setup.c 25.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Machine specific setup for xen
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */

#include <linux/module.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/pm.h>
11
#include <linux/memblock.h>
12
#include <linux/cpuidle.h>
13
#include <linux/cpufreq.h>
14 15

#include <asm/elf.h>
R
Roland McGrath 已提交
16
#include <asm/vdso.h>
17 18
#include <asm/e820.h>
#include <asm/setup.h>
19
#include <asm/acpi.h>
20
#include <asm/numa.h>
21 22 23
#include <asm/xen/hypervisor.h>
#include <asm/xen/hypercall.h>

24
#include <xen/xen.h>
25
#include <xen/page.h>
26
#include <xen/interface/callback.h>
I
Ian Campbell 已提交
27
#include <xen/interface/memory.h>
28 29 30
#include <xen/interface/physdev.h>
#include <xen/features.h>
#include "xen-ops.h"
31
#include "vdso.h"
32
#include "p2m.h"
33
#include "mmu.h"
34

35
/* Amount of extra memory space we add to the e820 ranges */
36
struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
37

38 39 40
/* Number of pages released from the initial allocation. */
unsigned long xen_released_pages;

41 42 43 44
/* E820 map used during setting up memory. */
static struct e820entry xen_e820_map[E820MAX] __initdata;
static u32 xen_e820_map_entries __initdata;

45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * Buffer used to remap identity mapped pages. We only need the virtual space.
 * The physical page behind this address is remapped as needed to different
 * buffer pages.
 */
#define REMAP_SIZE	(P2M_PER_PAGE - 3)
static struct {
	unsigned long	next_area_mfn;
	unsigned long	target_pfn;
	unsigned long	size;
	unsigned long	mfns[REMAP_SIZE];
} xen_remap_buf __initdata __aligned(PAGE_SIZE);
static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
58

59 60 61 62 63 64 65 66 67 68 69 70
/* 
 * The maximum amount of extra memory compared to the base size.  The
 * main scaling factor is the size of struct page.  At extreme ratios
 * of base:extra, all the base memory can be filled with page
 * structures for the extra memory, leaving no space for anything
 * else.
 * 
 * 10x seems like a reasonable balance between scaling flexibility and
 * leaving a practically usable system.
 */
#define EXTRA_MEM_RATIO		(10)

71
static void __init xen_add_extra_mem(phys_addr_t start, phys_addr_t size)
72
{
73
	int i;
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
		/* Add new region. */
		if (xen_extra_mem[i].size == 0) {
			xen_extra_mem[i].start = start;
			xen_extra_mem[i].size  = size;
			break;
		}
		/* Append to existing region. */
		if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
			xen_extra_mem[i].size += size;
			break;
		}
	}
	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
90

91
	memblock_reserve(start, size);
92
}
93

94
static void __init xen_del_extra_mem(phys_addr_t start, phys_addr_t size)
95 96
{
	int i;
97
	phys_addr_t start_r, size_r;
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
		start_r = xen_extra_mem[i].start;
		size_r = xen_extra_mem[i].size;

		/* Start of region. */
		if (start_r == start) {
			BUG_ON(size > size_r);
			xen_extra_mem[i].start += size;
			xen_extra_mem[i].size -= size;
			break;
		}
		/* End of region. */
		if (start_r + size_r == start + size) {
			BUG_ON(size > size_r);
			xen_extra_mem[i].size -= size;
			break;
		}
		/* Mid of region. */
		if (start > start_r && start < start_r + size_r) {
			BUG_ON(start + size > start_r + size_r);
			xen_extra_mem[i].size = start - start_r;
			/* Calling memblock_reserve() again is okay. */
			xen_add_extra_mem(start + size, start_r + size_r -
					  (start + size));
			break;
		}
	}
	memblock_free(start, size);
}

/*
 * Called during boot before the p2m list can take entries beyond the
 * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
 * invalid.
 */
unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
{
	int i;
137
	phys_addr_t addr = PFN_PHYS(pfn);
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
		if (addr >= xen_extra_mem[i].start &&
		    addr < xen_extra_mem[i].start + xen_extra_mem[i].size)
			return INVALID_P2M_ENTRY;
	}

	return IDENTITY_FRAME(pfn);
}

/*
 * Mark all pfns of extra mem as invalid in p2m list.
 */
void __init xen_inv_extra_mem(void)
{
	unsigned long pfn, pfn_s, pfn_e;
	int i;

