setup.c 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Machine specific setup for xen
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */

#include <linux/module.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/pm.h>
11
#include <linux/memblock.h>
12
#include <linux/cpuidle.h>
13
#include <linux/cpufreq.h>
14 15

#include <asm/elf.h>
R
Roland McGrath 已提交
16
#include <asm/vdso.h>
17 18
#include <asm/e820.h>
#include <asm/setup.h>
19
#include <asm/acpi.h>
20
#include <asm/numa.h>
21 22 23
#include <asm/xen/hypervisor.h>
#include <asm/xen/hypercall.h>

24
#include <xen/xen.h>
25
#include <xen/page.h>
26
#include <xen/interface/callback.h>
I
Ian Campbell 已提交
27
#include <xen/interface/memory.h>
28 29 30
#include <xen/interface/physdev.h>
#include <xen/features.h>
#include "xen-ops.h"
31
#include "vdso.h"
32
#include "p2m.h"
33
#include "mmu.h"
34

35
/* Amount of extra memory space we add to the e820 ranges */
36
struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
37

38 39 40
/* Number of pages released from the initial allocation. */
unsigned long xen_released_pages;

41 42 43 44
/* E820 map used during setting up memory. */
static struct e820entry xen_e820_map[E820MAX] __initdata;
static u32 xen_e820_map_entries __initdata;

45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * Buffer used to remap identity mapped pages. We only need the virtual space.
 * The physical page behind this address is remapped as needed to different
 * buffer pages.
 */
#define REMAP_SIZE	(P2M_PER_PAGE - 3)
static struct {
	unsigned long	next_area_mfn;
	unsigned long	target_pfn;
	unsigned long	size;
	unsigned long	mfns[REMAP_SIZE];
} xen_remap_buf __initdata __aligned(PAGE_SIZE);
static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
58

59 60 61 62 63 64 65 66 67 68 69 70
/* 
 * The maximum amount of extra memory compared to the base size.  The
 * main scaling factor is the size of struct page.  At extreme ratios
 * of base:extra, all the base memory can be filled with page
 * structures for the extra memory, leaving no space for anything
 * else.
 * 
 * 10x seems like a reasonable balance between scaling flexibility and
 * leaving a practically usable system.
 */
#define EXTRA_MEM_RATIO		(10)

71
static void __init xen_add_extra_mem(phys_addr_t start, phys_addr_t size)
72
{
73
	int i;
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
		/* Add new region. */
		if (xen_extra_mem[i].size == 0) {
			xen_extra_mem[i].start = start;
			xen_extra_mem[i].size  = size;
			break;
		}
		/* Append to existing region. */
		if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
			xen_extra_mem[i].size += size;
			break;
		}
	}
	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
90

91
	memblock_reserve(start, size);
92
}
93

94
static void __init xen_del_extra_mem(phys_addr_t start, phys_addr_t size)
95 96
{
	int i;
97
	phys_addr_t start_r, size_r;
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
		start_r = xen_extra_mem[i].start;
		size_r = xen_extra_mem[i].size;

		/* Start of region. */
		if (start_r == start) {
			BUG_ON(size > size_r);
			xen_extra_mem[i].start += size;
			xen_extra_mem[i].size -= size;
			break;
		}
		/* End of region. */
		if (start_r + size_r == start + size) {
			BUG_ON(size > size_r);
			xen_extra_mem[i].size -= size;
			break;
		}
		/* Mid of region. */
		if (start > start_r && start < start_r + size_r) {
			BUG_ON(start + size > start_r + size_r);
			xen_extra_mem[i].size = start - start_r;
			/* Calling memblock_reserve() again is okay. */
			xen_add_extra_mem(start + size, start_r + size_r -
					  (start + size));
			break;
		}
	}
	memblock_free(start, size);
}

