cx24123.c 27.4 KB
Newer Older
1 2 3 4 5
/*
    Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver

    Copyright (C) 2005 Steven Toth <stoth@hauppauge.com>

6 7
    Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>

#include "dvb_frontend.h"
#include "cx24123.h"

32 33
#define XTAL 10111000

34
static int force_band;
35 36 37 38 39 40
static int debug;
#define dprintk(args...) \
	do { \
		if (debug) printk (KERN_DEBUG "cx24123: " args); \
	} while (0)

41 42
struct cx24123_state
{
43 44 45 46 47 48 49 50 51 52
	struct i2c_adapter* i2c;
	const struct cx24123_config* config;

	struct dvb_frontend frontend;

	/* Some PLL specifics for tuning */
	u32 VCAarg;
	u32 VGAarg;
	u32 bandselectarg;
	u32 pllarg;
53
	u32 FILTune;
54 55 56 57 58 59

	/* The Demod/Tuner can't easily provide these, we cache them */
	u32 currentfreq;
	u32 currentsymbolrate;
};

60 61 62 63 64 65 66
/* Various tuner defaults need to be established for a given symbol rate Sps */
static struct
{
	u32 symbolrate_low;
	u32 symbolrate_high;
	u32 VCAprogdata;
	u32 VGAprogdata;
67
	u32 FILTune;
68 69 70 71 72
} cx24123_AGC_vals[] =
{
	{
		.symbolrate_low		= 1000000,
		.symbolrate_high	= 4999999,
73 74
		/* the specs recommend other values for VGA offsets,
		   but tests show they are wrong */
75 76 77
		.VGAprogdata		= (1 << 19) | (0x180 << 9) | 0x1e0,
		.VCAprogdata		= (2 << 19) | (0x07 << 9) | 0x07,
		.FILTune		= 0x27f /* 0.41 V */
78 79 80 81
	},
	{
		.symbolrate_low		=  5000000,
		.symbolrate_high	= 14999999,
82 83
		.VGAprogdata		= (1 << 19) | (0x180 << 9) | 0x1e0,
		.VCAprogdata		= (2 << 19) | (0x07 << 9) | 0x1f,
84
		.FILTune		= 0x317 /* 0.90 V */
85 86 87 88
	},
	{
		.symbolrate_low		= 15000000,
		.symbolrate_high	= 45000000,
89 90 91
		.VGAprogdata		= (1 << 19) | (0x100 << 9) | 0x180,
		.VCAprogdata		= (2 << 19) | (0x07 << 9) | 0x3f,
		.FILTune		= 0x145 /* 2.70 V */
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	},
};

/*
 * Various tuner defaults need to be established for a given frequency kHz.
 * fixme: The bounds on the bands do not match the doc in real life.
 * fixme: Some of them have been moved, other might need adjustment.
 */
static struct
{
	u32 freq_low;
	u32 freq_high;
	u32 VCOdivider;
	u32 progdata;
} cx24123_bandselect_vals[] =
{
108
	/* band 1 */
109 110 111 112
	{
		.freq_low	= 950000,
		.freq_high	= 1074999,
		.VCOdivider	= 4,
113
		.progdata	= (0 << 19) | (0 << 9) | 0x40,
114
	},
115 116

	/* band 2 */
117 118
	{
		.freq_low	= 1075000,
119 120 121
		.freq_high	= 1177999,
		.VCOdivider	= 4,
		.progdata	= (0 << 19) | (0 << 9) | 0x80,
122
	},
123 124

	/* band 3 */
125
	{
126 127
		.freq_low	= 1178000,
		.freq_high	= 1295999,
128
		.VCOdivider	= 2,
129
		.progdata	= (0 << 19) | (1 << 9) | 0x01,
130
	},
131 132

	/* band 4 */
133
	{
134 135
		.freq_low	= 1296000,
		.freq_high	= 1431999,
136
		.VCOdivider	= 2,
137
		.progdata	= (0 << 19) | (1 << 9) | 0x02,
138
	},
139 140

	/* band 5 */
141
	{
142 143
		.freq_low	= 1432000,
		.freq_high	= 1575999,
144
		.VCOdivider	= 2,
145
		.progdata	= (0 << 19) | (1 << 9) | 0x04,
146
	},
147 148

