int i, ret;
1334

1335
	lockdep_assert_held(&ar->data_lock);
1336

1337 1338
	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
				      hi_failure_state,
1339
				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1340
	if (ret) {
1341
		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1342 1343 1344 1345 1346
		return;
	}

	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);

1347
	ath10k_err(ar, "firmware register dump:\n");
1348
	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1349
		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1350
			   i,
1351 1352 1353 1354
			   __le32_to_cpu(reg_dump_values[i]),
			   __le32_to_cpu(reg_dump_values[i + 1]),
			   __le32_to_cpu(reg_dump_values[i + 2]),
			   __le32_to_cpu(reg_dump_values[i + 3]));
1355

1356 1357 1358
	if (!crash_data)
		return;

1359
	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1360
		crash_data->registers[i] = reg_dump_values[i];
1361 1362
}

1363
static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1364 1365 1366 1367 1368 1369
{
	struct ath10k_fw_crash_data *crash_data;
	char uuid[50];

	spin_lock_bh(&ar->data_lock);

1370 1371
	ar->stats.fw_crash_counter++;

1372 1373 1374 1375 1376 1377 1378
	crash_data = ath10k_debug_get_new_fw_crash_data(ar);

	if (crash_data)
		scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
	else
		scnprintf(uuid, sizeof(uuid), "n/a");

1379
	ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1380
	ath10k_print_driver_info(ar);
1381 1382 1383
	ath10k_pci_dump_registers(ar, crash_data);

	spin_unlock_bh(&ar->data_lock);
1384

1385
	queue_work(ar->workqueue, &ar->restart_work);
1386 1387 1388 1389 1390
}

static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
					       int force)
{
1391
	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	if (!force) {
		int resources;
		/*
		 * Decide whether to actually poll for completions, or just
		 * wait for a later chance.
		 * If there seem to be plenty of resources left, then just wait
		 * since checking involves reading a CE register, which is a
		 * relatively expensive operation.
		 */
		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);

		/*
		 * If at least 50% of the total resources are still available,
		 * don't bother checking again yet.
		 */
		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
			return;
	}
	ath10k_ce_per_engine_service(ar, pipe);
}

1414
static void ath10k_pci_kill_tasklet(struct ath10k *ar)
1415 1416 1417 1418 1419
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int i;

	tasklet_kill(&ar_pci->intr_tq);
1420
	tasklet_kill(&ar_pci->msi_fw_err);
1421 1422 1423

	for (i = 0; i < CE_COUNT; i++)
		tasklet_kill(&ar_pci->pipe_info[i].intr);
1424 1425

	del_timer_sync(&ar_pci->rx_post_retry);
1426 1427
}

1428 1429
static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
					      u8 *ul_pipe, u8 *dl_pipe)
1430
{
1431 1432 1433
	const struct service_to_pipe *entry;
	bool ul_set = false, dl_set = false;
	int i;
1434

1435
	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1436

1437 1438
	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
		entry = &target_service_to_ce_map_wlan[i];
1439

1440
		if (__le32_to_cpu(entry->service_id) != service_id)
1441
			continue;
1442

1443
		switch (__le32_to_cpu(entry->pipedir)) {
1444 1445 1446 1447
		case PIPEDIR_NONE:
			break;
		case PIPEDIR_IN:
			WARN_ON(dl_set);
1448
			*dl_pipe = __le32_to_cpu(entry->pipenum);
1449 1450 1451 1452
			dl_set = true;
			break;
		case PIPEDIR_OUT:
			WARN_ON(ul_set);
1453
			*ul_pipe = __le32_to_cpu(entry->pipenum);
1454 1455 1456 1457 1458
			ul_set = true;
			break;
		case PIPEDIR_INOUT:
			WARN_ON(dl_set);
			WARN_ON(ul_set);
1459 1460
			*dl_pipe = __le32_to_cpu(entry->pipenum);
			*ul_pipe = __le32_to_cpu(entry->pipenum);
1461 1462 1463 1464
			dl_set = true;
			ul_set = true;
			break;
		}
1465 1466
	}

1467 1468
	if (WARN_ON(!ul_set || !dl_set))
		return -ENOENT;
1469

1470
	return 0;
1471 1472 1473
}

static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1474
					    u8 *ul_pipe, u8 *dl_pipe)
1475
{
1476
	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1477

1478 1479
	(void)ath10k_pci_hif_map_service_to_pipe(ar,
						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1480
						 ul_pipe, dl_pipe);
1481 1482
}

1483
static void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1484
{
1485 1486
	u32 val;

1487 1488 1489
	switch (ar->hw_rev) {
	case ATH10K_HW_QCA988X:
	case ATH10K_HW_QCA6174:
1490
	case ATH10K_HW_QCA9377:
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
					CORE_CTRL_ADDRESS);
		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
				   CORE_CTRL_ADDRESS, val);
		break;
	case ATH10K_HW_QCA99X0:
		/* TODO: Find appropriate register configuration for QCA99X0
		 *  to mask irq/MSI.
		 */
		 break;
	}
1503 1504 1505 1506 1507 1508
}

static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
{
	u32 val;

1509 1510 1511
	switch (ar->hw_rev) {
	case ATH10K_HW_QCA988X:
	case ATH10K_HW_QCA6174:
1512
	case ATH10K_HW_QCA9377:
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
					CORE_CTRL_ADDRESS);
		val |= CORE_CTRL_PCIE_REG_31_MASK;
		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
				   CORE_CTRL_ADDRESS, val);
		break;
	case ATH10K_HW_QCA99X0:
		/* TODO: Find appropriate register configuration for QCA99X0
		 *  to unmask irq/MSI.
		 */
		break;
	}
1525
}
1526

1527 1528
static void ath10k_pci_irq_disable(struct ath10k *ar)
{
1529
	ath10k_ce_disable_interrupts(ar);
1530
	ath10k_pci_disable_and_clear_legacy_irq(ar);
1531 1532 1533 1534 1535 1536 1537
	ath10k_pci_irq_msi_fw_mask(ar);
}

static void ath10k_pci_irq_sync(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int i;
1538

1539 1540
	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
		synchronize_irq(ar_pci->pdev->irq + i);
1541 1542
}

1543
static void ath10k_pci_irq_enable(struct ath10k *ar)
1544
{
1545
	ath10k_ce_enable_interrupts(ar);
1546
	ath10k_pci_enable_legacy_irq(ar);
1547
	ath10k_pci_irq_msi_fw_unmask(ar);
1548 1549 1550 1551
}

static int ath10k_pci_hif_start(struct ath10k *ar)
{
J
Janusz Dziedzic 已提交
1552
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1553