/*
 * Called during boot before the p2m list can take entries beyond the
 * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
 * invalid.
 */
unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
{
	int i;
137
	phys_addr_t addr = PFN_PHYS(pfn);
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
		if (addr >= xen_extra_mem[i].start &&
		    addr < xen_extra_mem[i].start + xen_extra_mem[i].size)
			return INVALID_P2M_ENTRY;
	}

	return IDENTITY_FRAME(pfn);
}

/*
 * Mark all pfns of extra mem as invalid in p2m list.
 */
void __init xen_inv_extra_mem(void)
{
	unsigned long pfn, pfn_s, pfn_e;
	int i;

	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
157 158
		if (!xen_extra_mem[i].size)
			continue;
159 160 161 162
		pfn_s = PFN_DOWN(xen_extra_mem[i].start);
		pfn_e = PFN_UP(xen_extra_mem[i].start + xen_extra_mem[i].size);
		for (pfn = pfn_s; pfn < pfn_e; pfn++)
			set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
163
	}
164 165
}

166 167 168 169 170
/*
 * Finds the next RAM pfn available in the E820 map after min_pfn.
 * This function updates min_pfn with the pfn found and returns
 * the size of that range or zero if not found.
 */
171
static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn)
172
{
173
	const struct e820entry *entry = xen_e820_map;
174 175 176
	unsigned int i;
	unsigned long done = 0;

177
	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
178 179 180 181 182 183
		unsigned long s_pfn;
		unsigned long e_pfn;

		if (entry->type != E820_RAM)
			continue;

184
		e_pfn = PFN_DOWN(entry->addr + entry->size);
185

186 187
		/* We only care about E820 after this */
		if (e_pfn < *min_pfn)
188 189
			continue;

190
		s_pfn = PFN_UP(entry->addr);
191 192 193

		/* If min_pfn falls within the E820 entry, we want to start
		 * at the min_pfn PFN.
194
		 */
195 196
		if (s_pfn <= *min_pfn) {
			done = e_pfn - *min_pfn;
197
		} else {
198 199
			done = e_pfn - s_pfn;
			*min_pfn = s_pfn;
200
		}
201 202
		break;
	}
203

204 205
	return done;
}
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220
static int __init xen_free_mfn(unsigned long mfn)
{
	struct xen_memory_reservation reservation = {
		.address_bits = 0,
		.extent_order = 0,
		.domid        = DOMID_SELF
	};

	set_xen_guest_handle(reservation.extent_start, &mfn);
	reservation.nr_extents = 1;

	return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
}

221
/*
222
 * This releases a chunk of memory and then does the identity map. It's used
223 224 225
 * as a fallback if the remapping fails.
 */
static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
226
	unsigned long end_pfn, unsigned long nr_pages, unsigned long *released)
227
{
228 229 230
	unsigned long pfn, end;
	int ret;

231 232
	WARN_ON(start_pfn > end_pfn);

233
	/* Release pages first. */
234 235 236 237 238 239 240 241 242 243 244 245
	end = min(end_pfn, nr_pages);
	for (pfn = start_pfn; pfn < end; pfn++) {
		unsigned long mfn = pfn_to_mfn(pfn);

		/* Make sure pfn exists to start with */
		if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
			continue;

		ret = xen_free_mfn(mfn);
		WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);

		if (ret == 1) {
246
			(*released)++;
247 248 249 250 251 252
			if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
				break;
		} else
			break;
	}

253
	set_phys_range_identity(start_pfn, end_pfn);
254 255 256
}

/*
257
 * Helper function to update the p2m and m2p tables and kernel mapping.
258
 */
259
static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
260 261
{
	struct mmu_update update = {
262
		.ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
263 264 265 266
		.val = pfn
	};

	/* Update p2m */
267
	if (!set_phys_to_machine(pfn, mfn)) {
268 269
		WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
		     pfn, mfn);
270
		BUG();
271
	}
272 273 274 275 276

	/* Update m2p */
	if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
		WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
		     mfn, pfn);
277
		BUG();
278 279
	}

280
	/* Update kernel mapping, but not for highmem. */
281
	if (pfn >= PFN_UP(__pa(high_memory - 1)))
282 283 284 285 286 287 288 289
		return;

	if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
					 mfn_pte(mfn, PAGE_KERNEL), 0)) {
		WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
		      mfn, pfn);
		BUG();
	}
290
}
291

