cx24123.c 29.3 KB
Newer Older
1 2 3 4 5
/*
    Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver

    Copyright (C) 2005 Steven Toth <stoth@hauppauge.com>

6 7
    Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>

#include "dvb_frontend.h"
#include "cx24123.h"

32 33
#define XTAL 10111000

34
static int force_band;
35 36 37 38 39 40
static int debug;
#define dprintk(args...) \
	do { \
		if (debug) printk (KERN_DEBUG "cx24123: " args); \
	} while (0)

41 42
struct cx24123_state
{
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
	struct i2c_adapter* i2c;
	struct dvb_frontend_ops ops;
	const struct cx24123_config* config;

	struct dvb_frontend frontend;

	u32 lastber;
	u16 snr;
	u8  lnbreg;

	/* Some PLL specifics for tuning */
	u32 VCAarg;
	u32 VGAarg;
	u32 bandselectarg;
	u32 pllarg;
58
	u32 FILTune;
59 60 61 62 63 64

	/* The Demod/Tuner can't easily provide these, we cache them */
	u32 currentfreq;
	u32 currentsymbolrate;
};

65 66 67 68 69 70 71
/* Various tuner defaults need to be established for a given symbol rate Sps */
static struct
{
	u32 symbolrate_low;
	u32 symbolrate_high;
	u32 VCAprogdata;
	u32 VGAprogdata;
72
	u32 FILTune;
73 74 75 76 77
} cx24123_AGC_vals[] =
{
	{
		.symbolrate_low		= 1000000,
		.symbolrate_high	= 4999999,
78 79
		/* the specs recommend other values for VGA offsets,
		   but tests show they are wrong */
80 81 82
		.VGAprogdata		= (1 << 19) | (0x180 << 9) | 0x1e0,
		.VCAprogdata		= (2 << 19) | (0x07 << 9) | 0x07,
		.FILTune		= 0x27f /* 0.41 V */
83 84 85 86
	},
	{
		.symbolrate_low		=  5000000,
		.symbolrate_high	= 14999999,
87 88
		.VGAprogdata		= (1 << 19) | (0x180 << 9) | 0x1e0,
		.VCAprogdata		= (2 << 19) | (0x07 << 9) | 0x1f,
89
		.FILTune		= 0x317 /* 0.90 V */
90 91 92 93
	},
	{
		.symbolrate_low		= 15000000,
		.symbolrate_high	= 45000000,
94 95 96
		.VGAprogdata		= (1 << 19) | (0x100 << 9) | 0x180,
		.VCAprogdata		= (2 << 19) | (0x07 << 9) | 0x3f,
		.FILTune		= 0x145 /* 2.70 V */
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	},
};

/*
 * Various tuner defaults need to be established for a given frequency kHz.
 * fixme: The bounds on the bands do not match the doc in real life.
 * fixme: Some of them have been moved, other might need adjustment.
 */
static struct
{
	u32 freq_low;
	u32 freq_high;
	u32 VCOdivider;
	u32 progdata;
} cx24123_bandselect_vals[] =
{
113
	/* band 1 */
114 115 116 117
	{
		.freq_low	= 950000,
		.freq_high	= 1074999,
		.VCOdivider	= 4,
118
		.progdata	= (0 << 19) | (0 << 9) | 0x40,
119
	},
120 121

	/* band 2 */
122 123
	{
		.freq_low	= 1075000,
124 125 126
		.freq_high	= 1177999,
		.VCOdivider	= 4,
		.progdata	= (0 << 19) | (0 << 9) | 0x80,
127
	},
128 129

	/* band 3 */
130
	{
131 132
		.freq_low	= 1178000,
		.freq_high	= 1295999,
133
		.VCOdivider	= 2,
134
		.progdata	= (0 << 19) | (1 << 9) | 0x01,
135
	},
136 137

	/* band 4 */
138
	{
139 140
		.freq_low	= 1296000,
		.freq_high	= 1431999,
141
		.VCOdivider	= 2,
142
		.progdata	= (0 << 19) | (1 << 9) | 0x02,
143
	},
144 145

	/* band 5 */
146
	{
147 148
		.freq_low	= 1432000,
		.freq_high	= 1575999,
149
		.VCOdivider	= 2,
150
		.progdata	= (0 << 19) | (1 << 9) | 0x04,
151
	},
152 153

	/* band 6 */
154
	{
155
		.freq_low	= 1576000,
156 157
		.freq_high	= 1717999,
		.VCOdivider	= 2,
158
		.progdata	= (0 << 19) | (1 << 9) | 0x08,
159
	},
160 161