	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
157 158
		if (!xen_extra_mem[i].size)
			continue;
159 160 161 162
		pfn_s = PFN_DOWN(xen_extra_mem[i].start);
		pfn_e = PFN_UP(xen_extra_mem[i].start + xen_extra_mem[i].size);
		for (pfn = pfn_s; pfn < pfn_e; pfn++)
			set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
163
	}
164 165
}

166 167 168 169 170
/*
 * Finds the next RAM pfn available in the E820 map after min_pfn.
 * This function updates min_pfn with the pfn found and returns
 * the size of that range or zero if not found.
 */
171
static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn)
172
{
173
	const struct e820entry *entry = xen_e820_map;
174 175 176
	unsigned int i;
	unsigned long done = 0;

177
	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
178 179 180 181 182 183
		unsigned long s_pfn;
		unsigned long e_pfn;

		if (entry->type != E820_RAM)
			continue;

184
		e_pfn = PFN_DOWN(entry->addr + entry->size);
185

186 187
		/* We only care about E820 after this */
		if (e_pfn < *min_pfn)
188 189
			continue;

190
		s_pfn = PFN_UP(entry->addr);
191 192 193

		/* If min_pfn falls within the E820 entry, we want to start
		 * at the min_pfn PFN.
194
		 */
195 196
		if (s_pfn <= *min_pfn) {
			done = e_pfn - *min_pfn;
197
		} else {
198 199
			done = e_pfn - s_pfn;
			*min_pfn = s_pfn;
200
		}
201 202
		break;
	}
203

204 205
	return done;
}
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220
static int __init xen_free_mfn(unsigned long mfn)
{
	struct xen_memory_reservation reservation = {
		.address_bits = 0,
		.extent_order = 0,
		.domid        = DOMID_SELF
	};

	set_xen_guest_handle(reservation.extent_start, &mfn);
	reservation.nr_extents = 1;

	return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
}

221
/*
222
 * This releases a chunk of memory and then does the identity map. It's used
223 224 225
 * as a fallback if the remapping fails.
 */
static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
226
			unsigned long end_pfn, unsigned long nr_pages)
227
{
228 229 230
	unsigned long pfn, end;
	int ret;

231 232
	WARN_ON(start_pfn > end_pfn);

233
	/* Release pages first. */
234 235 236 237 238 239 240 241 242 243 244 245
	end = min(end_pfn, nr_pages);
	for (pfn = start_pfn; pfn < end; pfn++) {
		unsigned long mfn = pfn_to_mfn(pfn);

		/* Make sure pfn exists to start with */
		if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
			continue;

		ret = xen_free_mfn(mfn);
		WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);

		if (ret == 1) {
246
			xen_released_pages++;
247 248 249 250 251 252
			if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
				break;
		} else
			break;
	}

253
	set_phys_range_identity(start_pfn, end_pfn);
254 255 256
}

/*
257
 * Helper function to update the p2m and m2p tables and kernel mapping.
258
 */
259
static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
260 261
{
	struct mmu_update update = {
262
		.ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
263 264 265 266
		.val = pfn
	};

	/* Update p2m */
267
	if (!set_phys_to_machine(pfn, mfn)) {
268 269
		WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
		     pfn, mfn);
270
		BUG();
271
	}
272 273 274 275 276

	/* Update m2p */
	if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
		WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
		     mfn, pfn);
277
		BUG();
278 279
	}

280
	/* Update kernel mapping, but not for highmem. */
281
	if (pfn >= PFN_UP(__pa(high_memory - 1)))
282 283 284 285 286 287 288 289
		return;

	if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
					 mfn_pte(mfn, PAGE_KERNEL), 0)) {
		WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
		      mfn, pfn);
		BUG();
	}
290
}
291