292 293
/*
 * This function updates the p2m and m2p tables with an identity map from
294 295 296 297 298 299 300 301 302
 * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
 * original allocation at remap_pfn. The information needed for remapping is
 * saved in the memory itself to avoid the need for allocating buffers. The
 * complete remap information is contained in a list of MFNs each containing
 * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
 * This enables us to preserve the original mfn sequence while doing the
 * remapping at a time when the memory management is capable of allocating
 * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
 * its callers.
303
 */
304
static void __init xen_do_set_identity_and_remap_chunk(
305
        unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
306
{
307 308
	unsigned long buf = (unsigned long)&xen_remap_buf;
	unsigned long mfn_save, mfn;
309
	unsigned long ident_pfn_iter, remap_pfn_iter;
310
	unsigned long ident_end_pfn = start_pfn + size;
311
	unsigned long left = size;
312
	unsigned int i, chunk;
313 314 315 316

	WARN_ON(size == 0);

	BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
317

318
	mfn_save = virt_to_mfn(buf);
319

320 321 322 323
	for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
	     ident_pfn_iter < ident_end_pfn;
	     ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
		chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
324

325 326 327
		/* Map first pfn to xen_remap_buf */
		mfn = pfn_to_mfn(ident_pfn_iter);
		set_pte_mfn(buf, mfn, PAGE_KERNEL);
328

329 330 331 332 333 334
		/* Save mapping information in page */
		xen_remap_buf.next_area_mfn = xen_remap_mfn;
		xen_remap_buf.target_pfn = remap_pfn_iter;
		xen_remap_buf.size = chunk;
		for (i = 0; i < chunk; i++)
			xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
335

336 337
		/* Put remap buf into list. */
		xen_remap_mfn = mfn;
338

339
		/* Set identity map */
340
		set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
341

342
		left -= chunk;
343
	}
344

345 346
	/* Restore old xen_remap_buf mapping */
	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
347 348
}

349 350 351 352 353 354 355 356 357 358 359
/*
 * This function takes a contiguous pfn range that needs to be identity mapped
 * and:
 *
 *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
 *  2) Calls the do_ function to actually do the mapping/remapping work.
 *
 * The goal is to not allocate additional memory but to remap the existing
 * pages. In the case of an error the underlying memory is simply released back
 * to Xen and not remapped.
 */
360
static unsigned long __init xen_set_identity_and_remap_chunk(
361 362 363
	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
	unsigned long remap_pfn, unsigned long *released,
	unsigned long *remapped)
364 365 366 367 368 369 370 371 372 373 374 375 376 377
{
	unsigned long pfn;
	unsigned long i = 0;
	unsigned long n = end_pfn - start_pfn;

	while (i < n) {
		unsigned long cur_pfn = start_pfn + i;
		unsigned long left = n - i;
		unsigned long size = left;
		unsigned long remap_range_size;

		/* Do not remap pages beyond the current allocation */
		if (cur_pfn >= nr_pages) {
			/* Identity map remaining pages */
378
			set_phys_range_identity(cur_pfn, cur_pfn + size);
379 380 381 382 383
			break;
		}
		if (cur_pfn + size > nr_pages)
			size = nr_pages - cur_pfn;

384
		remap_range_size = xen_find_pfn_range(&remap_pfn);
385 386 387
		if (!remap_range_size) {
			pr_warning("Unable to find available pfn range, not remapping identity pages\n");
			xen_set_identity_and_release_chunk(cur_pfn,
388
				cur_pfn + left, nr_pages, released);
389 390 391 392 393 394
			break;
		}
		/* Adjust size to fit in current e820 RAM region */
		if (size > remap_range_size)
			size = remap_range_size;

395
		xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
396 397 398 399

		/* Update variables to reflect new mappings. */
		i += size;
		remap_pfn += size;
400
		*remapped += size;
401 402 403 404 405 406 407 408 409 410 411 412 413 414
	}