	/* band 7 */
162 163 164 165
	{
		.freq_low	= 1718000,
		.freq_high	= 1855999,
		.VCOdivider	= 2,
166
		.progdata	= (0 << 19) | (1 << 9) | 0x10,
167
	},
168 169

	/* band 8 */
170 171 172 173
	{
		.freq_low	= 1856000,
		.freq_high	= 2035999,
		.VCOdivider	= 2,
174
		.progdata	= (0 << 19) | (1 << 9) | 0x20,
175
	},
176 177

	/* band 9 */
178 179
	{
		.freq_low	= 2036000,
180
		.freq_high	= 2150000,
181
		.VCOdivider	= 2,
182
		.progdata	= (0 << 19) | (1 << 9) | 0x40,
183 184 185
	},
};

186 187 188 189 190 191 192
static struct {
	u8 reg;
	u8 data;
} cx24123_regdata[] =
{
	{0x00, 0x03}, /* Reset system */
	{0x00, 0x00}, /* Clear reset */
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	{0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */
	{0x04, 0x10}, /* MPEG */
	{0x05, 0x04}, /* MPEG */
	{0x06, 0x31}, /* MPEG (default) */
	{0x0b, 0x00}, /* Freq search start point (default) */
	{0x0c, 0x00}, /* Demodulator sample gain (default) */
	{0x0d, 0x02}, /* Frequency search range = Fsymbol / 4 (default) */
	{0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */
	{0x0f, 0xfe}, /* FEC search mask (all supported codes) */
	{0x10, 0x01}, /* Default search inversion, no repeat (default) */
	{0x16, 0x00}, /* Enable reading of frequency */
	{0x17, 0x01}, /* Enable EsNO Ready Counter */
	{0x1c, 0x80}, /* Enable error counter */
	{0x20, 0x00}, /* Tuner burst clock rate = 500KHz */
	{0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */
	{0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */
	{0x29, 0x00}, /* DiSEqC LNB_DC off */
	{0x2a, 0xb0}, /* DiSEqC Parameters (default) */
	{0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */
	{0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */
213 214 215 216 217
	{0x2d, 0x00},
	{0x2e, 0x00},
	{0x2f, 0x00},
	{0x30, 0x00},
	{0x31, 0x00},
218 219
	{0x32, 0x8c}, /* DiSEqC Parameters (default) */
	{0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */
220
	{0x34, 0x00},
221 222 223 224 225 226 227 228 229 230
	{0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */
	{0x36, 0x02}, /* DiSEqC Parameters (default) */
	{0x37, 0x3a}, /* DiSEqC Parameters (default) */
	{0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */
	{0x44, 0x00}, /* Constellation (default) */
	{0x45, 0x00}, /* Symbol count (default) */
	{0x46, 0x0d}, /* Symbol rate estimator on (default) */
	{0x56, 0x41}, /* Various (default) */
	{0x57, 0xff}, /* Error Counter Window (default) */
	{0x67, 0x83}, /* Non-DCII symbol clock */
231 232 233 234 235 236 237 238
};

static int cx24123_writereg(struct cx24123_state* state, int reg, int data)
{
	u8 buf[] = { reg, data };
	struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
	int err;

239 240 241 242
	if (debug>1)
		printk("cx24123: %s:  write reg 0x%02x, value 0x%02x\n",
						__FUNCTION__,reg, data);

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
		printk("%s: writereg error(err == %i, reg == 0x%02x,"
			 " data == 0x%02x)\n", __FUNCTION__, err, reg, data);
		return -EREMOTEIO;
	}

	return 0;
}

static int cx24123_writelnbreg(struct cx24123_state* state, int reg, int data)
{
	u8 buf[] = { reg, data };
	/* fixme: put the intersil addr int the config */
	struct i2c_msg msg = { .addr = 0x08, .flags = 0, .buf = buf, .len = 2 };
	int err;

259 260 261 262
	if (debug>1)
		printk("cx24123: %s:  writeln addr=0x08, reg 0x%02x, value 0x%02x\n",
						__FUNCTION__,reg, data);

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
		printk("%s: writelnbreg error (err == %i, reg == 0x%02x,"
			 " data == 0x%02x)\n", __FUNCTION__, err, reg, data);
		return -EREMOTEIO;
	}

	/* cache the write, no way to read back */
	state->lnbreg = data;

	return 0;
}

static int cx24123_readreg(struct cx24123_state* state, u8 reg)
{
	int ret;
	u8 b0[] = { reg };
	u8 b1[] = { 0 };
	struct i2c_msg msg[] = {
		{ .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
		{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 }
	};

	ret = i2c_transfer(state->i2c, msg, 2);

	if (ret != 2) {
		printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret);
		return ret;
	}