292 293
/*
 * This function updates the p2m and m2p tables with an identity map from
294 295 296 297 298 299 300 301 302
 * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
 * original allocation at remap_pfn. The information needed for remapping is
 * saved in the memory itself to avoid the need for allocating buffers. The
 * complete remap information is contained in a list of MFNs each containing
 * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
 * This enables us to preserve the original mfn sequence while doing the
 * remapping at a time when the memory management is capable of allocating
 * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
 * its callers.
303
 */
304
static void __init xen_do_set_identity_and_remap_chunk(
305
        unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
306
{
307 308
	unsigned long buf = (unsigned long)&xen_remap_buf;
	unsigned long mfn_save, mfn;
309
	unsigned long ident_pfn_iter, remap_pfn_iter;
310
	unsigned long ident_end_pfn = start_pfn + size;
311
	unsigned long left = size;
312
	unsigned int i, chunk;
313 314 315 316

	WARN_ON(size == 0);

	BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
317

318
	mfn_save = virt_to_mfn(buf);
319

320 321 322 323
	for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
	     ident_pfn_iter < ident_end_pfn;
	     ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
		chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
324

325 326 327
		/* Map first pfn to xen_remap_buf */
		mfn = pfn_to_mfn(ident_pfn_iter);
		set_pte_mfn(buf, mfn, PAGE_KERNEL);
328

329 330 331 332 333 334
		/* Save mapping information in page */
		xen_remap_buf.next_area_mfn = xen_remap_mfn;
		xen_remap_buf.target_pfn = remap_pfn_iter;
		xen_remap_buf.size = chunk;
		for (i = 0; i < chunk; i++)
			xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
335

336 337
		/* Put remap buf into list. */
		xen_remap_mfn = mfn;
338

339
		/* Set identity map */
340
		set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
341

342
		left -= chunk;
343
	}
344

345 346
	/* Restore old xen_remap_buf mapping */
	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
347 348
}

349 350 351 352 353 354 355 356 357 358 359
/*
 * This function takes a contiguous pfn range that needs to be identity mapped
 * and:
 *
 *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
 *  2) Calls the do_ function to actually do the mapping/remapping work.
 *
 * The goal is to not allocate additional memory but to remap the existing
 * pages. In the case of an error the underlying memory is simply released back
 * to Xen and not remapped.
 */
360
static unsigned long __init xen_set_identity_and_remap_chunk(
361
	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
362
	unsigned long remap_pfn)
363 364 365 366 367 368 369 370 371 372 373 374 375 376
{
	unsigned long pfn;
	unsigned long i = 0;
	unsigned long n = end_pfn - start_pfn;

	while (i < n) {
		unsigned long cur_pfn = start_pfn + i;
		unsigned long left = n - i;
		unsigned long size = left;
		unsigned long remap_range_size;

		/* Do not remap pages beyond the current allocation */
		if (cur_pfn >= nr_pages) {
			/* Identity map remaining pages */
377
			set_phys_range_identity(cur_pfn, cur_pfn + size);
378 379 380 381 382
			break;
		}
		if (cur_pfn + size > nr_pages)
			size = nr_pages - cur_pfn;

383
		remap_range_size = xen_find_pfn_range(&remap_pfn);
384 385 386
		if (!remap_range_size) {
			pr_warning("Unable to find available pfn range, not remapping identity pages\n");
			xen_set_identity_and_release_chunk(cur_pfn,
387
						cur_pfn + left, nr_pages);
388 389 390 391 392 393
			break;
		}
		/* Adjust size to fit in current e820 RAM region */
		if (size > remap_range_size)
			size = remap_range_size;

394
		xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

		/* Update variables to reflect new mappings. */
		i += size;
		remap_pfn += size;
	}

	/*
	 * If the PFNs are currently mapped, the VA mapping also needs
	 * to be updated to be 1:1.
	 */
	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
		(void)HYPERVISOR_update_va_mapping(
			(unsigned long)__va(pfn << PAGE_SHIFT),
			mfn_pte(pfn, PAGE_KERNEL_IO), 0);

	return remap_pfn;
}

413
static void __init xen_set_identity_and_remap(unsigned long nr_pages)
414
{
415
	phys_addr_t start = 0;
416
	unsigned long last_pfn = nr_pages;
417
	const struct e820entry *entry = xen_e820_map;
418 419
	int i;