1554
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1555

1556
	ath10k_pci_irq_enable(ar);
1557
	ath10k_pci_rx_post(ar);
1558

J
Janusz Dziedzic 已提交
1559 1560 1561
	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
				   ar_pci->link_ctl);

1562 1563 1564
	return 0;
}

1565
static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1566 1567
{
	struct ath10k *ar;
1568 1569 1570 1571
	struct ath10k_ce_pipe *ce_pipe;
	struct ath10k_ce_ring *ce_ring;
	struct sk_buff *skb;
	int i;
1572

1573 1574 1575
	ar = pci_pipe->hif_ce_state;
	ce_pipe = pci_pipe->ce_hdl;
	ce_ring = ce_pipe->dest_ring;
1576

1577
	if (!ce_ring)
1578 1579
		return;

1580 1581
	if (!pci_pipe->buf_sz)
		return;
1582

1583 1584 1585 1586 1587 1588 1589
	for (i = 0; i < ce_ring->nentries; i++) {
		skb = ce_ring->per_transfer_context[i];
		if (!skb)
			continue;

		ce_ring->per_transfer_context[i] = NULL;

1590
		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1591
				 skb->len + skb_tailroom(skb),
1592
				 DMA_FROM_DEVICE);
1593
		dev_kfree_skb_any(skb);
1594 1595 1596
	}
}

1597
static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1598 1599 1600
{
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;
1601 1602 1603 1604
	struct ath10k_ce_pipe *ce_pipe;
	struct ath10k_ce_ring *ce_ring;
	struct sk_buff *skb;
	int i;
1605

1606 1607 1608 1609
	ar = pci_pipe->hif_ce_state;
	ar_pci = ath10k_pci_priv(ar);
	ce_pipe = pci_pipe->ce_hdl;
	ce_ring = ce_pipe->src_ring;
1610

1611
	if (!ce_ring)
1612 1613
		return;

1614 1615
	if (!pci_pipe->buf_sz)
		return;
1616

1617 1618 1619
	for (i = 0; i < ce_ring->nentries; i++) {
		skb = ce_ring->per_transfer_context[i];
		if (!skb)
1620 1621
			continue;

1622 1623
		ce_ring->per_transfer_context[i] = NULL;

1624
		ath10k_htc_tx_completion_handler(ar, skb);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	}
}

/*
 * Cleanup residual buffers for device shutdown:
 *    buffers that were enqueued for receive
 *    buffers that were to be sent
 * Note: Buffers that had completed but which were
 * not yet processed are on a completion queue. They
 * are handled when the completion thread shuts down.
 */
static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int pipe_num;

1641
	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1642
		struct ath10k_pci_pipe *pipe_info;
1643 1644 1645 1646 1647 1648 1649 1650 1651

		pipe_info = &ar_pci->pipe_info[pipe_num];
		ath10k_pci_rx_pipe_cleanup(pipe_info);
		ath10k_pci_tx_pipe_cleanup(pipe_info);
	}
}

static void ath10k_pci_ce_deinit(struct ath10k *ar)
{
1652
	int i;
1653

1654 1655
	for (i = 0; i < CE_COUNT; i++)
		ath10k_ce_deinit_pipe(ar, i);
1656 1657
}

1658
static void ath10k_pci_flush(struct ath10k *ar)
1659
{
1660
	ath10k_pci_kill_tasklet(ar);
1661 1662
	ath10k_pci_buffer_cleanup(ar);
}
1663 1664 1665

static void ath10k_pci_hif_stop(struct ath10k *ar)
{
1666 1667 1668
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned long flags;

1669
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1670

1671 1672 1673
	/* Most likely the device has HTT Rx ring configured. The only way to
	 * prevent the device from accessing (and possible corrupting) host
	 * memory is to reset the chip now.
1674 1675 1676 1677 1678 1679 1680
	 *
	 * There's also no known way of masking MSI interrupts on the device.
	 * For ranged MSI the CE-related interrupts can be masked. However
	 * regardless how many MSI interrupts are assigned the first one
	 * is always used for firmware indications (crashes) and cannot be
	 * masked. To prevent the device from asserting the interrupt reset it
	 * before proceeding with cleanup.
1681
	 */
1682
	ath10k_pci_safe_chip_reset(ar);
1683 1684

	ath10k_pci_irq_disable(ar);
1685
	ath10k_pci_irq_sync(ar);
1686
	ath10k_pci_flush(ar);
1687 1688 1689 1690

	spin_lock_irqsave(&ar_pci->ps_lock, flags);
	WARN_ON(ar_pci->ps_wake_refcount > 0);
	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1691 1692 1693 1694 1695 1696 1697
}

static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
					   void *req, u32 req_len,
					   void *resp, u32 *resp_len)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1698 1699 1700 1701
	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1702 1703 1704 1705 1706 1707
	dma_addr_t req_paddr = 0;
	dma_addr_t resp_paddr = 0;
	struct bmi_xfer xfer = {};
	void *treq, *tresp = NULL;
	int ret = 0;

1708 1709
	might_sleep();

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	if (resp && !resp_len)
		return -EINVAL;

	if (resp && resp_len && *resp_len == 0)
		return -EINVAL;

	treq = kmemdup(req, req_len, GFP_KERNEL);
	if (!treq)
		return -ENOMEM;

	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
	ret = dma_mapping_error(ar->dev, req_paddr);
1722 1723
	if (ret) {
		ret = -EIO;
1724
		goto err_dma;
1725
	}
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

	if (resp && resp_len) {
		tresp = kzalloc(*resp_len, GFP_KERNEL);
		if (!tresp) {
			ret = -ENOMEM;
			goto err_req;
		}

		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
					    DMA_FROM_DEVICE);
		ret = dma_mapping_error(ar->dev, resp_paddr);
1737 1738
		if (ret) {
			ret = EIO;
1739
			goto err_req;
1740
		}
1741 1742 1743 1744

		xfer.wait_for_resp = true;
		xfer.resp_len = 0;

1745
		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1746 1747 1748 1749 1750 1751
	}

	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
	if (ret)
		goto err_resp;

1752 1753
	ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
	if (ret) {
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
		u32 unused_buffer;
		unsigned int unused_nbytes;
		unsigned int unused_id;