	/* band 6 */
149
	{
150
		.freq_low	= 1576000,
151 152
		.freq_high	= 1717999,
		.VCOdivider	= 2,
153
		.progdata	= (0 << 19) | (1 << 9) | 0x08,
154
	},
155 156

	/* band 7 */
157 158 159 160
	{
		.freq_low	= 1718000,
		.freq_high	= 1855999,
		.VCOdivider	= 2,
161
		.progdata	= (0 << 19) | (1 << 9) | 0x10,
162
	},
163 164

	/* band 8 */
165 166 167 168
	{
		.freq_low	= 1856000,
		.freq_high	= 2035999,
		.VCOdivider	= 2,
169
		.progdata	= (0 << 19) | (1 << 9) | 0x20,
170
	},
171 172

	/* band 9 */
173 174
	{
		.freq_low	= 2036000,
175
		.freq_high	= 2150000,
176
		.VCOdivider	= 2,
177
		.progdata	= (0 << 19) | (1 << 9) | 0x40,
178 179 180
	},
};

181 182 183 184 185 186 187
static struct {
	u8 reg;
	u8 data;
} cx24123_regdata[] =
{
	{0x00, 0x03}, /* Reset system */
	{0x00, 0x00}, /* Clear reset */
188 189 190 191 192 193
	{0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */
	{0x04, 0x10}, /* MPEG */
	{0x05, 0x04}, /* MPEG */
	{0x06, 0x31}, /* MPEG (default) */
	{0x0b, 0x00}, /* Freq search start point (default) */
	{0x0c, 0x00}, /* Demodulator sample gain (default) */
194
	{0x0d, 0x7f}, /* Force driver to shift until the maximum (+-10 MHz) */
195 196 197 198 199 200 201 202 203 204 205 206 207
	{0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */
	{0x0f, 0xfe}, /* FEC search mask (all supported codes) */
	{0x10, 0x01}, /* Default search inversion, no repeat (default) */
	{0x16, 0x00}, /* Enable reading of frequency */
	{0x17, 0x01}, /* Enable EsNO Ready Counter */
	{0x1c, 0x80}, /* Enable error counter */
	{0x20, 0x00}, /* Tuner burst clock rate = 500KHz */
	{0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */
	{0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */
	{0x29, 0x00}, /* DiSEqC LNB_DC off */
	{0x2a, 0xb0}, /* DiSEqC Parameters (default) */
	{0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */
	{0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */
208 209 210 211 212
	{0x2d, 0x00},
	{0x2e, 0x00},
	{0x2f, 0x00},
	{0x30, 0x00},
	{0x31, 0x00},
213 214
	{0x32, 0x8c}, /* DiSEqC Parameters (default) */
	{0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */
215
	{0x34, 0x00},
216 217 218 219 220 221 222
	{0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */
	{0x36, 0x02}, /* DiSEqC Parameters (default) */
	{0x37, 0x3a}, /* DiSEqC Parameters (default) */
	{0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */
	{0x44, 0x00}, /* Constellation (default) */
	{0x45, 0x00}, /* Symbol count (default) */
	{0x46, 0x0d}, /* Symbol rate estimator on (default) */
Y
Yeasah Pell 已提交
223
	{0x56, 0xc1}, /* Error Counter = Viterbi BER */
224
	{0x57, 0xff}, /* Error Counter Window (default) */
225
	{0x5c, 0x20}, /* Acquisition AFC Expiration window (default is 0x10) */
226
	{0x67, 0x83}, /* Non-DCII symbol clock */
227 228 229 230 231 232 233 234
};

static int cx24123_writereg(struct cx24123_state* state, int reg, int data)
{
	u8 buf[] = { reg, data };
	struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
	int err;

235 236 237 238
	if (debug>1)
		printk("cx24123: %s:  write reg 0x%02x, value 0x%02x\n",
						__FUNCTION__,reg, data);

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
		printk("%s: writereg error(err == %i, reg == 0x%02x,"
			 " data == 0x%02x)\n", __FUNCTION__, err, reg, data);
		return -EREMOTEIO;
	}

	return 0;
}

static int cx24123_readreg(struct cx24123_state* state, u8 reg)
{
	int ret;
	u8 b0[] = { reg };
	u8 b1[] = { 0 };
	struct i2c_msg msg[] = {
		{ .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
		{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 }
	};

	ret = i2c_transfer(state->i2c, msg, 2);

	if (ret != 2) {
		printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret);
		return ret;
	}