420 421 422
	/*
	 * Combine non-RAM regions and gaps until a RAM region (or the
	 * end of the map) is reached, then set the 1:1 map and
423
	 * remap the memory in those non-RAM regions.
424 425 426 427 428 429 430
	 *
	 * The combined non-RAM regions are rounded to a whole number
	 * of pages so any partial pages are accessible via the 1:1
	 * mapping.  This is needed for some BIOSes that put (for
	 * example) the DMI tables in a reserved region that begins on
	 * a non-page boundary.
	 */
431
	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
432
		phys_addr_t end = entry->addr + entry->size;
433
		if (entry->type == E820_RAM || i == xen_e820_map_entries - 1) {
434 435
			unsigned long start_pfn = PFN_DOWN(start);
			unsigned long end_pfn = PFN_UP(end);
436

437 438
			if (entry->type == E820_RAM)
				end_pfn = PFN_UP(entry->addr);
439

440
			if (start_pfn < end_pfn)
441
				last_pfn = xen_set_identity_and_remap_chunk(
442
						start_pfn, end_pfn, nr_pages,
443
						last_pfn);
444
			start = end;
445 446
		}
	}
447

448
	pr_info("Released %ld page(s)\n", xen_released_pages);
449
}
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

/*
 * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
 * The remap information (which mfn remap to which pfn) is contained in the
 * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
 * This scheme allows to remap the different chunks in arbitrary order while
 * the resulting mapping will be independant from the order.
 */
void __init xen_remap_memory(void)
{
	unsigned long buf = (unsigned long)&xen_remap_buf;
	unsigned long mfn_save, mfn, pfn;
	unsigned long remapped = 0;
	unsigned int i;
	unsigned long pfn_s = ~0UL;
	unsigned long len = 0;

	mfn_save = virt_to_mfn(buf);

	while (xen_remap_mfn != INVALID_P2M_ENTRY) {
		/* Map the remap information */
		set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);

		BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);

		pfn = xen_remap_buf.target_pfn;
		for (i = 0; i < xen_remap_buf.size; i++) {
			mfn = xen_remap_buf.mfns[i];
			xen_update_mem_tables(pfn, mfn);
			remapped++;
			pfn++;
		}
		if (pfn_s == ~0UL || pfn == pfn_s) {
			pfn_s = xen_remap_buf.target_pfn;
			len += xen_remap_buf.size;
		} else if (pfn_s + len == xen_remap_buf.target_pfn) {
			len += xen_remap_buf.size;
		} else {
488
			xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len));
489 490 491 492 493 494 495 496 497
			pfn_s = xen_remap_buf.target_pfn;
			len = xen_remap_buf.size;
		}

		mfn = xen_remap_mfn;
		xen_remap_mfn = xen_remap_buf.next_area_mfn;
	}

	if (pfn_s != ~0UL && len)
498
		xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len));
499 500 501 502 503 504

	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);

	pr_info("Remapped %ld page(s)\n", remapped);
}

505 506 507 508 509 510
static unsigned long __init xen_get_max_pages(void)
{
	unsigned long max_pages = MAX_DOMAIN_PAGES;
	domid_t domid = DOMID_SELF;
	int ret;

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	/*
	 * For the initial domain we use the maximum reservation as
	 * the maximum page.
	 *
	 * For guest domains the current maximum reservation reflects
	 * the current maximum rather than the static maximum. In this
	 * case the e820 map provided to us will cover the static
	 * maximum region.
	 */
	if (xen_initial_domain()) {
		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
		if (ret > 0)
			max_pages = ret;
	}

526 527 528
	return min(max_pages, MAX_DOMAIN_PAGES);
}

529 530
static void __init xen_align_and_add_e820_region(phys_addr_t start,
						 phys_addr_t size, int type)
531
{
532
	phys_addr_t end = start + size;
533 534 535 536

	/* Align RAM regions to page boundaries. */
	if (type == E820_RAM) {
		start = PAGE_ALIGN(start);
537
		end &= ~((phys_addr_t)PAGE_SIZE - 1);
538 539 540 541 542
	}

	e820_add_region(start, end - start, type);
}

543
static void __init xen_ignore_unusable(void)
544
{
545
	struct e820entry *entry = xen_e820_map;
546 547
	unsigned int i;

548
	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
549 550 551 552 553
		if (entry->type == E820_UNUSABLE)
			entry->type = E820_RAM;
	}
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static unsigned long __init xen_count_remap_pages(unsigned long max_pfn)
{
	unsigned long extra = 0;
	const struct e820entry *entry = xen_e820_map;
	int i;