	/*
	 * If the PFNs are currently mapped, the VA mapping also needs
	 * to be updated to be 1:1.
	 */
	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
		(void)HYPERVISOR_update_va_mapping(
			(unsigned long)__va(pfn << PAGE_SHIFT),
			mfn_pte(pfn, PAGE_KERNEL_IO), 0);

	return remap_pfn;
}

415 416
static void __init xen_set_identity_and_remap(unsigned long nr_pages,
			unsigned long *released, unsigned long *remapped)
417
{
418
	phys_addr_t start = 0;
419
	unsigned long last_pfn = nr_pages;
420
	const struct e820entry *entry = xen_e820_map;
421
	unsigned long num_released = 0;
422
	unsigned long num_remapped = 0;
423 424
	int i;

425 426 427
	/*
	 * Combine non-RAM regions and gaps until a RAM region (or the
	 * end of the map) is reached, then set the 1:1 map and
428
	 * remap the memory in those non-RAM regions.
429 430 431 432 433 434 435
	 *
	 * The combined non-RAM regions are rounded to a whole number
	 * of pages so any partial pages are accessible via the 1:1
	 * mapping.  This is needed for some BIOSes that put (for
	 * example) the DMI tables in a reserved region that begins on
	 * a non-page boundary.
	 */
436
	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
437
		phys_addr_t end = entry->addr + entry->size;
438
		if (entry->type == E820_RAM || i == xen_e820_map_entries - 1) {
439 440
			unsigned long start_pfn = PFN_DOWN(start);
			unsigned long end_pfn = PFN_UP(end);
441

442 443
			if (entry->type == E820_RAM)
				end_pfn = PFN_UP(entry->addr);
444

445
			if (start_pfn < end_pfn)
446
				last_pfn = xen_set_identity_and_remap_chunk(
447 448 449
						start_pfn, end_pfn, nr_pages,
						last_pfn, &num_released,
						&num_remapped);
450
			start = end;
451 452
		}
	}
453

454
	*released = num_released;
455
	*remapped = num_remapped;
456

457 458
	pr_info("Released %ld page(s)\n", num_released);
}
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

/*
 * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
 * The remap information (which mfn remap to which pfn) is contained in the
 * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
 * This scheme allows to remap the different chunks in arbitrary order while
 * the resulting mapping will be independant from the order.
 */
void __init xen_remap_memory(void)
{
	unsigned long buf = (unsigned long)&xen_remap_buf;
	unsigned long mfn_save, mfn, pfn;
	unsigned long remapped = 0;
	unsigned int i;
	unsigned long pfn_s = ~0UL;
	unsigned long len = 0;

	mfn_save = virt_to_mfn(buf);

	while (xen_remap_mfn != INVALID_P2M_ENTRY) {
		/* Map the remap information */
		set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);

		BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);

		pfn = xen_remap_buf.target_pfn;
		for (i = 0; i < xen_remap_buf.size; i++) {
			mfn = xen_remap_buf.mfns[i];
			xen_update_mem_tables(pfn, mfn);
			remapped++;
			pfn++;
		}
		if (pfn_s == ~0UL || pfn == pfn_s) {
			pfn_s = xen_remap_buf.target_pfn;
			len += xen_remap_buf.size;
		} else if (pfn_s + len == xen_remap_buf.target_pfn) {
			len += xen_remap_buf.size;
		} else {
497
			xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len));
498 499 500 501 502 503 504 505 506
			pfn_s = xen_remap_buf.target_pfn;
			len = xen_remap_buf.size;
		}

		mfn = xen_remap_mfn;
		xen_remap_mfn = xen_remap_buf.next_area_mfn;
	}

	if (pfn_s != ~0UL && len)
507
		xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len));
508 509 510 511 512 513

	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);

	pr_info("Remapped %ld page(s)\n", remapped);
}

514 515 516 517 518 519
static unsigned long __init xen_get_max_pages(void)
{
	unsigned long max_pages = MAX_DOMAIN_PAGES;
	domid_t domid = DOMID_SELF;
	int ret;