265 266 267
	if (debug>1)
		printk("cx24123: read reg 0x%02x, value 0x%02x\n",reg, ret);

268 269 270 271 272
	return b1[0];
}

static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion)
{
273 274 275
	u8 nom_reg = cx24123_readreg(state, 0x0e);
	u8 auto_reg = cx24123_readreg(state, 0x10);

276 277
	switch (inversion) {
	case INVERSION_OFF:
278
		dprintk("%s:  inversion off\n",__FUNCTION__);
279 280
		cx24123_writereg(state, 0x0e, nom_reg & ~0x80);
		cx24123_writereg(state, 0x10, auto_reg | 0x80);
281 282
		break;
	case INVERSION_ON:
283
		dprintk("%s:  inversion on\n",__FUNCTION__);
284 285
		cx24123_writereg(state, 0x0e, nom_reg | 0x80);
		cx24123_writereg(state, 0x10, auto_reg | 0x80);
286 287
		break;
	case INVERSION_AUTO:
288
		dprintk("%s:  inversion auto\n",__FUNCTION__);
289
		cx24123_writereg(state, 0x10, auto_reg & ~0x80);
290 291 292 293 294 295 296 297 298 299 300 301 302 303
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion)
{
	u8 val;

	val = cx24123_readreg(state, 0x1b) >> 7;

304 305
	if (val == 0) {
		dprintk("%s:  read inversion off\n",__FUNCTION__);
306
		*inversion = INVERSION_OFF;
307 308
	} else {
		dprintk("%s:  read inversion on\n",__FUNCTION__);
309
		*inversion = INVERSION_ON;
310
	}
311 312 313 314 315 316

	return 0;
}

static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec)
{
317 318
	u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07;

319
	if ( (fec < FEC_NONE) || (fec > FEC_AUTO) )
320
		fec = FEC_AUTO;
321

322 323 324 325 326 327
	/* Set the soft decision threshold */
	if(fec == FEC_1_2)
		cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) | 0x01);
	else
		cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) & ~0x01);

328 329
	switch (fec) {
	case FEC_1_2:
330
		dprintk("%s:  set FEC to 1/2\n",__FUNCTION__);
331 332 333
		cx24123_writereg(state, 0x0e, nom_reg | 0x01);
		cx24123_writereg(state, 0x0f, 0x02);
		break;
334
	case FEC_2_3:
335
		dprintk("%s:  set FEC to 2/3\n",__FUNCTION__);
336 337 338
		cx24123_writereg(state, 0x0e, nom_reg | 0x02);
		cx24123_writereg(state, 0x0f, 0x04);
		break;
339
	case FEC_3_4:
340
		dprintk("%s:  set FEC to 3/4\n",__FUNCTION__);
341 342 343 344
		cx24123_writereg(state, 0x0e, nom_reg | 0x03);
		cx24123_writereg(state, 0x0f, 0x08);
		break;
	case FEC_4_5:
345
		dprintk("%s:  set FEC to 4/5\n",__FUNCTION__);
346 347 348 349
		cx24123_writereg(state, 0x0e, nom_reg | 0x04);
		cx24123_writereg(state, 0x0f, 0x10);
		break;
	case FEC_5_6:
350
		dprintk("%s:  set FEC to 5/6\n",__FUNCTION__);
351 352 353 354 355 356 357 358 359 360 361 362 363
		cx24123_writereg(state, 0x0e, nom_reg | 0x05);
		cx24123_writereg(state, 0x0f, 0x20);
		break;
	case FEC_6_7:
		dprintk("%s:  set FEC to 6/7\n",__FUNCTION__);
		cx24123_writereg(state, 0x0e, nom_reg | 0x06);
		cx24123_writereg(state, 0x0f, 0x40);
		break;
	case FEC_7_8:
		dprintk("%s:  set FEC to 7/8\n",__FUNCTION__);
		cx24123_writereg(state, 0x0e, nom_reg | 0x07);
		cx24123_writereg(state, 0x0f, 0x80);
		break;
364
	case FEC_AUTO:
365
		dprintk("%s:  set FEC to auto\n",__FUNCTION__);
366 367
		cx24123_writereg(state, 0x0f, 0xfe);
		break;
368 369 370
	default:
		return -EOPNOTSUPP;
	}
371 372

	return 0;
373 374 375 376
}

static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec)
{
377
	int ret;
378