	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
		unsigned long start_pfn = PFN_DOWN(entry->addr);
		unsigned long end_pfn = PFN_UP(entry->addr + entry->size);

		if (start_pfn >= max_pfn)
			break;
		if (entry->type == E820_RAM)
			continue;
		if (end_pfn >= max_pfn)
			end_pfn = max_pfn;
		extra += end_pfn - start_pfn;
	}

	return extra;
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size)
{
	struct e820entry *entry;
	unsigned mapcnt;
	phys_addr_t end;

	if (!size)
		return false;

	end = start + size;
	entry = xen_e820_map;

	for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++) {
		if (entry->type == E820_RAM && entry->addr <= start &&
		    (entry->addr + entry->size) >= end)
			return false;

		entry++;
	}

	return true;
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Find a free area in physical memory not yet reserved and compliant with
 * E820 map.
 * Used to relocate pre-allocated areas like initrd or p2m list which are in
 * conflict with the to be used E820 map.
 * In case no area is found, return 0. Otherwise return the physical address
 * of the area which is already reserved for convenience.
 */
phys_addr_t __init xen_find_free_area(phys_addr_t size)
{
	unsigned mapcnt;
	phys_addr_t addr, start;
	struct e820entry *entry = xen_e820_map;

	for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++, entry++) {
		if (entry->type != E820_RAM || entry->size < size)
			continue;
		start = entry->addr;
		for (addr = start; addr < start + size; addr += PAGE_SIZE) {
			if (!memblock_is_reserved(addr))
				continue;
			start = addr + PAGE_SIZE;
			if (start + size > entry->addr + entry->size)
				break;
		}
		if (addr >= start + size) {
			memblock_reserve(start, size);
			return start;
		}
	}

	return 0;
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/*
 * Reserve Xen mfn_list.
 * See comment above "struct start_info" in <xen/interface/xen.h>
 * We tried to make the the memblock_reserve more selective so
 * that it would be clear what region is reserved. Sadly we ran
 * in the problem wherein on a 64-bit hypervisor with a 32-bit
 * initial domain, the pt_base has the cr3 value which is not
 * neccessarily where the pagetable starts! As Jan put it: "
 * Actually, the adjustment turns out to be correct: The page
 * tables for a 32-on-64 dom0 get allocated in the order "first L1",
 * "first L2", "first L3", so the offset to the page table base is
 * indeed 2. When reading xen/include/public/xen.h's comment
 * very strictly, this is not a violation (since there nothing is said
 * that the first thing in the page table space is pointed to by
 * pt_base; I admit that this seems to be implied though, namely
 * do I think that it is implied that the page table space is the
 * range [pt_base, pt_base + nt_pt_frames), whereas that
 * range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames),
 * which - without a priori knowledge - the kernel would have
 * difficulty to figure out)." - so lets just fall back to the
 * easy way and reserve the whole region.
 */
static void __init xen_reserve_xen_mfnlist(void)
{
	if (xen_start_info->mfn_list >= __START_KERNEL_map) {
		memblock_reserve(__pa(xen_start_info->mfn_list),
				 xen_start_info->pt_base -
				 xen_start_info->mfn_list);
		return;
	}

	memblock_reserve(PFN_PHYS(xen_start_info->first_p2m_pfn),
			 PFN_PHYS(xen_start_info->nr_p2m_frames));
}

668 669 670 671 672 673
/**
 * machine_specific_memory_setup - Hook for machine specific memory setup.
 **/
char * __init xen_memory_setup(void)
{
	unsigned long max_pfn = xen_start_info->nr_pages;
674 675
	phys_addr_t mem_end, addr, size, chunk_size;
	u32 type;
I
Ian Campbell 已提交
676 677
	int rc;
	struct xen_memory_map memmap;
678
	unsigned long max_pages;
679
	unsigned long extra_pages = 0;
I
Ian Campbell 已提交
680
	int i;
I
Ian Campbell 已提交
681
	int op;
682

683
	max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
I
Ian Campbell 已提交
684 685 686
	mem_end = PFN_PHYS(max_pfn);

	memmap.nr_entries = E820MAX;
687
	set_xen_guest_handle(memmap.buffer, xen_e820_map);
I
Ian Campbell 已提交
688