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	/*
	 * For the initial domain we use the maximum reservation as
	 * the maximum page.
	 *
	 * For guest domains the current maximum reservation reflects
	 * the current maximum rather than the static maximum. In this
	 * case the e820 map provided to us will cover the static
	 * maximum region.
	 */
	if (xen_initial_domain()) {
		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
		if (ret > 0)
			max_pages = ret;
	}

535 536 537
	return min(max_pages, MAX_DOMAIN_PAGES);
}

538 539
static void __init xen_align_and_add_e820_region(phys_addr_t start,
						 phys_addr_t size, int type)
540
{
541
	phys_addr_t end = start + size;
542 543 544 545

	/* Align RAM regions to page boundaries. */
	if (type == E820_RAM) {
		start = PAGE_ALIGN(start);
546
		end &= ~((phys_addr_t)PAGE_SIZE - 1);
547 548 549 550 551
	}

	e820_add_region(start, end - start, type);
}

552
static void __init xen_ignore_unusable(void)
553
{
554
	struct e820entry *entry = xen_e820_map;
555 556
	unsigned int i;

557
	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
558 559 560 561 562
		if (entry->type == E820_UNUSABLE)
			entry->type = E820_RAM;
	}
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * Reserve Xen mfn_list.
 * See comment above "struct start_info" in <xen/interface/xen.h>
 * We tried to make the the memblock_reserve more selective so
 * that it would be clear what region is reserved. Sadly we ran
 * in the problem wherein on a 64-bit hypervisor with a 32-bit
 * initial domain, the pt_base has the cr3 value which is not
 * neccessarily where the pagetable starts! As Jan put it: "
 * Actually, the adjustment turns out to be correct: The page
 * tables for a 32-on-64 dom0 get allocated in the order "first L1",
 * "first L2", "first L3", so the offset to the page table base is
 * indeed 2. When reading xen/include/public/xen.h's comment
 * very strictly, this is not a violation (since there nothing is said
 * that the first thing in the page table space is pointed to by
 * pt_base; I admit that this seems to be implied though, namely
 * do I think that it is implied that the page table space is the
 * range [pt_base, pt_base + nt_pt_frames), whereas that
 * range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames),
 * which - without a priori knowledge - the kernel would have
 * difficulty to figure out)." - so lets just fall back to the
 * easy way and reserve the whole region.
 */
static void __init xen_reserve_xen_mfnlist(void)
{
	if (xen_start_info->mfn_list >= __START_KERNEL_map) {
		memblock_reserve(__pa(xen_start_info->mfn_list),
				 xen_start_info->pt_base -
				 xen_start_info->mfn_list);
		return;
	}

	memblock_reserve(PFN_PHYS(xen_start_info->first_p2m_pfn),
			 PFN_PHYS(xen_start_info->nr_p2m_frames));
}

598 599 600 601 602 603
/**
 * machine_specific_memory_setup - Hook for machine specific memory setup.
 **/
char * __init xen_memory_setup(void)
{
	unsigned long max_pfn = xen_start_info->nr_pages;
604
	phys_addr_t mem_end;
I
Ian Campbell 已提交
605 606
	int rc;
	struct xen_memory_map memmap;
607
	unsigned long max_pages;
608
	unsigned long extra_pages = 0;
609
	unsigned long remapped_pages;
I
Ian Campbell 已提交
610
	int i;
I
Ian Campbell 已提交
611
	int op;
612

613
	max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
I
Ian Campbell 已提交
614 615 616
	mem_end = PFN_PHYS(max_pfn);

	memmap.nr_entries = E820MAX;
617
	set_xen_guest_handle(memmap.buffer, xen_e820_map);
I
Ian Campbell 已提交
618