		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
					   &unused_nbytes, &unused_id);
	} else {
		/* non-zero means we did not time out */
		ret = 0;
	}

err_resp:
	if (resp) {
		u32 unused_buffer;

		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
		dma_unmap_single(ar->dev, resp_paddr,
				 *resp_len, DMA_FROM_DEVICE);
	}
err_req:
	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);

	if (ret == 0 && resp_len) {
		*resp_len = min(*resp_len, xfer.resp_len);
		memcpy(resp, tresp, xfer.resp_len);
	}
err_dma:
	kfree(treq);
	kfree(tresp);

	return ret;
}

1787
static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1788
{
1789 1790
	struct bmi_xfer *xfer;

1791
	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1792
		return;
1793

1794
	xfer->tx_done = true;
1795 1796
}

1797
static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1798
{
1799
	struct ath10k *ar = ce_state->ar;
1800 1801 1802 1803 1804 1805 1806 1807 1808
	struct bmi_xfer *xfer;
	u32 ce_data;
	unsigned int nbytes;
	unsigned int transfer_id;
	unsigned int flags;

	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
					  &nbytes, &transfer_id, &flags))
		return;
1809

1810 1811 1812
	if (WARN_ON_ONCE(!xfer))
		return;

1813
	if (!xfer->wait_for_resp) {
1814
		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1815 1816 1817 1818
		return;
	}

	xfer->resp_len = nbytes;
1819
	xfer->rx_done = true;
1820 1821
}

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
			       struct ath10k_ce_pipe *rx_pipe,
			       struct bmi_xfer *xfer)
{
	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;

	while (time_before_eq(jiffies, timeout)) {
		ath10k_pci_bmi_send_done(tx_pipe);
		ath10k_pci_bmi_recv_data(rx_pipe);

1832
		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1833 1834 1835 1836
			return 0;

		schedule();
	}
1837

1838 1839
	return -ETIMEDOUT;
}
1840 1841 1842 1843 1844 1845 1846

/*
 * Send an interrupt to the device to wake up the Target CPU
 * so it has an opportunity to notice any changed state.
 */
static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
{
1847
	u32 addr, val;
1848

1849 1850 1851 1852
	addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
	val = ath10k_pci_read32(ar, addr);
	val |= CORE_CTRL_CPU_INTR_MASK;
	ath10k_pci_write32(ar, addr, val);
1853

1854
	return 0;
1855 1856
}

1857 1858 1859 1860 1861 1862
static int ath10k_pci_get_num_banks(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	switch (ar_pci->pdev->device) {
	case QCA988X_2_0_DEVICE_ID:
1863
	case QCA99X0_2_0_DEVICE_ID:
1864
		return 1;
1865
	case QCA6164_2_1_DEVICE_ID:
1866 1867 1868 1869
	case QCA6174_2_1_DEVICE_ID:
		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
		case QCA6174_HW_1_0_CHIP_ID_REV:
		case QCA6174_HW_1_1_CHIP_ID_REV:
1870 1871
		case QCA6174_HW_2_1_CHIP_ID_REV:
		case QCA6174_HW_2_2_CHIP_ID_REV:
1872 1873 1874 1875 1876 1877 1878 1879 1880
			return 3;
		case QCA6174_HW_1_3_CHIP_ID_REV:
			return 2;
		case QCA6174_HW_3_0_CHIP_ID_REV:
		case QCA6174_HW_3_1_CHIP_ID_REV:
		case QCA6174_HW_3_2_CHIP_ID_REV:
			return 9;
		}
		break;
1881 1882
	case QCA9377_1_0_DEVICE_ID:
		return 2;
1883 1884 1885 1886 1887 1888
	}

	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
	return 1;
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
static int ath10k_pci_init_config(struct ath10k *ar)
{
	u32 interconnect_targ_addr;
	u32 pcie_state_targ_addr = 0;
	u32 pipe_cfg_targ_addr = 0;
	u32 svc_to_pipe_map = 0;
	u32 pcie_config_flags = 0;
	u32 ealloc_value;
	u32 ealloc_targ_addr;
	u32 flag2_value;
	u32 flag2_targ_addr;
	int ret = 0;

	/* Download to Target the CE Config and the service-to-CE map */
	interconnect_targ_addr =
		host_interest_item_address(HI_ITEM(hi_interconnect_state));

	/* Supply Target-side CE configuration */
1907 1908
	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
				     &pcie_state_targ_addr);
1909
	if (ret != 0) {
1910
		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1911 1912 1913 1914 1915
		return ret;
	}

	if (pcie_state_targ_addr == 0) {
		ret = -EIO;
1916
		ath10k_err(ar, "Invalid pcie state addr\n");
1917 1918 1919
		return ret;
	}

1920
	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1921
					  offsetof(struct pcie_state,
1922 1923
						   pipe_cfg_addr)),
				     &pipe_cfg_targ_addr);
1924
	if (ret != 0) {
1925
		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
1926 1927 1928 1929 1930
		return ret;
	}

	if (pipe_cfg_targ_addr == 0) {
		ret = -EIO;
1931
		ath10k_err(ar, "Invalid pipe cfg addr\n");
1932 1933 1934 1935
		return ret;
	}

	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1936
					target_ce_config_wlan,
1937 1938
					sizeof(struct ce_pipe_config) *
					NUM_TARGET_CE_CONFIG_WLAN);
1939 1940

	if (ret != 0) {
1941
		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
1942 1943 1944
		return ret;
	}

1945
	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1946
					  offsetof(struct pcie_state,
1947 1948
						   svc_to_pipe_map)),
				     &svc_to_pipe_map);
1949
	if (ret != 0) {
1950
		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
1951 1952 1953 1954 1955
		return ret;
	}

	if (svc_to_pipe_map == 0) {
		ret = -EIO;
1956
		ath10k_err(ar, "Invalid svc_to_pipe map\n");
1957 1958 1959 1960
		return ret;
	}

	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1961 1962
					target_service_to_ce_map_wlan,
					sizeof(target_service_to_ce_map_wlan));
1963
	if (ret != 0) {
1964
		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
1965 1966 1967
		return ret;
	}

1968
	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1969
					  offsetof(struct pcie_state,
1970 1971
						   config_flags)),
				     &pcie_config_flags);
1972
	if (ret != 0) {
1973
		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
1974 1975 1976 1977 1978
		return ret;
	}

	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;