I
Ian Campbell 已提交
689 690 691 692
	op = xen_initial_domain() ?
		XENMEM_machine_memory_map :
		XENMEM_memory_map;
	rc = HYPERVISOR_memory_op(op, &memmap);
I
Ian Campbell 已提交
693
	if (rc == -ENOSYS) {
694
		BUG_ON(xen_initial_domain());
I
Ian Campbell 已提交
695
		memmap.nr_entries = 1;
696 697
		xen_e820_map[0].addr = 0ULL;
		xen_e820_map[0].size = mem_end;
I
Ian Campbell 已提交
698
		/* 8MB slack (to balance backend allocations). */
699 700
		xen_e820_map[0].size += 8ULL << 20;
		xen_e820_map[0].type = E820_RAM;
I
Ian Campbell 已提交
701 702 703
		rc = 0;
	}
	BUG_ON(rc);
704
	BUG_ON(memmap.nr_entries == 0);
705
	xen_e820_map_entries = memmap.nr_entries;
706

707 708 709 710 711 712 713 714 715
	/*
	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
	 * regions, so if we're using the machine memory map leave the
	 * region as RAM as it is in the pseudo-physical map.
	 *
	 * UNUSABLE regions in domUs are not handled and will need
	 * a patch in the future.
	 */
	if (xen_initial_domain())
716
		xen_ignore_unusable();
717

718
	/* Make sure the Xen-supplied memory map is well-ordered. */
719 720
	sanitize_e820_map(xen_e820_map, xen_e820_map_entries,
			  &xen_e820_map_entries);
721 722 723 724 725

	max_pages = xen_get_max_pages();
	if (max_pages > max_pfn)
		extra_pages += max_pages - max_pfn;

726 727
	/* How many extra pages do we need due to remapping? */
	extra_pages += xen_count_remap_pages(max_pfn);
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742
	/*
	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
	 * factor the base size.  On non-highmem systems, the base
	 * size is the full initial memory allocation; on highmem it
	 * is limited to the max size of lowmem, so that it doesn't
	 * get completely filled.
	 *
	 * In principle there could be a problem in lowmem systems if
	 * the initial memory is also very large with respect to
	 * lowmem, but we won't try to deal with that here.
	 */
	extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
			  extra_pages);
	i = 0;
743 744
	addr = xen_e820_map[0].addr;
	size = xen_e820_map[0].size;
745
	while (i < xen_e820_map_entries) {
746 747
		chunk_size = size;
		type = xen_e820_map[i].type;
748 749 750

		if (type == E820_RAM) {
			if (addr < mem_end) {
751
				chunk_size = min(size, mem_end - addr);
752
			} else if (extra_pages) {
753 754 755 756
				chunk_size = min(size, PFN_PHYS(extra_pages));
				extra_pages -= PFN_DOWN(chunk_size);
				xen_add_extra_mem(addr, chunk_size);
				xen_max_p2m_pfn = PFN_DOWN(addr + chunk_size);
757 758
			} else
				type = E820_UNUSABLE;
759 760
		}

761
		xen_align_and_add_e820_region(addr, chunk_size, type);
762

763 764 765
		addr += chunk_size;
		size -= chunk_size;
		if (size == 0) {
766
			i++;
767 768 769 770 771
			if (i < xen_e820_map_entries) {
				addr = xen_e820_map[i].addr;
				size = xen_e820_map[i].size;
			}
		}
I
Ian Campbell 已提交
772
	}
773

774 775 776 777 778 779 780
	/*
	 * Set the rest as identity mapped, in case PCI BARs are
	 * located here.
	 *
	 * PFNs above MAX_P2M_PFN are considered identity mapped as
	 * well.
	 */
781
	set_phys_range_identity(addr / PAGE_SIZE, ~0ul);
782

783
	/*
784 785
	 * In domU, the ISA region is normal, usable memory, but we
	 * reserve ISA memory anyway because too many things poke
786 787 788 789
	 * about in there.
	 */
	e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
			E820_RESERVED);
790

791 792
	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);

793 794
	xen_reserve_xen_mfnlist();

795 796 797 798 799 800
	/*
	 * Set identity map on non-RAM pages and prepare remapping the
	 * underlying RAM.
	 */
	xen_set_identity_and_remap(max_pfn);