292 293 294
	if (debug>1)
		printk("cx24123: read reg 0x%02x, value 0x%02x\n",reg, ret);

295 296 297 298 299 300 301 302 303 304
	return b1[0];
}

static int cx24123_readlnbreg(struct cx24123_state* state, u8 reg)
{
	return state->lnbreg;
}

static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion)
{
305 306 307
	u8 nom_reg = cx24123_readreg(state, 0x0e);
	u8 auto_reg = cx24123_readreg(state, 0x10);

308 309
	switch (inversion) {
	case INVERSION_OFF:
310
		dprintk("%s:  inversion off\n",__FUNCTION__);
311 312
		cx24123_writereg(state, 0x0e, nom_reg & ~0x80);
		cx24123_writereg(state, 0x10, auto_reg | 0x80);
313 314
		break;
	case INVERSION_ON:
315
		dprintk("%s:  inversion on\n",__FUNCTION__);
316 317
		cx24123_writereg(state, 0x0e, nom_reg | 0x80);
		cx24123_writereg(state, 0x10, auto_reg | 0x80);
318 319
		break;
	case INVERSION_AUTO:
320
		dprintk("%s:  inversion auto\n",__FUNCTION__);
321
		cx24123_writereg(state, 0x10, auto_reg & ~0x80);
322 323 324 325 326 327 328 329 330 331 332 333 334 335
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion)
{
	u8 val;

	val = cx24123_readreg(state, 0x1b) >> 7;

336 337
	if (val == 0) {
		dprintk("%s:  read inversion off\n",__FUNCTION__);
338
		*inversion = INVERSION_OFF;
339 340
	} else {
		dprintk("%s:  read inversion on\n",__FUNCTION__);
341
		*inversion = INVERSION_ON;
342
	}
343 344 345 346 347 348

	return 0;
}

static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec)
{
349 350
	u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07;

351
	if ( (fec < FEC_NONE) || (fec > FEC_AUTO) )
352
		fec = FEC_AUTO;
353 354 355

	switch (fec) {
	case FEC_1_2:
356
		dprintk("%s:  set FEC to 1/2\n",__FUNCTION__);
357 358 359
		cx24123_writereg(state, 0x0e, nom_reg | 0x01);
		cx24123_writereg(state, 0x0f, 0x02);
		break;
360
	case FEC_2_3:
361
		dprintk("%s:  set FEC to 2/3\n",__FUNCTION__);
362 363 364
		cx24123_writereg(state, 0x0e, nom_reg | 0x02);
		cx24123_writereg(state, 0x0f, 0x04);
		break;
365
	case FEC_3_4:
366
		dprintk("%s:  set FEC to 3/4\n",__FUNCTION__);
367 368 369 370
		cx24123_writereg(state, 0x0e, nom_reg | 0x03);
		cx24123_writereg(state, 0x0f, 0x08);
		break;
	case FEC_4_5:
371
		dprintk("%s:  set FEC to 4/5\n",__FUNCTION__);
372 373 374 375
		cx24123_writereg(state, 0x0e, nom_reg | 0x04);
		cx24123_writereg(state, 0x0f, 0x10);
		break;
	case FEC_5_6:
376
		dprintk("%s:  set FEC to 5/6\n",__FUNCTION__);
377 378 379 380 381 382 383 384 385 386 387 388 389
		cx24123_writereg(state, 0x0e, nom_reg | 0x05);
		cx24123_writereg(state, 0x0f, 0x20);
		break;
	case FEC_6_7:
		dprintk("%s:  set FEC to 6/7\n",__FUNCTION__);
		cx24123_writereg(state, 0x0e, nom_reg | 0x06);
		cx24123_writereg(state, 0x0f, 0x40);
		break;
	case FEC_7_8:
		dprintk("%s:  set FEC to 7/8\n",__FUNCTION__);
		cx24123_writereg(state, 0x0e, nom_reg | 0x07);
		cx24123_writereg(state, 0x0f, 0x80);
		break;
390
	case FEC_AUTO:
391
		dprintk("%s:  set FEC to auto\n",__FUNCTION__);
392 393
		cx24123_writereg(state, 0x0f, 0xfe);
		break;
394 395 396
	default:
		return -EOPNOTSUPP;
	}
397 398

	return 0;
399 400 401 402
}

static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec)
{
403
	int ret;
404