1979 1980 1981 1982
	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
					   offsetof(struct pcie_state,
						    config_flags)),
				      pcie_config_flags);
1983
	if (ret != 0) {
1984
		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
1985 1986 1987 1988 1989 1990
		return ret;
	}

	/* configure early allocation */
	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));

1991
	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
1992
	if (ret != 0) {
1993
		ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
1994 1995 1996 1997 1998 1999
		return ret;
	}

	/* first bank is switched to IRAM */
	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
			 HI_EARLY_ALLOC_MAGIC_MASK);
2000 2001
	ealloc_value |= ((ath10k_pci_get_num_banks(ar) <<
			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2002 2003
			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);

2004
	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2005
	if (ret != 0) {
2006
		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2007 2008 2009 2010 2011 2012
		return ret;
	}

	/* Tell Target to proceed with initialization */
	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));

2013
	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2014
	if (ret != 0) {
2015
		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2016 2017 2018 2019 2020
		return ret;
	}

	flag2_value |= HI_OPTION_EARLY_CFG_DONE;

2021
	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2022
	if (ret != 0) {
2023
		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2024 2025 2026 2027 2028 2029
		return ret;
	}

	return 0;
}

2030
static int ath10k_pci_alloc_pipes(struct ath10k *ar)
2031
{
2032 2033
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_pci_pipe *pipe;
2034 2035 2036
	int i, ret;

	for (i = 0; i < CE_COUNT; i++) {
2037 2038 2039 2040 2041
		pipe = &ar_pci->pipe_info[i];
		pipe->ce_hdl = &ar_pci->ce_states[i];
		pipe->pipe_num = i;
		pipe->hif_ce_state = ar;

2042
		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2043
		if (ret) {
2044
			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2045 2046 2047
				   i, ret);
			return ret;
		}
2048 2049

		/* Last CE is Diagnostic Window */
2050
		if (i == CE_DIAG_PIPE) {
2051 2052 2053 2054 2055
			ar_pci->ce_diag = pipe->ce_hdl;
			continue;
		}

		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2056 2057 2058 2059 2060
	}

	return 0;
}

2061
static void ath10k_pci_free_pipes(struct ath10k *ar)
2062 2063
{
	int i;
2064

2065 2066 2067
	for (i = 0; i < CE_COUNT; i++)
		ath10k_ce_free_pipe(ar, i);
}
2068

2069
static int ath10k_pci_init_pipes(struct ath10k *ar)
2070
{
2071
	int i, ret;
2072

2073 2074
	for (i = 0; i < CE_COUNT; i++) {
		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2075
		if (ret) {
2076
			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2077
				   i, ret);
2078
			return ret;
2079 2080 2081 2082 2083 2084
		}
	}

	return 0;
}

2085
static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2086
{
2087 2088 2089
	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
	       FW_IND_EVENT_PENDING;
}
2090

2091 2092 2093
static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
{
	u32 val;
2094

2095 2096 2097
	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
	val &= ~FW_IND_EVENT_PENDING;
	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2098 2099
}

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
/* this function effectively clears target memory controller assert line */
static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
{
	u32 val;

	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);

	msleep(10);

	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);

	msleep(10);
}

2120
static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2121 2122 2123
{
	u32 val;

2124
	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2125 2126

	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2127 2128 2129 2130 2131 2132 2133 2134
				SOC_RESET_CONTROL_ADDRESS);
	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
}

static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
{
	u32 val;
2135 2136 2137

	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
				SOC_RESET_CONTROL_ADDRESS);
2138

2139 2140 2141 2142 2143
	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
			   val | SOC_RESET_CONTROL_CE_RST_MASK);
	msleep(10);
	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2144 2145 2146 2147 2148 2149
}

static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
{
	u32 val;

2150
	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2151 2152 2153 2154 2155
				SOC_LF_TIMER_CONTROL0_ADDRESS);
	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
			   SOC_LF_TIMER_CONTROL0_ADDRESS,
			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
}
2156

2157 2158 2159 2160 2161
static int ath10k_pci_warm_reset(struct ath10k *ar)
{
	int ret;

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2162

2163 2164 2165
	spin_lock_bh(&ar->data_lock);
	ar->stats.fw_warm_reset_counter++;
	spin_unlock_bh(&ar->data_lock);
2166

2167
	ath10k_pci_irq_disable(ar);
2168

2169 2170 2171 2172 2173 2174 2175 2176 2177
	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
	 * were to access copy engine while host performs copy engine reset
	 * then it is possible for the device to confuse pci-e controller to
	 * the point of bringing host system to a complete stop (i.e. hang).
	 */
	ath10k_pci_warm_reset_si0(ar);
	ath10k_pci_warm_reset_cpu(ar);
	ath10k_pci_init_pipes(ar);
	ath10k_pci_wait_for_target_init(ar);
2178

2179 2180 2181 2182
	ath10k_pci_warm_reset_clear_lf(ar);
	ath10k_pci_warm_reset_ce(ar);
	ath10k_pci_warm_reset_cpu(ar);
	ath10k_pci_init_pipes(ar);
2183

2184 2185 2186 2187 2188
	ret = ath10k_pci_wait_for_target_init(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
		return ret;
	}
2189

2190
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2191

2192
	return 0;
2193 2194
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
{
	if (QCA_REV_988X(ar) || QCA_REV_6174(ar)) {
		return ath10k_pci_warm_reset(ar);
	} else if (QCA_REV_99X0(ar)) {
		ath10k_pci_irq_disable(ar);
		return ath10k_pci_qca99x0_chip_reset(ar);
	} else {
		return -ENOTSUPP;
	}
}

2207
static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2208 2209 2210 2211
{
	int i, ret;
	u32 val;

2212
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
	 * It is thus preferred to use warm reset which is safer but may not be
	 * able to recover the device from all possible fail scenarios.
	 *
	 * Warm reset doesn't always work on first try so attempt it a few
	 * times before giving up.
	 */
	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
		ret = ath10k_pci_warm_reset(ar);
		if (ret) {
			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
				    ret);
			continue;
		}

		/* FIXME: Sometimes copy engine doesn't recover after warm
		 * reset. In most cases this needs cold reset. In some of these
		 * cases the device is in such a state that a cold reset may
		 * lock up the host.
		 *
		 * Reading any host interest register via copy engine is
		 * sufficient to verify if device is capable of booting
		 * firmware blob.
		 */
		ret = ath10k_pci_init_pipes(ar);
		if (ret) {
			ath10k_warn(ar, "failed to init copy engine: %d\n",
				    ret);
			continue;
		}