801 802 803
	return "Xen";
}

804 805 806 807 808 809 810 811 812 813
/*
 * Machine specific memory setup for auto-translated guests.
 */
char * __init xen_auto_xlated_memory_setup(void)
{
	struct xen_memory_map memmap;
	int i;
	int rc;

	memmap.nr_entries = E820MAX;
814
	set_xen_guest_handle(memmap.buffer, xen_e820_map);
815 816 817 818 819

	rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
	if (rc < 0)
		panic("No memory map (%d)\n", rc);

820 821 822 823
	xen_e820_map_entries = memmap.nr_entries;

	sanitize_e820_map(xen_e820_map, ARRAY_SIZE(xen_e820_map),
			  &xen_e820_map_entries);
824

825 826 827
	for (i = 0; i < xen_e820_map_entries; i++)
		e820_add_region(xen_e820_map[i].addr, xen_e820_map[i].size,
				xen_e820_map[i].type);
828

829
	xen_reserve_xen_mfnlist();
830 831 832 833

	return "Xen";
}

834 835
/*
 * Set the bit indicating "nosegneg" library variants should be used.
836 837
 * We only need to bother in pure 32-bit mode; compat 32-bit processes
 * can have un-truncated segments, so wrapping around is allowed.
838
 */
839
static void __init fiddle_vdso(void)
840
{
841
#ifdef CONFIG_X86_32
842 843 844 845 846
	/*
	 * This could be called before selected_vdso32 is initialized, so
	 * just fiddle with both possible images.  vdso_image_32_syscall
	 * can't be selected, since it only exists on 64-bit systems.
	 */
847
	u32 *mask;
848 849
	mask = vdso_image_32_int80.data +
		vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
850
	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
851 852
	mask = vdso_image_32_sysenter.data +
		vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
853
	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
854
#endif
855 856
}

857
static int register_callback(unsigned type, const void *func)
858
{
859 860 861
	struct callback_register callback = {
		.type = type,
		.address = XEN_CALLBACK(__KERNEL_CS, func),
862 863 864
		.flags = CALLBACKF_mask_events,
	};

865 866 867
	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
}

868
void xen_enable_sysenter(void)
869
{
870
	int ret;
871
	unsigned sysenter_feature;
872 873

#ifdef CONFIG_X86_32
874
	sysenter_feature = X86_FEATURE_SEP;
875
#else
876
	sysenter_feature = X86_FEATURE_SYSENTER32;
877
#endif
878

879 880 881
	if (!boot_cpu_has(sysenter_feature))
		return;

882
	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
883 884
	if(ret != 0)
		setup_clear_cpu_cap(sysenter_feature);
885 886
}

887
void xen_enable_syscall(void)
888 889 890 891 892 893
{
#ifdef CONFIG_X86_64
	int ret;

	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
	if (ret != 0) {
894
		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
895 896 897 898 899
		/* Pretty fatal; 64-bit userspace has no other
		   mechanism for syscalls. */
	}

	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
900 901
		ret = register_callback(CALLBACKTYPE_syscall32,
					xen_syscall32_target);
902
		if (ret != 0)
903
			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
904 905 906
	}
#endif /* CONFIG_X86_64 */
}
907

908
void __init xen_pvmmu_arch_setup(void)
909 910 911 912
{
	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);

913 914
	HYPERVISOR_vm_assist(VMASST_CMD_enable,
			     VMASST_TYPE_pae_extended_cr3);
915

916 917 918
	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
		BUG();
919

920
	xen_enable_sysenter();
921
	xen_enable_syscall();
922 923 924 925 926 927 928 929 930
}

/* This function is not called for HVM domains */
void __init xen_arch_setup(void)
{
	xen_panic_handler_init();
	if (!xen_feature(XENFEAT_auto_translated_physmap))
		xen_pvmmu_arch_setup();

931 932 933 934 935 936 937 938 939 940 941
#ifdef CONFIG_ACPI
	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
		disable_acpi();
	}
#endif

	memcpy(boot_command_line, xen_start_info->cmd_line,
	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);

J
Jeremy Fitzhardinge 已提交
942
	/* Set up idle, making sure it calls safe_halt() pvop */
943
	disable_cpuidle();
944
	disable_cpufreq();
945
	WARN_ON(xen_set_default_idle());
946
	fiddle_vdso();
947 948 949
#ifdef CONFIG_NUMA
	numa_off = 1;
#endif
950
}