405 406 407
	ret = cx24123_readreg (state, 0x1b);
	if (ret < 0)
		return ret;
408 409 410
	ret = ret & 0x07;

	switch (ret) {
411
	case 1:
412 413
		*fec = FEC_1_2;
		break;
414
	case 2:
415 416
		*fec = FEC_2_3;
		break;
417
	case 3:
418 419
		*fec = FEC_3_4;
		break;
420
	case 4:
421 422
		*fec = FEC_4_5;
		break;
423
	case 5:
424 425
		*fec = FEC_5_6;
		break;
426 427 428
	case 6:
		*fec = FEC_6_7;
		break;
429
	case 7:
430 431
		*fec = FEC_7_8;
		break;
432
	default:
433 434
		/* this can happen when there's no lock */
		*fec = FEC_NONE;
435 436
	}

437
	return 0;
438 439
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/* Approximation of closest integer of log2(a/b). It actually gives the
   lowest integer i such that 2^i >= round(a/b) */
static u32 cx24123_int_log2(u32 a, u32 b)
{
	u32 exp, nearest = 0;
	u32 div = a / b;
	if(a % b >= b / 2) ++div;
	if(div < (1 << 31))
	{
		for(exp = 1; div > exp; nearest++)
			exp += exp;
	}
	return nearest;
}

455 456
static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate)
{
457
	u32 tmp, sample_rate, ratio, sample_gain;
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	u8 pll_mult;

	/*  check if symbol rate is within limits */
	if ((srate > state->ops.info.symbol_rate_max) ||
	    (srate < state->ops.info.symbol_rate_min))
		return -EOPNOTSUPP;;

	/* choose the sampling rate high enough for the required operation,
	   while optimizing the power consumed by the demodulator */
	if (srate < (XTAL*2)/2)
		pll_mult = 2;
	else if (srate < (XTAL*3)/2)
		pll_mult = 3;
	else if (srate < (XTAL*4)/2)
		pll_mult = 4;
	else if (srate < (XTAL*5)/2)
		pll_mult = 5;
	else if (srate < (XTAL*6)/2)
		pll_mult = 6;
	else if (srate < (XTAL*7)/2)
		pll_mult = 7;
	else if (srate < (XTAL*8)/2)
		pll_mult = 8;
	else
		pll_mult = 9;


	sample_rate = pll_mult * XTAL;
486

487 488
	/*
	    SYSSymbolRate[21:0] = (srate << 23) / sample_rate
489

490 491 492 493 494
	    We have to use 32 bit unsigned arithmetic without precision loss.
	    The maximum srate is 45000000 or 0x02AEA540. This number has
	    only 6 clear bits on top, hence we can shift it left only 6 bits
	    at a time. Borrowed from cx24110.c
	*/
495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	tmp = srate << 6;
	ratio = tmp / sample_rate;

	tmp = (tmp % sample_rate) << 6;
	ratio = (ratio << 6) + (tmp / sample_rate);

	tmp = (tmp % sample_rate) << 6;
	ratio = (ratio << 6) + (tmp / sample_rate);

	tmp = (tmp % sample_rate) << 5;
	ratio = (ratio << 5) + (tmp / sample_rate);


	cx24123_writereg(state, 0x01, pll_mult * 6);

	cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f );
	cx24123_writereg(state, 0x09, (ratio >>  8) & 0xff );
	cx24123_writereg(state, 0x0a, (ratio      ) & 0xff );

515 516 517 518 519 520
	/* also set the demodulator sample gain */
	sample_gain = cx24123_int_log2(sample_rate, srate);
	tmp = cx24123_readreg(state, 0x0c) & ~0xe0;
	cx24123_writereg(state, 0x0c, tmp | sample_gain << 5);

	dprintk("%s: srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", __FUNCTION__, srate, ratio, sample_rate, sample_gain);
521 522 523 524 525 526 527 528 529 530 531

	return 0;
}

/*
 * Based on the required frequency and symbolrate, the tuner AGC has to be configured
 * and the correct band selected. Calculate those values
 */
static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;
532 533
	u32 ndiv = 0, adiv = 0, vco_div = 0;
	int i = 0;
534
	int pump = 2;
535 536
	int band = 0;
	int num_bands = sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]);
537 538 539 540 541 542 543

	/* Defaults for low freq, low rate */
	state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
	state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
	state->bandselectarg = cx24123_bandselect_vals[0].progdata;
	vco_div = cx24123_bandselect_vals[0].VCOdivider;

544
	/* For the given symbol rate, determine the VCA, VGA and FILTUNE programming bits */
545
	for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++)
546 547
	{
		if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) &&
548
		    (cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) {
549 550
			state->VCAarg = cx24123_AGC_vals[i].VCAprogdata;
			state->VGAarg = cx24123_AGC_vals[i].VGAprogdata;
551
			state->FILTune = cx24123_AGC_vals[i].FILTune;
552 553 554
		}
	}