I
Ian Campbell 已提交
619 620 621 622
	op = xen_initial_domain() ?
		XENMEM_machine_memory_map :
		XENMEM_memory_map;
	rc = HYPERVISOR_memory_op(op, &memmap);
I
Ian Campbell 已提交
623
	if (rc == -ENOSYS) {
624
		BUG_ON(xen_initial_domain());
I
Ian Campbell 已提交
625
		memmap.nr_entries = 1;
626 627
		xen_e820_map[0].addr = 0ULL;
		xen_e820_map[0].size = mem_end;
I
Ian Campbell 已提交
628
		/* 8MB slack (to balance backend allocations). */
629 630
		xen_e820_map[0].size += 8ULL << 20;
		xen_e820_map[0].type = E820_RAM;
I
Ian Campbell 已提交
631 632 633
		rc = 0;
	}
	BUG_ON(rc);
634
	BUG_ON(memmap.nr_entries == 0);
635
	xen_e820_map_entries = memmap.nr_entries;
636

637 638 639 640 641 642 643 644 645
	/*
	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
	 * regions, so if we're using the machine memory map leave the
	 * region as RAM as it is in the pseudo-physical map.
	 *
	 * UNUSABLE regions in domUs are not handled and will need
	 * a patch in the future.
	 */
	if (xen_initial_domain())
646
		xen_ignore_unusable();
647

648
	/* Make sure the Xen-supplied memory map is well-ordered. */
649 650
	sanitize_e820_map(xen_e820_map, xen_e820_map_entries,
			  &xen_e820_map_entries);
651 652 653 654 655

	max_pages = xen_get_max_pages();
	if (max_pages > max_pfn)
		extra_pages += max_pages - max_pfn;

656
	/*
657 658
	 * Set identity map on non-RAM pages and prepare remapping the
	 * underlying RAM.
659
	 */
660 661
	xen_set_identity_and_remap(max_pfn, &xen_released_pages,
				   &remapped_pages);
662

663
	extra_pages += xen_released_pages;
664
	extra_pages += remapped_pages;
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679
	/*
	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
	 * factor the base size.  On non-highmem systems, the base
	 * size is the full initial memory allocation; on highmem it
	 * is limited to the max size of lowmem, so that it doesn't
	 * get completely filled.
	 *
	 * In principle there could be a problem in lowmem systems if
	 * the initial memory is also very large with respect to
	 * lowmem, but we won't try to deal with that here.
	 */
	extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
			  extra_pages);
	i = 0;
680 681 682 683
	while (i < xen_e820_map_entries) {
		phys_addr_t addr = xen_e820_map[i].addr;
		phys_addr_t size = xen_e820_map[i].size;
		u32 type = xen_e820_map[i].type;
684 685 686 687 688

		if (type == E820_RAM) {
			if (addr < mem_end) {
				size = min(size, mem_end - addr);
			} else if (extra_pages) {
689 690
				size = min(size, PFN_PHYS(extra_pages));
				extra_pages -= PFN_DOWN(size);
691
				xen_add_extra_mem(addr, size);
692
				xen_max_p2m_pfn = PFN_DOWN(addr + size);
693 694
			} else
				type = E820_UNUSABLE;
695 696
		}

697
		xen_align_and_add_e820_region(addr, size, type);
698

699 700 701
		xen_e820_map[i].addr += size;
		xen_e820_map[i].size -= size;
		if (xen_e820_map[i].size == 0)
702
			i++;
I
Ian Campbell 已提交
703
	}
704

705 706 707 708 709 710 711
	/*
	 * Set the rest as identity mapped, in case PCI BARs are
	 * located here.
	 *
	 * PFNs above MAX_P2M_PFN are considered identity mapped as
	 * well.
	 */
712
	set_phys_range_identity(xen_e820_map[i - 1].addr / PAGE_SIZE, ~0ul);
713

714
	/*
715 716
	 * In domU, the ISA region is normal, usable memory, but we
	 * reserve ISA memory anyway because too many things poke
717 718 719 720
	 * about in there.
	 */
	e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
			E820_RESERVED);
721

722 723
	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);

724 725
	xen_reserve_xen_mfnlist();

726 727 728
	return "Xen";
}

729 730 731 732 733 734 735 736 737 738
/*
 * Machine specific memory setup for auto-translated guests.
 */
char * __init xen_auto_xlated_memory_setup(void)
{
	struct xen_memory_map memmap;
	int i;
	int rc;

	memmap.nr_entries = E820MAX;
739
	set_xen_guest_handle(memmap.buffer, xen_e820_map);
740 741 742 743 744

	rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
	if (rc < 0)
		panic("No memory map (%d)\n", rc);