379 380 381
	ret = cx24123_readreg (state, 0x1b);
	if (ret < 0)
		return ret;
382 383 384
	ret = ret & 0x07;

	switch (ret) {
385
	case 1:
386 387
		*fec = FEC_1_2;
		break;
388
	case 2:
389 390
		*fec = FEC_2_3;
		break;
391
	case 3:
392 393
		*fec = FEC_3_4;
		break;
394
	case 4:
395 396
		*fec = FEC_4_5;
		break;
397
	case 5:
398 399
		*fec = FEC_5_6;
		break;
400 401 402
	case 6:
		*fec = FEC_6_7;
		break;
403
	case 7:
404 405
		*fec = FEC_7_8;
		break;
406
	default:
407 408
		/* this can happen when there's no lock */
		*fec = FEC_NONE;
409 410
	}

411
	return 0;
412 413
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/* Approximation of closest integer of log2(a/b). It actually gives the
   lowest integer i such that 2^i >= round(a/b) */
static u32 cx24123_int_log2(u32 a, u32 b)
{
	u32 exp, nearest = 0;
	u32 div = a / b;
	if(a % b >= b / 2) ++div;
	if(div < (1 << 31))
	{
		for(exp = 1; div > exp; nearest++)
			exp += exp;
	}
	return nearest;
}

429 430
static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate)
{
431
	u32 tmp, sample_rate, ratio, sample_gain;
432 433 434
	u8 pll_mult;

	/*  check if symbol rate is within limits */
435 436
	if ((srate > state->frontend.ops.info.symbol_rate_max) ||
	    (srate < state->frontend.ops.info.symbol_rate_min))
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
		return -EOPNOTSUPP;;

	/* choose the sampling rate high enough for the required operation,
	   while optimizing the power consumed by the demodulator */
	if (srate < (XTAL*2)/2)
		pll_mult = 2;
	else if (srate < (XTAL*3)/2)
		pll_mult = 3;
	else if (srate < (XTAL*4)/2)
		pll_mult = 4;
	else if (srate < (XTAL*5)/2)
		pll_mult = 5;
	else if (srate < (XTAL*6)/2)
		pll_mult = 6;
	else if (srate < (XTAL*7)/2)
		pll_mult = 7;
	else if (srate < (XTAL*8)/2)
		pll_mult = 8;
	else
		pll_mult = 9;


	sample_rate = pll_mult * XTAL;
460

461 462
	/*
	    SYSSymbolRate[21:0] = (srate << 23) / sample_rate
463

464 465 466 467 468
	    We have to use 32 bit unsigned arithmetic without precision loss.
	    The maximum srate is 45000000 or 0x02AEA540. This number has
	    only 6 clear bits on top, hence we can shift it left only 6 bits
	    at a time. Borrowed from cx24110.c
	*/
469

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	tmp = srate << 6;
	ratio = tmp / sample_rate;

	tmp = (tmp % sample_rate) << 6;
	ratio = (ratio << 6) + (tmp / sample_rate);

	tmp = (tmp % sample_rate) << 6;
	ratio = (ratio << 6) + (tmp / sample_rate);

	tmp = (tmp % sample_rate) << 5;
	ratio = (ratio << 5) + (tmp / sample_rate);


	cx24123_writereg(state, 0x01, pll_mult * 6);

	cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f );
	cx24123_writereg(state, 0x09, (ratio >>  8) & 0xff );
	cx24123_writereg(state, 0x0a, (ratio      ) & 0xff );

489 490 491 492 493 494
	/* also set the demodulator sample gain */
	sample_gain = cx24123_int_log2(sample_rate, srate);
	tmp = cx24123_readreg(state, 0x0c) & ~0xe0;
	cx24123_writereg(state, 0x0c, tmp | sample_gain << 5);

	dprintk("%s: srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", __FUNCTION__, srate, ratio, sample_rate, sample_gain);
495 496 497 498 499 500 501 502 503 504 505

	return 0;
}

/*
 * Based on the required frequency and symbolrate, the tuner AGC has to be configured
 * and the correct band selected. Calculate those values
 */
static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;
506 507
	u32 ndiv = 0, adiv = 0, vco_div = 0;
	int i = 0;
508
	int pump = 2;
509 510
	int band = 0;
	int num_bands = sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]);
511 512 513 514 515 516 517