		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
					     &val);
		if (ret) {
			ath10k_warn(ar, "failed to poke copy engine: %d\n",
				    ret);
			continue;
		}

		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
		return 0;
	}

	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
		ath10k_warn(ar, "refusing cold reset as requested\n");
		return -EPERM;
	}

	ret = ath10k_pci_cold_reset(ar);
	if (ret) {
		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
		return ret;
	}

	ret = ath10k_pci_wait_for_target_init(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
			    ret);
		return ret;
	}

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");

	return 0;
}

static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
{
	int ret;

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");

	/* FIXME: QCA6174 requires cold + warm reset to work. */

	ret = ath10k_pci_cold_reset(ar);
	if (ret) {
		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
		return ret;
	}

	ret = ath10k_pci_wait_for_target_init(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
K
Kalle Valo 已提交
2298
			    ret);
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		return ret;
	}

	ret = ath10k_pci_warm_reset(ar);
	if (ret) {
		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
		return ret;
	}

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2309 2310 2311 2312

	return 0;
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
{
	int ret;

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");

	ret = ath10k_pci_cold_reset(ar);
	if (ret) {
		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
		return ret;
	}

	ret = ath10k_pci_wait_for_target_init(ar);
	if (ret) {
		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
			    ret);
		return ret;
	}

	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");

	return 0;
}

2337 2338 2339 2340 2341 2342
static int ath10k_pci_chip_reset(struct ath10k *ar)
{
	if (QCA_REV_988X(ar))
		return ath10k_pci_qca988x_chip_reset(ar);
	else if (QCA_REV_6174(ar))
		return ath10k_pci_qca6174_chip_reset(ar);
2343 2344
	else if (QCA_REV_9377(ar))
		return ath10k_pci_qca6174_chip_reset(ar);
2345 2346
	else if (QCA_REV_99X0(ar))
		return ath10k_pci_qca99x0_chip_reset(ar);
2347 2348 2349 2350
	else
		return -ENOTSUPP;
}

2351
static int ath10k_pci_hif_power_up(struct ath10k *ar)
2352
{
J
Janusz Dziedzic 已提交
2353
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2354 2355
	int ret;

2356 2357
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");

J
Janusz Dziedzic 已提交
2358 2359 2360 2361 2362
	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
				  &ar_pci->link_ctl);
	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	/*
	 * Bring the target up cleanly.
	 *
	 * The target may be in an undefined state with an AUX-powered Target
	 * and a Host in WoW mode. If the Host crashes, loses power, or is
	 * restarted (without unloading the driver) then the Target is left
	 * (aux) powered and running. On a subsequent driver load, the Target
	 * is in an unexpected state. We try to catch that here in order to
	 * reset the Target and retry the probe.
	 */
2373
	ret = ath10k_pci_chip_reset(ar);
2374
	if (ret) {
2375 2376 2377 2378 2379 2380
		if (ath10k_pci_has_fw_crashed(ar)) {
			ath10k_warn(ar, "firmware crashed during chip reset\n");
			ath10k_pci_fw_crashed_clear(ar);
			ath10k_pci_fw_crashed_dump(ar);
		}

2381
		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2382
		goto err_sleep;
2383
	}
2384

2385
	ret = ath10k_pci_init_pipes(ar);
2386
	if (ret) {
2387
		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2388
		goto err_sleep;
2389 2390
	}

2391 2392
	ret = ath10k_pci_init_config(ar);
	if (ret) {
2393
		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2394
		goto err_ce;
2395
	}
2396 2397 2398

	ret = ath10k_pci_wake_target_cpu(ar);
	if (ret) {
2399
		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2400
		goto err_ce;
2401 2402 2403 2404 2405 2406
	}

	return 0;

err_ce:
	ath10k_pci_ce_deinit(ar);
2407

2408
err_sleep:
2409 2410 2411
	return ret;
}

2412 2413
static void ath10k_pci_hif_power_down(struct ath10k *ar)
{
2414
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2415

2416 2417 2418
	/* Currently hif_power_up performs effectively a reset and hif_stop
	 * resets the chip as well so there's no point in resetting here.
	 */
2419 2420
}

2421 2422 2423 2424
#ifdef CONFIG_PM

static int ath10k_pci_hif_suspend(struct ath10k *ar)
{
2425 2426 2427 2428 2429 2430
	/* The grace timer can still be counting down and ar->ps_awake be true.
	 * It is known that the device may be asleep after resuming regardless
	 * of the SoC powersave state before suspending. Hence make sure the
	 * device is asleep before proceeding.
	 */
	ath10k_pci_sleep_sync(ar);
2431

2432 2433 2434 2435 2436 2437 2438 2439
	return 0;
}

static int ath10k_pci_hif_resume(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct pci_dev *pdev = ar_pci->pdev;
	u32 val;
2440 2441 2442 2443 2444 2445 2446 2447 2448
	int ret = 0;

	if (ar_pci->pci_ps == 0) {
		ret = ath10k_pci_force_wake(ar);
		if (ret) {
			ath10k_err(ar, "failed to wake up target: %d\n", ret);
			return ret;
		}
	}
2449

2450 2451 2452 2453 2454 2455 2456 2457
	/* Suspend/Resume resets the PCI configuration space, so we have to
	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
	 * from interfering with C3 CPU state. pci_restore_state won't help
	 * here since it only restores the first 64 bytes pci config header.
	 */
	pci_read_config_dword(pdev, 0x40, &val);
	if ((val & 0x0000ff00) != 0)
		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2458

2459
	return ret;
2460 2461 2462
}
#endif

2463
static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2464
	.tx_sg			= ath10k_pci_hif_tx_sg,
2465
	.diag_read		= ath10k_pci_hif_diag_read,
2466
	.diag_write		= ath10k_pci_diag_write_mem,
2467 2468 2469 2470 2471 2472 2473
	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
	.start			= ath10k_pci_hif_start,
	.stop			= ath10k_pci_hif_stop,
	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
	.send_complete_check	= ath10k_pci_hif_send_complete_check,
	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2474 2475
	.power_up		= ath10k_pci_hif_power_up,
	.power_down		= ath10k_pci_hif_power_down,
2476 2477
	.read32			= ath10k_pci_read32,
	.write32		= ath10k_pci_write32,
2478 2479 2480 2481
#ifdef CONFIG_PM
	.suspend		= ath10k_pci_hif_suspend,
	.resume			= ath10k_pci_hif_resume,
#endif
2482 2483 2484 2485
};

static void ath10k_pci_ce_tasklet(unsigned long ptr)
{
2486
	struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2487 2488 2489 2490 2491 2492 2493 2494 2495
	struct ath10k_pci *ar_pci = pipe->ar_pci;

	ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
}

static void ath10k_msi_err_tasklet(unsigned long data)
{
	struct ath10k *ar = (struct ath10k *)data;

2496
	if (!ath10k_pci_has_fw_crashed(ar)) {
2497
		ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
2498 2499 2500
		return;
	}

2501
	ath10k_pci_irq_disable(ar);
2502 2503
	ath10k_pci_fw_crashed_clear(ar);
	ath10k_pci_fw_crashed_dump(ar);
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
}

/*
 * Handler for a per-engine interrupt on a PARTICULAR CE.
 * This is used in cases where each CE has a private MSI interrupt.
 */
static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
{
	struct ath10k *ar = arg;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;

2516
	if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2517 2518
		ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
			    ce_id);
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
		return IRQ_HANDLED;
	}

	/*
	 * NOTE: We are able to derive ce_id from irq because we
	 * use a one-to-one mapping for CE's 0..5.
	 * CE's 6 & 7 do not use interrupts at all.
	 *
	 * This mapping must be kept in sync with the mapping
	 * used by firmware.
	 */
	tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
	return IRQ_HANDLED;
}

static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
{
	struct ath10k *ar = arg;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	tasklet_schedule(&ar_pci->msi_fw_err);
	return IRQ_HANDLED;
}

/*
 * Top-level interrupt handler for all PCI interrupts from a Target.
 * When a block of MSI interrupts is allocated, this top-level handler
 * is not used; instead, we directly call the correct sub-handler.
 */
static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
{
	struct ath10k *ar = arg;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	int ret;

	if (ar_pci->pci_ps == 0) {
		ret = ath10k_pci_force_wake(ar);
		if (ret) {
			ath10k_warn(ar, "failed to wake device up on irq: %d\n",
				    ret);
			return IRQ_NONE;
		}
	}
2562 2563

	if (ar_pci->num_msi_intrs == 0) {
2564 2565 2566
		if (!ath10k_pci_irq_pending(ar))
			return IRQ_NONE;

2567
		ath10k_pci_disable_and_clear_legacy_irq(ar);
2568 2569 2570 2571 2572 2573 2574
	}

	tasklet_schedule(&ar_pci->intr_tq);

	return IRQ_HANDLED;
}

2575
static void ath10k_pci_tasklet(unsigned long data)
2576 2577
{
	struct ath10k *ar = (struct ath10k *)data;
2578
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2579

2580
	if (ath10k_pci_has_fw_crashed(ar)) {
2581
		ath10k_pci_irq_disable(ar);
2582
		ath10k_pci_fw_crashed_clear(ar);
2583
		ath10k_pci_fw_crashed_dump(ar);
2584 2585 2586
		return;
	}

2587 2588
	ath10k_ce_per_engine_service_any(ar);

2589 2590 2591
	/* Re-enable legacy irq that was disabled in the irq handler */
	if (ar_pci->num_msi_intrs == 0)
		ath10k_pci_enable_legacy_irq(ar);
2592 2593
}

2594
static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2595 2596
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2597
	int ret, i;
2598 2599 2600 2601

	ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
			  ath10k_pci_msi_fw_handler,
			  IRQF_SHARED, "ath10k_pci", ar);
2602
	if (ret) {
2603
		ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
2604
			    ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2605
		return ret;
2606
	}
2607 2608 2609 2610 2611 2612

	for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
		ret = request_irq(ar_pci->pdev->irq + i,
				  ath10k_pci_per_engine_handler,
				  IRQF_SHARED, "ath10k_pci", ar);
		if (ret) {
2613
			ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
2614 2615
				    ar_pci->pdev->irq + i, ret);

2616 2617
			for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
				free_irq(ar_pci->pdev->irq + i, ar);
2618

2619
			free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2620 2621 2622 2623 2624 2625 2626
			return ret;
		}
	}

	return 0;
}

2627
static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2628 2629 2630 2631 2632 2633 2634
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	ret = request_irq(ar_pci->pdev->irq,
			  ath10k_pci_interrupt_handler,
			  IRQF_SHARED, "ath10k_pci", ar);
2635
	if (ret) {
2636
		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2637
			    ar_pci->pdev->irq, ret);
2638 2639 2640 2641 2642 2643
		return ret;
	}

	return 0;
}

2644
static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2645 2646 2647 2648 2649 2650 2651
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	ret = request_irq(ar_pci->pdev->irq,
			  ath10k_pci_interrupt_handler,
			  IRQF_SHARED, "ath10k_pci", ar);
2652
	if (ret) {
2653
		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2654
			    ar_pci->pdev->irq, ret);
2655
		return ret;
2656
	}
2657 2658 2659 2660

	return 0;
}

2661 2662 2663
static int ath10k_pci_request_irq(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2664

2665 2666 2667 2668 2669
	switch (ar_pci->num_msi_intrs) {
	case 0:
		return ath10k_pci_request_irq_legacy(ar);
	case 1:
		return ath10k_pci_request_irq_msi(ar);
2670
	default:
2671 2672
		return ath10k_pci_request_irq_msix(ar);
	}
2673 2674
}

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
static void ath10k_pci_free_irq(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int i;

	/* There's at least one interrupt irregardless whether its legacy INTR
	 * or MSI or MSI-X */
	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
		free_irq(ar_pci->pdev->irq + i, ar);
}

static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2687 2688 2689 2690
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int i;

2691
	tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2692
	tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2693
		     (unsigned long)ar);
2694 2695 2696

	for (i = 0; i < CE_COUNT; i++) {
		ar_pci->pipe_info[i].ar_pci = ar_pci;
2697
		tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2698 2699
			     (unsigned long)&ar_pci->pipe_info[i]);
	}
2700 2701 2702 2703 2704 2705
}

static int ath10k_pci_init_irq(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;
2706

2707
	ath10k_pci_init_irq_tasklets(ar);
2708

2709
	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2710 2711
		ath10k_info(ar, "limiting irq mode to: %d\n",
			    ath10k_pci_irq_mode);
2712