555 556
	/* determine the band to use */
	if(force_band < 1 || force_band > num_bands)
557
	{
558 559 560 561 562
		for (i = 0; i < num_bands; i++)
		{
			if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) &&
			    (cx24123_bandselect_vals[i].freq_high >= p->frequency) )
				band = i;
563 564
		}
	}
565 566 567 568 569 570 571 572 573 574 575
	else
		band = force_band - 1;

	state->bandselectarg = cx24123_bandselect_vals[band].progdata;
	vco_div = cx24123_bandselect_vals[band].VCOdivider;

	/* determine the charge pump current */
	if ( p->frequency < (cx24123_bandselect_vals[band].freq_low + cx24123_bandselect_vals[band].freq_high)/2 )
		pump = 0x01;
	else
		pump = 0x02;
576 577

	/* Determine the N/A dividers for the requested lband freq (in kHz). */
578 579 580
	/* Note: the reference divider R=10, frequency is in KHz, XTAL is in Hz */
	ndiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) / 32) & 0x1ff;
	adiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) % 32) & 0x1f;
581 582

	if (adiv == 0)
583
		ndiv++;
584

585 586
	/* control bits 11, refdiv 11, charge pump polarity 1, charge pump current, ndiv, adiv */
	state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (pump << 14) | (ndiv << 5) | adiv;
587 588 589 590 591 592 593 594 595 596 597

	return 0;
}

/*
 * Tuner data is 21 bits long, must be left-aligned in data.
 * Tuner cx24109 is written through a dedicated 3wire interface on the demod chip.
 */
static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data)
{
	struct cx24123_state *state = fe->demodulator_priv;
598
	unsigned long timeout;
599

600 601
	dprintk("%s:  pll writereg called, data=0x%08x\n",__FUNCTION__,data);

602 603 604 605 606 607 608
	/* align the 21 bytes into to bit23 boundary */
	data = data << 3;

	/* Reset the demod pll word length to 0x15 bits */
	cx24123_writereg(state, 0x21, 0x15);

	/* write the msb 8 bits, wait for the send to be completed */
609
	timeout = jiffies + msecs_to_jiffies(40);
610
	cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
611 612 613
	while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
		if (time_after(jiffies, timeout)) {
			printk("%s:  demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
614 615
			return -EREMOTEIO;
		}
616
		msleep(10);
617 618 619
	}

	/* send another 8 bytes, wait for the send to be completed */
620
	timeout = jiffies + msecs_to_jiffies(40);
621
	cx24123_writereg(state, 0x22, (data>>8) & 0xff );
622 623 624
	while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
		if (time_after(jiffies, timeout)) {
			printk("%s:  demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
625 626
			return -EREMOTEIO;
		}
627
		msleep(10);
628 629 630
	}

	/* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */
631
	timeout = jiffies + msecs_to_jiffies(40);
632
	cx24123_writereg(state, 0x22, (data) & 0xff );
633 634 635
	while ((cx24123_readreg(state, 0x20) & 0x80)) {
		if (time_after(jiffies, timeout)) {
			printk("%s:  demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
636 637
			return -EREMOTEIO;
		}
638
		msleep(10);
639 640 641 642 643 644 645 646 647 648 649 650
	}

	/* Trigger the demod to configure the tuner */
	cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
	cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);

	return 0;
}

static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;
651 652 653
	u8 val;

	dprintk("frequency=%i\n", p->frequency);
654

655
	if (cx24123_pll_calculate(fe, p) != 0) {
656 657 658 659 660 661 662 663 664 665 666 667
		printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__);
		return -EINVAL;
	}

	/* Write the new VCO/VGA */
	cx24123_pll_writereg(fe, p, state->VCAarg);
	cx24123_pll_writereg(fe, p, state->VGAarg);

	/* Write the new bandselect and pll args */
	cx24123_pll_writereg(fe, p, state->bandselectarg);
	cx24123_pll_writereg(fe, p, state->pllarg);

668 669 670 671 672
	/* set the FILTUNE voltage */
	val = cx24123_readreg(state, 0x28) & ~0x3;
	cx24123_writereg(state, 0x27, state->FILTune >> 2);
	cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));

673 674 675
	dprintk("%s:  pll tune VCA=%d, band=%d, pll=%d\n",__FUNCTION__,state->VCAarg,
			state->bandselectarg,state->pllarg);

676 677 678 679 680 681 682 683
	return 0;
}

static int cx24123_initfe(struct dvb_frontend* fe)
{
	struct cx24123_state *state = fe->demodulator_priv;
	int i;