745 746 747 748
	xen_e820_map_entries = memmap.nr_entries;

	sanitize_e820_map(xen_e820_map, ARRAY_SIZE(xen_e820_map),
			  &xen_e820_map_entries);
749

750 751 752
	for (i = 0; i < xen_e820_map_entries; i++)
		e820_add_region(xen_e820_map[i].addr, xen_e820_map[i].size,
				xen_e820_map[i].type);
753

754
	xen_reserve_xen_mfnlist();
755 756 757 758

	return "Xen";
}

759 760
/*
 * Set the bit indicating "nosegneg" library variants should be used.
761 762
 * We only need to bother in pure 32-bit mode; compat 32-bit processes
 * can have un-truncated segments, so wrapping around is allowed.
763
 */
764
static void __init fiddle_vdso(void)
765
{
766
#ifdef CONFIG_X86_32
767 768 769 770 771
	/*
	 * This could be called before selected_vdso32 is initialized, so
	 * just fiddle with both possible images.  vdso_image_32_syscall
	 * can't be selected, since it only exists on 64-bit systems.
	 */
772
	u32 *mask;
773 774
	mask = vdso_image_32_int80.data +
		vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
775
	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
776 777
	mask = vdso_image_32_sysenter.data +
		vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
778
	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
779
#endif
780 781
}

782
static int register_callback(unsigned type, const void *func)
783
{
784 785 786
	struct callback_register callback = {
		.type = type,
		.address = XEN_CALLBACK(__KERNEL_CS, func),
787 788 789
		.flags = CALLBACKF_mask_events,
	};

790 791 792
	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
}

793
void xen_enable_sysenter(void)
794
{
795
	int ret;
796
	unsigned sysenter_feature;
797 798

#ifdef CONFIG_X86_32
799
	sysenter_feature = X86_FEATURE_SEP;
800
#else
801
	sysenter_feature = X86_FEATURE_SYSENTER32;
802
#endif
803

804 805 806
	if (!boot_cpu_has(sysenter_feature))
		return;

807
	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
808 809
	if(ret != 0)
		setup_clear_cpu_cap(sysenter_feature);
810 811
}

812
void xen_enable_syscall(void)
813 814 815 816 817 818
{
#ifdef CONFIG_X86_64
	int ret;

	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
	if (ret != 0) {
819
		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
820 821 822 823 824
		/* Pretty fatal; 64-bit userspace has no other
		   mechanism for syscalls. */
	}

	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
825 826
		ret = register_callback(CALLBACKTYPE_syscall32,
					xen_syscall32_target);
827
		if (ret != 0)
828
			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
829 830 831
	}
#endif /* CONFIG_X86_64 */
}
832

833
void __init xen_pvmmu_arch_setup(void)
834 835 836 837
{
	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);

838 839
	HYPERVISOR_vm_assist(VMASST_CMD_enable,
			     VMASST_TYPE_pae_extended_cr3);
840

841 842 843
	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
		BUG();
844

845
	xen_enable_sysenter();
846
	xen_enable_syscall();
847 848 849 850 851 852 853 854 855
}

/* This function is not called for HVM domains */
void __init xen_arch_setup(void)
{
	xen_panic_handler_init();
	if (!xen_feature(XENFEAT_auto_translated_physmap))
		xen_pvmmu_arch_setup();

856 857 858 859 860 861 862 863 864 865 866
#ifdef CONFIG_ACPI
	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
		disable_acpi();
	}
#endif

	memcpy(boot_command_line, xen_start_info->cmd_line,
	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);

J
Jeremy Fitzhardinge 已提交
867
	/* Set up idle, making sure it calls safe_halt() pvop */
868
	disable_cpuidle();
869
	disable_cpufreq();
870
	WARN_ON(xen_set_default_idle());
871
	fiddle_vdso();
872 873 874
#ifdef CONFIG_NUMA
	numa_off = 1;
#endif
875
}