2713
	/* Try MSI-X */
2714
	if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
2715
		ar_pci->num_msi_intrs = MSI_ASSIGN_CE_MAX + 1;
2716
		ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2717
					   ar_pci->num_msi_intrs);
2718
		if (ret > 0)
2719
			return 0;
2720

2721
		/* fall-through */
2722 2723
	}

2724
	/* Try MSI */
2725 2726 2727
	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
		ar_pci->num_msi_intrs = 1;
		ret = pci_enable_msi(ar_pci->pdev);
2728
		if (ret == 0)
2729
			return 0;
2730

2731
		/* fall-through */
2732 2733
	}

2734 2735 2736 2737 2738 2739 2740 2741 2742
	/* Try legacy irq
	 *
	 * A potential race occurs here: The CORE_BASE write
	 * depends on target correctly decoding AXI address but
	 * host won't know when target writes BAR to CORE_CTRL.
	 * This write might get lost if target has NOT written BAR.
	 * For now, fix the race by repeating the write in below
	 * synchronization checking. */
	ar_pci->num_msi_intrs = 0;
2743

2744 2745 2746 2747
	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);

	return 0;
2748 2749
}

2750
static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2751
{
2752 2753
	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
			   0);
2754 2755
}

2756
static int ath10k_pci_deinit_irq(struct ath10k *ar)
2757 2758 2759
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

2760 2761
	switch (ar_pci->num_msi_intrs) {
	case 0:
2762
		ath10k_pci_deinit_irq_legacy(ar);
2763
		break;
2764 2765
	default:
		pci_disable_msi(ar_pci->pdev);
2766
		break;
2767 2768
	}

2769
	return 0;
2770 2771
}

2772
static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2773 2774
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2775 2776
	unsigned long timeout;
	u32 val;
2777

2778
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2779

2780 2781 2782 2783 2784
	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);

	do {
		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);

2785 2786
		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
			   val);
2787

2788 2789 2790 2791
		/* target should never return this */
		if (val == 0xffffffff)
			continue;

2792 2793 2794 2795
		/* the device has crashed so don't bother trying anymore */
		if (val & FW_IND_EVENT_PENDING)
			break;

2796 2797 2798
		if (val & FW_IND_INITIALIZED)
			break;

2799 2800
		if (ar_pci->num_msi_intrs == 0)
			/* Fix potential race by repeating CORE_BASE writes */
2801
			ath10k_pci_enable_legacy_irq(ar);
2802

2803
		mdelay(10);
2804
	} while (time_before(jiffies, timeout));
2805

2806
	ath10k_pci_disable_and_clear_legacy_irq(ar);
2807
	ath10k_pci_irq_msi_fw_mask(ar);
2808

2809
	if (val == 0xffffffff) {
2810
		ath10k_err(ar, "failed to read device register, device is gone\n");
2811
		return -EIO;
2812 2813
	}

2814
	if (val & FW_IND_EVENT_PENDING) {
2815
		ath10k_warn(ar, "device has crashed during init\n");
2816
		return -ECOMM;
2817 2818
	}

2819
	if (!(val & FW_IND_INITIALIZED)) {
2820
		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2821
			   val);
2822
		return -ETIMEDOUT;
2823 2824
	}

2825
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2826
	return 0;
2827 2828
}

2829
static int ath10k_pci_cold_reset(struct ath10k *ar)
2830 2831 2832
{
	u32 val;

2833
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2834

2835 2836 2837 2838 2839 2840
	spin_lock_bh(&ar->data_lock);

	ar->stats.fw_cold_reset_counter++;

	spin_unlock_bh(&ar->data_lock);

2841
	/* Put Target, including PCIe, into RESET. */
2842
	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2843
	val |= 1;
2844
	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2845

2846 2847 2848 2849 2850 2851
	/* After writing into SOC_GLOBAL_RESET to put device into
	 * reset and pulling out of reset pcie may not be stable
	 * for any immediate pcie register access and cause bus error,
	 * add delay before any pcie access request to fix this issue.
	 */
	msleep(20);
2852 2853 2854

	/* Pull Target, including PCIe, out of RESET. */
	val &= ~1;
2855
	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2856

2857
	msleep(20);
2858

2859
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2860

2861
	return 0;
2862 2863
}

2864
static int ath10k_pci_claim(struct ath10k *ar)
2865
{
2866 2867 2868
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct pci_dev *pdev = ar_pci->pdev;
	int ret;
2869 2870 2871 2872 2873

	pci_set_drvdata(pdev, ar);

	ret = pci_enable_device(pdev);
	if (ret) {
2874
		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2875
		return ret;
2876 2877 2878 2879
	}

	ret = pci_request_region(pdev, BAR_NUM, "ath");
	if (ret) {
2880
		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2881
			   ret);
2882 2883 2884
		goto err_device;
	}

2885
	/* Target expects 32 bit DMA. Enforce it. */
2886 2887
	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
	if (ret) {
2888
		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2889 2890 2891 2892 2893
		goto err_region;
	}

	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (ret) {
2894
		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2895
			   ret);
2896 2897 2898 2899 2900 2901
		goto err_region;
	}

	pci_set_master(pdev);

	/* Arrange for access to Target SoC registers. */
2902
	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
2903 2904
	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
	if (!ar_pci->mem) {
2905
		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2906 2907 2908 2909
		ret = -EIO;
		goto err_master;
	}

2910
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	return 0;

err_master:
	pci_clear_master(pdev);

err_region:
	pci_release_region(pdev, BAR_NUM);

err_device:
	pci_disable_device(pdev);

	return ret;
}

static void ath10k_pci_release(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct pci_dev *pdev = ar_pci->pdev;

	pci_iounmap(pdev, ar_pci->mem);
	pci_release_region(pdev, BAR_NUM);
	pci_clear_master(pdev);
	pci_disable_device(pdev);
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
{
	const struct ath10k_pci_supp_chip *supp_chip;
	int i;
	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);

	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
		supp_chip = &ath10k_pci_supp_chips[i];

		if (supp_chip->dev_id == dev_id &&
		    supp_chip->rev_id == rev_id)
			return true;
	}

	return false;
}

2953 2954 2955 2956 2957 2958
static int ath10k_pci_probe(struct pci_dev *pdev,
			    const struct pci_device_id *pci_dev)
{
	int ret = 0;
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;
2959
	enum ath10k_hw_rev hw_rev;
2960
	u32 chip_id;
2961
	bool pci_ps;
2962