684 685
	dprintk("%s:  init frontend\n",__FUNCTION__);

686
	/* Configure the demod to a good set of defaults */
687
	for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++)
688 689 690
		cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data);

	/* Configure the LNB for 14V */
691 692
	if (state->config->use_isl6421)
		cx24123_writelnbreg(state, 0x0, 0x2a);
693 694 695 696 697 698 699 700 701

	return 0;
}

static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
{
	struct cx24123_state *state = fe->demodulator_priv;
	u8 val;

702
	switch (state->config->use_isl6421) {
703

704 705 706 707 708 709
	case 1:

		val = cx24123_readlnbreg(state, 0x0);

		switch (voltage) {
		case SEC_VOLTAGE_13:
710
			dprintk("%s:  isl6421 voltage = 13V\n",__FUNCTION__);
711 712
			return cx24123_writelnbreg(state, 0x0, val & 0x32); /* V 13v */
		case SEC_VOLTAGE_18:
713
			dprintk("%s:  isl6421 voltage = 18V\n",__FUNCTION__);
714 715
			return cx24123_writelnbreg(state, 0x0, val | 0x04); /* H 18v */
		case SEC_VOLTAGE_OFF:
716
			dprintk("%s:  isl5421 voltage off\n",__FUNCTION__);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
			return cx24123_writelnbreg(state, 0x0, val & 0x30);
		default:
			return -EINVAL;
		};

	case 0:

		val = cx24123_readreg(state, 0x29);

		switch (voltage) {
		case SEC_VOLTAGE_13:
			dprintk("%s: setting voltage 13V\n", __FUNCTION__);
			if (state->config->enable_lnb_voltage)
				state->config->enable_lnb_voltage(fe, 1);
			return cx24123_writereg(state, 0x29, val | 0x80);
		case SEC_VOLTAGE_18:
			dprintk("%s: setting voltage 18V\n", __FUNCTION__);
			if (state->config->enable_lnb_voltage)
				state->config->enable_lnb_voltage(fe, 1);
			return cx24123_writereg(state, 0x29, val & 0x7f);
		case SEC_VOLTAGE_OFF:
			dprintk("%s: setting voltage off\n", __FUNCTION__);
			if (state->config->enable_lnb_voltage)
				state->config->enable_lnb_voltage(fe, 0);
			return 0;
		default:
			return -EINVAL;
		};
	}

	return 0;
748 749
}

750 751 752 753 754 755 756 757 758 759 760 761 762
/* wait for diseqc queue to become ready (or timeout) */
static void cx24123_wait_for_diseqc(struct cx24123_state *state)
{
	unsigned long timeout = jiffies + msecs_to_jiffies(200);
	while (!(cx24123_readreg(state, 0x29) & 0x40)) {
		if(time_after(jiffies, timeout)) {
			printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
			break;
		}
		msleep(10);
	}
}

763
static int cx24123_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
764
{
765 766 767 768
	struct cx24123_state *state = fe->demodulator_priv;
	int i, val;

	dprintk("%s:\n",__FUNCTION__);
769

770
	/* check if continuous tone has been stopped */
771 772 773 774 775 776 777 778 779 780 781
	if (state->config->use_isl6421)
		val = cx24123_readlnbreg(state, 0x00) & 0x10;
	else
		val = cx24123_readreg(state, 0x29) & 0x10;


	if (val) {
		printk("%s: ERROR: attempt to send diseqc command before tone is off\n", __FUNCTION__);
		return -ENOTSUPP;
	}

782 783 784
	/* wait for diseqc queue ready */
	cx24123_wait_for_diseqc(state);

785 786 787 788 789 790 791 792 793
	/* select tone mode */
	cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xf8);

	for (i = 0; i < cmd->msg_len; i++)
		cx24123_writereg(state, 0x2C + i, cmd->msg[i]);

	val = cx24123_readreg(state, 0x29);
	cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));

794 795
	/* wait for diseqc message to finish sending */
	cx24123_wait_for_diseqc(state);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

	return 0;
}

static int cx24123_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
{
	struct cx24123_state *state = fe->demodulator_priv;
	int val;

	dprintk("%s:\n", __FUNCTION__);

	/* check if continuous tone has been stoped */
	if (state->config->use_isl6421)
		val = cx24123_readlnbreg(state, 0x00) & 0x10;
	else
		val = cx24123_readreg(state, 0x29) & 0x10;


	if (val) {
		printk("%s: ERROR: attempt to send diseqc command before tone is off\n", __FUNCTION__);
		return -ENOTSUPP;
	}