	/* Defaults for low freq, low rate */
	state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
	state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
	state->bandselectarg = cx24123_bandselect_vals[0].progdata;
	vco_div = cx24123_bandselect_vals[0].VCOdivider;

518
	/* For the given symbol rate, determine the VCA, VGA and FILTUNE programming bits */
519
	for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++)
520 521
	{
		if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) &&
522
		    (cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) {
523 524
			state->VCAarg = cx24123_AGC_vals[i].VCAprogdata;
			state->VGAarg = cx24123_AGC_vals[i].VGAprogdata;
525
			state->FILTune = cx24123_AGC_vals[i].FILTune;
526 527 528
		}
	}

529 530
	/* determine the band to use */
	if(force_band < 1 || force_band > num_bands)
531
	{
532 533 534 535 536
		for (i = 0; i < num_bands; i++)
		{
			if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) &&
			    (cx24123_bandselect_vals[i].freq_high >= p->frequency) )
				band = i;
537 538
		}
	}
539 540 541 542 543 544 545 546 547 548 549
	else
		band = force_band - 1;

	state->bandselectarg = cx24123_bandselect_vals[band].progdata;
	vco_div = cx24123_bandselect_vals[band].VCOdivider;

	/* determine the charge pump current */
	if ( p->frequency < (cx24123_bandselect_vals[band].freq_low + cx24123_bandselect_vals[band].freq_high)/2 )
		pump = 0x01;
	else
		pump = 0x02;
550 551

	/* Determine the N/A dividers for the requested lband freq (in kHz). */
552 553 554
	/* Note: the reference divider R=10, frequency is in KHz, XTAL is in Hz */
	ndiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) / 32) & 0x1ff;
	adiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) % 32) & 0x1f;
555

556 557
	if (adiv == 0 && ndiv > 0)
		ndiv--;
558

559 560
	/* control bits 11, refdiv 11, charge pump polarity 1, charge pump current, ndiv, adiv */
	state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (pump << 14) | (ndiv << 5) | adiv;
561 562 563 564 565 566 567 568 569 570 571

	return 0;
}

/*
 * Tuner data is 21 bits long, must be left-aligned in data.
 * Tuner cx24109 is written through a dedicated 3wire interface on the demod chip.
 */
static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data)
{
	struct cx24123_state *state = fe->demodulator_priv;
572
	unsigned long timeout;
573

574 575
	dprintk("%s:  pll writereg called, data=0x%08x\n",__FUNCTION__,data);

576 577 578 579 580 581 582
	/* align the 21 bytes into to bit23 boundary */
	data = data << 3;

	/* Reset the demod pll word length to 0x15 bits */
	cx24123_writereg(state, 0x21, 0x15);

	/* write the msb 8 bits, wait for the send to be completed */
583
	timeout = jiffies + msecs_to_jiffies(40);
584
	cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
585 586 587
	while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
		if (time_after(jiffies, timeout)) {
			printk("%s:  demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
588 589
			return -EREMOTEIO;
		}
590
		msleep(10);
591 592 593
	}

	/* send another 8 bytes, wait for the send to be completed */
594
	timeout = jiffies + msecs_to_jiffies(40);
595
	cx24123_writereg(state, 0x22, (data>>8) & 0xff );
596 597 598
	while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
		if (time_after(jiffies, timeout)) {
			printk("%s:  demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
599 600
			return -EREMOTEIO;
		}
601
		msleep(10);
602 603 604
	}

	/* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */
605
	timeout = jiffies + msecs_to_jiffies(40);
606
	cx24123_writereg(state, 0x22, (data) & 0xff );
607 608 609
	while ((cx24123_readreg(state, 0x20) & 0x80)) {
		if (time_after(jiffies, timeout)) {
			printk("%s:  demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
610 611
			return -EREMOTEIO;
		}
612
		msleep(10);
613 614 615 616 617 618 619 620 621 622 623 624
	}

	/* Trigger the demod to configure the tuner */
	cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
	cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);

	return 0;
}

static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;
625 626 627
	u8 val;

	dprintk("frequency=%i\n", p->frequency);
628

629
	if (cx24123_pll_calculate(fe, p) != 0) {
630 631 632 633 634 635 636 637 638 639 640 641
		printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__);
		return -EINVAL;
	}

	/* Write the new VCO/VGA */
	cx24123_pll_writereg(fe, p, state->VCAarg);
	cx24123_pll_writereg(fe, p, state->VGAarg);