2963 2964 2965
	switch (pci_dev->device) {
	case QCA988X_2_0_DEVICE_ID:
		hw_rev = ATH10K_HW_QCA988X;
2966
		pci_ps = false;
2967
		break;
2968
	case QCA6164_2_1_DEVICE_ID:
2969 2970
	case QCA6174_2_1_DEVICE_ID:
		hw_rev = ATH10K_HW_QCA6174;
2971
		pci_ps = true;
2972
		break;
2973 2974
	case QCA99X0_2_0_DEVICE_ID:
		hw_rev = ATH10K_HW_QCA99X0;
2975
		pci_ps = false;
2976
		break;
2977 2978 2979 2980
	case QCA9377_1_0_DEVICE_ID:
		hw_rev = ATH10K_HW_QCA9377;
		pci_ps = true;
		break;
2981 2982 2983 2984 2985 2986 2987
	default:
		WARN_ON(1);
		return -ENOTSUPP;
	}

	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
				hw_rev, &ath10k_pci_hif_ops);
2988
	if (!ar) {
2989
		dev_err(&pdev->dev, "failed to allocate core\n");
2990 2991 2992
		return -ENOMEM;
	}

2993 2994 2995
	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
		   pdev->vendor, pdev->device,
		   pdev->subsystem_vendor, pdev->subsystem_device);
2996

2997 2998 2999 3000
	ar_pci = ath10k_pci_priv(ar);
	ar_pci->pdev = pdev;
	ar_pci->dev = &pdev->dev;
	ar_pci->ar = ar;
3001
	ar->dev_id = pci_dev->device;
3002
	ar_pci->pci_ps = pci_ps;
3003

3004 3005 3006 3007
	ar->id.vendor = pdev->vendor;
	ar->id.device = pdev->device;
	ar->id.subsystem_vendor = pdev->subsystem_vendor;
	ar->id.subsystem_device = pdev->subsystem_device;
3008

3009
	spin_lock_init(&ar_pci->ce_lock);
3010 3011
	spin_lock_init(&ar_pci->ps_lock);

3012 3013
	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
		    (unsigned long)ar);
3014 3015
	setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
		    (unsigned long)ar);
3016

3017
	ret = ath10k_pci_claim(ar);
3018
	if (ret) {
3019
		ath10k_err(ar, "failed to claim device: %d\n", ret);
3020
		goto err_core_destroy;
3021 3022
	}

3023
	ret = ath10k_pci_alloc_pipes(ar);
3024
	if (ret) {
3025 3026
		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
			   ret);
3027
		goto err_sleep;
3028 3029
	}

3030
	ath10k_pci_ce_deinit(ar);
3031
	ath10k_pci_irq_disable(ar);
3032

3033 3034 3035 3036 3037 3038 3039 3040
	if (ar_pci->pci_ps == 0) {
		ret = ath10k_pci_force_wake(ar);
		if (ret) {
			ath10k_warn(ar, "failed to wake up device : %d\n", ret);
			goto err_free_pipes;
		}
	}

3041
	ret = ath10k_pci_init_irq(ar);
3042
	if (ret) {
3043
		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3044
		goto err_free_pipes;
3045 3046
	}

3047
	ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
3048 3049 3050
		    ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);

3051 3052
	ret = ath10k_pci_request_irq(ar);
	if (ret) {
3053
		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3054 3055 3056
		goto err_deinit_irq;
	}

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	ret = ath10k_pci_chip_reset(ar);
	if (ret) {
		ath10k_err(ar, "failed to reset chip: %d\n", ret);
		goto err_free_irq;
	}

	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
	if (chip_id == 0xffffffff) {
		ath10k_err(ar, "failed to get chip id\n");
		goto err_free_irq;
	}

	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
			   pdev->device, chip_id);
3072
		goto err_free_irq;
3073 3074
	}

3075
	ret = ath10k_core_register(ar, chip_id);
3076
	if (ret) {
3077
		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3078
		goto err_free_irq;
3079 3080 3081 3082
	}

	return 0;

3083 3084
err_free_irq:
	ath10k_pci_free_irq(ar);
3085
	ath10k_pci_kill_tasklet(ar);
3086

3087 3088 3089
err_deinit_irq:
	ath10k_pci_deinit_irq(ar);

3090 3091
err_free_pipes:
	ath10k_pci_free_pipes(ar);
3092

3093
err_sleep:
3094
	ath10k_pci_sleep_sync(ar);
3095 3096
	ath10k_pci_release(ar);

3097
err_core_destroy:
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	ath10k_core_destroy(ar);

	return ret;
}

static void ath10k_pci_remove(struct pci_dev *pdev)
{
	struct ath10k *ar = pci_get_drvdata(pdev);
	struct ath10k_pci *ar_pci;

3108
	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

	if (!ar)
		return;

	ar_pci = ath10k_pci_priv(ar);

	if (!ar_pci)
		return;

	ath10k_core_unregister(ar);
3119
	ath10k_pci_free_irq(ar);
3120
	ath10k_pci_kill_tasklet(ar);
3121 3122
	ath10k_pci_deinit_irq(ar);
	ath10k_pci_ce_deinit(ar);
3123
	ath10k_pci_free_pipes(ar);
3124
	ath10k_pci_sleep_sync(ar);
3125
	ath10k_pci_release(ar);
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	ath10k_core_destroy(ar);
}

MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);

static struct pci_driver ath10k_pci_driver = {
	.name = "ath10k_pci",
	.id_table = ath10k_pci_id_table,
	.probe = ath10k_pci_probe,
	.remove = ath10k_pci_remove,
};

static int __init ath10k_pci_init(void)
{
	int ret;

	ret = pci_register_driver(&ath10k_pci_driver);
	if (ret)
3144 3145
		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
		       ret);
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160

	return ret;
}
module_init(ath10k_pci_init);

static void __exit ath10k_pci_exit(void)
{
	pci_unregister_driver(&ath10k_pci_driver);
}

module_exit(ath10k_pci_exit);

MODULE_AUTHOR("Qualcomm Atheros");
MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
MODULE_LICENSE("Dual BSD/GPL");
3161 3162

/* QCA988x 2.0 firmware files */
3163 3164 3165
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3166
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3167
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3168
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3169
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3170 3171 3172

/* QCA6174 2.1 firmware files */
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3173
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3174
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3175
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3176 3177 3178

/* QCA6174 3.1 firmware files */
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3179
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3180
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3181
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3182 3183 3184 3185

/* QCA9377 1.0 firmware files */
MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
新手
引导
客服 返回
顶部