819 820
	cx24123_wait_for_diseqc(state);

821 822 823 824 825 826 827 828 829 830 831 832 833
	/* select tone mode */
	val = cx24123_readreg(state, 0x2a) & 0xf8;
	cx24123_writereg(state, 0x2a, val | 0x04);

	val = cx24123_readreg(state, 0x29);

	if (burst == SEC_MINI_A)
		cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
	else if (burst == SEC_MINI_B)
		cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
	else
		return -EINVAL;

834
	cx24123_wait_for_diseqc(state);
835 836

	return 0;
837 838 839 840 841 842 843 844 845 846 847
}

static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
	struct cx24123_state *state = fe->demodulator_priv;

	int sync = cx24123_readreg(state, 0x14);
	int lock = cx24123_readreg(state, 0x20);

	*status = 0;
	if (lock & 0x01)
848 849 850
		*status |= FE_HAS_SIGNAL;
	if (sync & 0x02)
		*status |= FE_HAS_CARRIER;
851 852 853
	if (sync & 0x04)
		*status |= FE_HAS_VITERBI;
	if (sync & 0x08)
854
		*status |= FE_HAS_SYNC;
855
	if (sync & 0x80)
856
		*status |= FE_HAS_LOCK;
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888

	return 0;
}

/*
 * Configured to return the measurement of errors in blocks, because no UCBLOCKS value
 * is available, so this value doubles up to satisfy both measurements
 */
static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber)
{
	struct cx24123_state *state = fe->demodulator_priv;

	state->lastber =
		((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
		(cx24123_readreg(state, 0x1d) << 8 |
		cx24123_readreg(state, 0x1e));

	/* Do the signal quality processing here, it's derived from the BER. */
	/* Scale the BER from a 24bit to a SNR 16 bit where higher = better */
	if (state->lastber < 5000)
		state->snr = 655*100;
	else if ( (state->lastber >=   5000) && (state->lastber <  55000) )
		state->snr = 655*90;
	else if ( (state->lastber >=  55000) && (state->lastber < 150000) )
		state->snr = 655*80;
	else if ( (state->lastber >= 150000) && (state->lastber < 250000) )
		state->snr = 655*70;
	else if ( (state->lastber >= 250000) && (state->lastber < 450000) )
		state->snr = 655*65;
	else
		state->snr = 0;

889 890
	dprintk("%s:  BER = %d, S/N index = %d\n",__FUNCTION__,state->lastber, state->snr);

891 892 893 894 895 896 897 898 899 900
	*ber = state->lastber;

	return 0;
}

static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
{
	struct cx24123_state *state = fe->demodulator_priv;
	*signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */

901 902
	dprintk("%s:  Signal strength = %d\n",__FUNCTION__,*signal_strength);

903 904 905 906 907 908 909 910
	return 0;
}

static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr)
{
	struct cx24123_state *state = fe->demodulator_priv;
	*snr = state->snr;

911 912
	dprintk("%s:  read S/N index = %d\n",__FUNCTION__,*snr);

913 914 915 916 917 918 919 920
	return 0;
}

static int cx24123_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
	struct cx24123_state *state = fe->demodulator_priv;
	*ucblocks = state->lastber;

921 922
	dprintk("%s:  ucblocks (ber) = %d\n",__FUNCTION__,*ucblocks);

923 924 925 926 927 928 929
	return 0;
}

static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;

930 931
	dprintk("%s:  set_frontend\n",__FUNCTION__);

932 933 934 935
	if (state->config->set_ts_params)
		state->config->set_ts_params(fe, 0);

	state->currentfreq=p->frequency;
936
	state->currentsymbolrate = p->u.qpsk.symbol_rate;
937 938 939 940 941 942 943

	cx24123_set_inversion(state, p->inversion);
	cx24123_set_fec(state, p->u.qpsk.fec_inner);
	cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate);
	cx24123_pll_tune(fe, p);

	/* Enable automatic aquisition and reset cycle */
944
	cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
945 946 947 948 949 950 951 952 953 954
	cx24123_writereg(state, 0x00, 0x10);
	cx24123_writereg(state, 0x00, 0);

	return 0;
}

static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
{
	struct cx24123_state *state = fe->demodulator_priv;

955 956
	dprintk("%s:  get_frontend\n",__FUNCTION__);

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	if (cx24123_get_inversion(state, &p->inversion) != 0) {
		printk("%s: Failed to get inversion status\n",__FUNCTION__);
		return -EREMOTEIO;
	}
	if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) {
		printk("%s: Failed to get fec status\n",__FUNCTION__);
		return -EREMOTEIO;
	}
	p->frequency = state->currentfreq;
	p->u.qpsk.symbol_rate = state->currentsymbolrate;

	return 0;
}

static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
	struct cx24123_state *state = fe->demodulator_priv;
	u8 val;