	/* Write the new bandselect and pll args */
	cx24123_pll_writereg(fe, p, state->bandselectarg);
	cx24123_pll_writereg(fe, p, state->pllarg);

642 643 644 645 646
	/* set the FILTUNE voltage */
	val = cx24123_readreg(state, 0x28) & ~0x3;
	cx24123_writereg(state, 0x27, state->FILTune >> 2);
	cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));

647 648 649
	dprintk("%s:  pll tune VCA=%d, band=%d, pll=%d\n",__FUNCTION__,state->VCAarg,
			state->bandselectarg,state->pllarg);

650 651 652 653 654 655 656 657
	return 0;
}

static int cx24123_initfe(struct dvb_frontend* fe)
{
	struct cx24123_state *state = fe->demodulator_priv;
	int i;

658 659
	dprintk("%s:  init frontend\n",__FUNCTION__);

660
	/* Configure the demod to a good set of defaults */
661
	for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++)
662 663
		cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data);

664 665 666 667
	/* Set the LNB polarity */
	if(state->config->lnb_polarity)
		cx24123_writereg(state, 0x32, cx24123_readreg(state, 0x32) | 0x02);

668 669 670 671 672 673 674 675
	return 0;
}

static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
{
	struct cx24123_state *state = fe->demodulator_priv;
	u8 val;

676
	val = cx24123_readreg(state, 0x29) & ~0x40;
677

678 679 680
	switch (voltage) {
	case SEC_VOLTAGE_13:
		dprintk("%s: setting voltage 13V\n", __FUNCTION__);
681
		return cx24123_writereg(state, 0x29, val & 0x7f);
682 683
	case SEC_VOLTAGE_18:
		dprintk("%s: setting voltage 18V\n", __FUNCTION__);
684
		return cx24123_writereg(state, 0x29, val | 0x80);
685 686 687
	case SEC_VOLTAGE_OFF:
		/* already handled in cx88-dvb */
		return 0;
688 689 690
	default:
		return -EINVAL;
	};
691 692

	return 0;
693 694
}

695 696 697 698 699 700 701 702 703 704 705 706 707
/* wait for diseqc queue to become ready (or timeout) */
static void cx24123_wait_for_diseqc(struct cx24123_state *state)
{
	unsigned long timeout = jiffies + msecs_to_jiffies(200);
	while (!(cx24123_readreg(state, 0x29) & 0x40)) {
		if(time_after(jiffies, timeout)) {
			printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
			break;
		}
		msleep(10);
	}
}

708
static int cx24123_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
709
{
710
	struct cx24123_state *state = fe->demodulator_priv;
711
	int i, val, tone;
712 713

	dprintk("%s:\n",__FUNCTION__);
714

715 716 717 718
	/* stop continuous tone if enabled */
	tone = cx24123_readreg(state, 0x29);
	if (tone & 0x10)
		cx24123_writereg(state, 0x29, tone & ~0x50);
719

720 721 722
	/* wait for diseqc queue ready */
	cx24123_wait_for_diseqc(state);

723
	/* select tone mode */
724
	cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
725 726 727 728 729 730 731

	for (i = 0; i < cmd->msg_len; i++)
		cx24123_writereg(state, 0x2C + i, cmd->msg[i]);

	val = cx24123_readreg(state, 0x29);
	cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));

732 733
	/* wait for diseqc message to finish sending */
	cx24123_wait_for_diseqc(state);
734

735 736 737 738 739
	/* restart continuous tone if enabled */
	if (tone & 0x10) {
		cx24123_writereg(state, 0x29, tone & ~0x40);
	}

740 741 742 743 744 745
	return 0;
}

static int cx24123_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
{
	struct cx24123_state *state = fe->demodulator_priv;
746
	int val, tone;
747 748 749

	dprintk("%s:\n", __FUNCTION__);

750 751 752 753
	/* stop continuous tone if enabled */
	tone = cx24123_readreg(state, 0x29);
	if (tone & 0x10)
		cx24123_writereg(state, 0x29, tone & ~0x50);
754

755
	/* wait for diseqc queue ready */
756 757
	cx24123_wait_for_diseqc(state);

758
	/* select tone mode */
759 760
	cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4);
	msleep(30);
761 762 763 764 765 766 767 768
	val = cx24123_readreg(state, 0x29);
	if (burst == SEC_MINI_A)
		cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
	else if (burst == SEC_MINI_B)
		cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
	else
		return -EINVAL;

769
	cx24123_wait_for_diseqc(state);
770
	cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
771

772 773 774 775
	/* restart continuous tone if enabled */
	if (tone & 0x10) {
		cx24123_writereg(state, 0x29, tone & ~0x40);
	}
776
	return 0;
777 778 779 780 781 782 783 784 785 786 787
}

static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
	struct cx24123_state *state = fe->demodulator_priv;

	int sync = cx24123_readreg(state, 0x14);
	int lock = cx24123_readreg(state, 0x20);

	*status = 0;
	if (lock & 0x01)
788 789
		*status |= FE_HAS_SIGNAL;
	if (sync & 0x02)
790
		*status |= FE_HAS_CARRIER;	/* Phase locked */
791 792
	if (sync & 0x04)
		*status |= FE_HAS_VITERBI;
793 794

	/* Reed-Solomon Status */
795
	if (sync & 0x08)
796
		*status |= FE_HAS_SYNC;
797
	if (sync & 0x80)
798
		*status |= FE_HAS_LOCK;		/*Full Sync */
799 800 801 802 803 804 805 806 807 808 809 810

	return 0;
}

/*
 * Configured to return the measurement of errors in blocks, because no UCBLOCKS value
 * is available, so this value doubles up to satisfy both measurements
 */
static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber)
{
	struct cx24123_state *state = fe->demodulator_priv;

Y
Yeasah Pell 已提交
811 812 813
	/* The true bit error rate is this value divided by
	   the window size (set as 256 * 255) */
	*ber = ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
814
		(cx24123_readreg(state, 0x1d) << 8 |
Y
Yeasah Pell 已提交
815
		 cx24123_readreg(state, 0x1e));
816

Y
Yeasah Pell 已提交
817
	dprintk("%s:  BER = %d\n",__FUNCTION__,*ber);
818 819 820 821 822 823 824

	return 0;
}

static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
{
	struct cx24123_state *state = fe->demodulator_priv;
825

826 827
	*signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */

828 829
	dprintk("%s:  Signal strength = %d\n",__FUNCTION__,*signal_strength);

830 831 832 833 834 835 836
	return 0;
}

static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr)
{
	struct cx24123_state *state = fe->demodulator_priv;

Y
Yeasah Pell 已提交
837 838 839 840
	/* Inverted raw Es/N0 count, totally bogus but better than the
	   BER threshold. */
	*snr = 65535 - (((u16)cx24123_readreg(state, 0x18) << 8) |
			 (u16)cx24123_readreg(state, 0x19));
841

Y
Yeasah Pell 已提交
842
	dprintk("%s:  read S/N index = %d\n",__FUNCTION__,*snr);
843

844 845 846 847 848 849 850
	return 0;
}

static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;

851 852
	dprintk("%s:  set_frontend\n",__FUNCTION__);

853 854 855 856
	if (state->config->set_ts_params)
		state->config->set_ts_params(fe, 0);

	state->currentfreq=p->frequency;
857
	state->currentsymbolrate = p->u.qpsk.symbol_rate;
858 859 860 861 862 863 864

	cx24123_set_inversion(state, p->inversion);
	cx24123_set_fec(state, p->u.qpsk.fec_inner);
	cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate);
	cx24123_pll_tune(fe, p);

	/* Enable automatic aquisition and reset cycle */
865
	cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
866 867 868 869 870 871 872 873 874 875
	cx24123_writereg(state, 0x00, 0x10);
	cx24123_writereg(state, 0x00, 0);

	return 0;
}

static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;

876 877
	dprintk("%s:  get_frontend\n",__FUNCTION__);

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	if (cx24123_get_inversion(state, &p->inversion) != 0) {
		printk("%s: Failed to get inversion status\n",__FUNCTION__);
		return -EREMOTEIO;
	}
	if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) {
		printk("%s: Failed to get fec status\n",__FUNCTION__);
		return -EREMOTEIO;
	}
	p->frequency = state->currentfreq;
	p->u.qpsk.symbol_rate = state->currentsymbolrate;

	return 0;
}

static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
	struct cx24123_state *state = fe->demodulator_priv;
	u8 val;