976 977 978 979
	switch (state->config->use_isl6421) {
	case 1:

		val = cx24123_readlnbreg(state, 0x0);
980

981 982
		switch (tone) {
		case SEC_TONE_ON:
983
			dprintk("%s:  isl6421 sec tone on\n",__FUNCTION__);
984 985
			return cx24123_writelnbreg(state, 0x0, val | 0x10);
		case SEC_TONE_OFF:
986
			dprintk("%s:  isl6421 sec tone off\n",__FUNCTION__);
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
			return cx24123_writelnbreg(state, 0x0, val & 0x2f);
		default:
			printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
			return -EINVAL;
		}

	case 0:

		val = cx24123_readreg(state, 0x29);

		switch (tone) {
		case SEC_TONE_ON:
			dprintk("%s: setting tone on\n", __FUNCTION__);
			return cx24123_writereg(state, 0x29, val | 0x10);
		case SEC_TONE_OFF:
			dprintk("%s: setting tone off\n",__FUNCTION__);
			return cx24123_writereg(state, 0x29, val & 0xef);
		default:
			printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
			return -EINVAL;
		}
1008
	}
1009 1010

	return 0;
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
}

static void cx24123_release(struct dvb_frontend* fe)
{
	struct cx24123_state* state = fe->demodulator_priv;
	dprintk("%s\n",__FUNCTION__);
	kfree(state);
}

static struct dvb_frontend_ops cx24123_ops;

1022 1023
struct dvb_frontend* cx24123_attach(const struct cx24123_config* config,
				    struct i2c_adapter* i2c)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
{
	struct cx24123_state* state = NULL;
	int ret;

	dprintk("%s\n",__FUNCTION__);

	/* allocate memory for the internal state */
	state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL);
	if (state == NULL) {
		printk("Unable to kmalloc\n");
		goto error;
	}

	/* setup the state */
	state->config = config;
	state->i2c = i2c;
	memcpy(&state->ops, &cx24123_ops, sizeof(struct dvb_frontend_ops));
	state->lastber = 0;
	state->snr = 0;
	state->lnbreg = 0;
	state->VCAarg = 0;
	state->VGAarg = 0;
	state->bandselectarg = 0;
	state->pllarg = 0;
	state->currentfreq = 0;
	state->currentsymbolrate = 0;

	/* check if the demod is there */
	ret = cx24123_readreg(state, 0x00);
	if ((ret != 0xd1) && (ret != 0xe1)) {
		printk("Version != d1 or e1\n");
		goto error;
	}

	/* create dvb_frontend */
	state->frontend.ops = &state->ops;
	state->frontend.demodulator_priv = state;
	return &state->frontend;

error:
	kfree(state);

	return NULL;
}

static struct dvb_frontend_ops cx24123_ops = {

	.info = {
		.name = "Conexant CX24123/CX24109",
		.type = FE_QPSK,
		.frequency_min = 950000,
		.frequency_max = 2150000,
		.frequency_stepsize = 1011, /* kHz for QPSK frontends */
1077
		.frequency_tolerance = 5000,
1078 1079 1080 1081
		.symbol_rate_min = 1000000,
		.symbol_rate_max = 45000000,
		.caps = FE_CAN_INVERSION_AUTO |
			FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1082 1083
			FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
			FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			FE_CAN_QPSK | FE_CAN_RECOVER
	},

	.release = cx24123_release,

	.init = cx24123_initfe,
	.set_frontend = cx24123_set_frontend,
	.get_frontend = cx24123_get_frontend,
	.read_status = cx24123_read_status,
	.read_ber = cx24123_read_ber,
	.read_signal_strength = cx24123_read_signal_strength,
	.read_snr = cx24123_read_snr,
	.read_ucblocks = cx24123_read_ucblocks,
	.diseqc_send_master_cmd = cx24123_send_diseqc_msg,
1098
	.diseqc_send_burst = cx24123_diseqc_send_burst,
1099 1100 1101 1102 1103
	.set_tone = cx24123_set_tone,
	.set_voltage = cx24123_set_voltage,
};

module_param(debug, int, 0644);
1104
MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
1105

1106 1107 1108
module_param(force_band, int, 0644);
MODULE_PARM_DESC(force_band, "Force a specific band select (1-9, default:off).");

1109 1110 1111 1112 1113
MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");

EXPORT_SYMBOL(cx24123_attach);