897 898
	/* wait for diseqc queue ready */
	cx24123_wait_for_diseqc(state);
899

900
	val = cx24123_readreg(state, 0x29) & ~0x40;
901

902 903 904 905 906 907 908 909 910 911
	switch (tone) {
	case SEC_TONE_ON:
		dprintk("%s: setting tone on\n", __FUNCTION__);
		return cx24123_writereg(state, 0x29, val | 0x10);
	case SEC_TONE_OFF:
		dprintk("%s: setting tone off\n",__FUNCTION__);
		return cx24123_writereg(state, 0x29, val & 0xef);
	default:
		printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
		return -EINVAL;
912
	}
913 914

	return 0;
915 916
}

Y
Yeasah Pell 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
static int cx24123_tune(struct dvb_frontend* fe,
			struct dvb_frontend_parameters* params,
			unsigned int mode_flags,
			int *delay,
			fe_status_t *status)
{
	int retval = 0;

	if (params != NULL)
		retval = cx24123_set_frontend(fe, params);

	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
		cx24123_read_status(fe, status);
	*delay = HZ/10;

	return retval;
}

static int cx24123_get_algo(struct dvb_frontend *fe)
{
	return 1; //FE_ALGO_HW
}

940 941 942 943 944 945 946 947 948
static void cx24123_release(struct dvb_frontend* fe)
{
	struct cx24123_state* state = fe->demodulator_priv;
	dprintk("%s\n",__FUNCTION__);
	kfree(state);
}

static struct dvb_frontend_ops cx24123_ops;

949 950
struct dvb_frontend* cx24123_attach(const struct cx24123_config* config,
				    struct i2c_adapter* i2c)
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
{
	struct cx24123_state* state = NULL;
	int ret;

	dprintk("%s\n",__FUNCTION__);

	/* allocate memory for the internal state */
	state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL);
	if (state == NULL) {
		printk("Unable to kmalloc\n");
		goto error;
	}

	/* setup the state */
	state->config = config;
	state->i2c = i2c;
	state->VCAarg = 0;
	state->VGAarg = 0;
	state->bandselectarg = 0;
	state->pllarg = 0;
	state->currentfreq = 0;
	state->currentsymbolrate = 0;

	/* check if the demod is there */
	ret = cx24123_readreg(state, 0x00);
	if ((ret != 0xd1) && (ret != 0xe1)) {
		printk("Version != d1 or e1\n");
		goto error;
	}

	/* create dvb_frontend */
982
	memcpy(&state->frontend.ops, &cx24123_ops, sizeof(struct dvb_frontend_ops));
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	state->frontend.demodulator_priv = state;
	return &state->frontend;

error:
	kfree(state);

	return NULL;
}

static struct dvb_frontend_ops cx24123_ops = {

	.info = {
		.name = "Conexant CX24123/CX24109",
		.type = FE_QPSK,
		.frequency_min = 950000,
		.frequency_max = 2150000,
		.frequency_stepsize = 1011, /* kHz for QPSK frontends */
1000
		.frequency_tolerance = 5000,
1001 1002 1003 1004
		.symbol_rate_min = 1000000,
		.symbol_rate_max = 45000000,
		.caps = FE_CAN_INVERSION_AUTO |
			FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1005 1006
			FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
			FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
			FE_CAN_QPSK | FE_CAN_RECOVER
	},

	.release = cx24123_release,

	.init = cx24123_initfe,
	.set_frontend = cx24123_set_frontend,
	.get_frontend = cx24123_get_frontend,
	.read_status = cx24123_read_status,
	.read_ber = cx24123_read_ber,
	.read_signal_strength = cx24123_read_signal_strength,
	.read_snr = cx24123_read_snr,
	.diseqc_send_master_cmd = cx24123_send_diseqc_msg,
1020
	.diseqc_send_burst = cx24123_diseqc_send_burst,
1021 1022
	.set_tone = cx24123_set_tone,
	.set_voltage = cx24123_set_voltage,
Y
Yeasah Pell 已提交
1023 1024
	.tune = cx24123_tune,
	.get_frontend_algo = cx24123_get_algo,
1025 1026 1027
};

module_param(debug, int, 0644);
1028
MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
1029

1030 1031 1032
module_param(force_band, int, 0644);
MODULE_PARM_DESC(force_band, "Force a specific band select (1-9, default:off).");

1033 1034 1035 1036 1037
MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");

EXPORT_SYMBOL(cx24123_attach);