pcc-cpufreq.c 15.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 *  pcc-cpufreq.c - Processor Clocking Control firmware cpufreq interface
 *
 *  Copyright (C) 2009 Red Hat, Matthew Garrett <mjg@redhat.com>
 *  Copyright (C) 2009 Hewlett-Packard Development Company, L.P.
 *	Nagananda Chumbalkar <nagananda.chumbalkar@hp.com>
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or NON
 *  INFRINGEMENT. See the GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/sched.h>
#include <linux/cpufreq.h>
#include <linux/compiler.h>
33
#include <linux/slab.h>
34 35 36 37 38 39 40 41

#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/uaccess.h>

#include <acpi/processor.h>

42
#define PCC_VERSION	"1.10.00"
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#define POLL_LOOPS 	300

#define CMD_COMPLETE 	0x1
#define CMD_GET_FREQ 	0x0
#define CMD_SET_FREQ 	0x1

#define BUF_SZ		4

struct pcc_register_resource {
	u8 descriptor;
	u16 length;
	u8 space_id;
	u8 bit_width;
	u8 bit_offset;
	u8 access_size;
	u64 address;
} __attribute__ ((packed));

struct pcc_memory_resource {
	u8 descriptor;
	u16 length;
	u8 space_id;
	u8 resource_usage;
	u8 type_specific;
	u64 granularity;
	u64 minimum;
	u64 maximum;
	u64 translation_offset;
	u64 address_length;
} __attribute__ ((packed));

static struct cpufreq_driver pcc_cpufreq_driver;

struct pcc_header {
	u32 signature;
	u16 length;
	u8 major;
	u8 minor;
	u32 features;
	u16 command;
	u16 status;
	u32 latency;
	u32 minimum_time;
	u32 maximum_time;
	u32 nominal;
	u32 throttled_frequency;
	u32 minimum_frequency;
};

static void __iomem *pcch_virt_addr;
static struct pcc_header __iomem *pcch_hdr;

static DEFINE_SPINLOCK(pcc_lock);

static struct acpi_generic_address doorbell;

static u64 doorbell_preserve;
static u64 doorbell_write;

102
static u8 OSC_UUID[16] = {0x9F, 0x2C, 0x9B, 0x63, 0x91, 0x70, 0x1f, 0x49,
103 104 105 106 107 108 109
			  0xBB, 0x4F, 0xA5, 0x98, 0x2F, 0xA1, 0xB5, 0x46};

struct pcc_cpu {
	u32 input_offset;
	u32 output_offset;
};

110
static struct pcc_cpu __percpu *pcc_cpu_info;
111 112 113

static int pcc_cpufreq_verify(struct cpufreq_policy *policy)
{
114
	cpufreq_verify_within_cpu_limits(policy);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	return 0;
}

static inline void pcc_cmd(void)
{
	u64 doorbell_value;
	int i;

	acpi_read(&doorbell_value, &doorbell);
	acpi_write((doorbell_value & doorbell_preserve) | doorbell_write,
		   &doorbell);

	for (i = 0; i < POLL_LOOPS; i++) {
		if (ioread16(&pcch_hdr->status) & CMD_COMPLETE)
			break;
	}
}

static inline void pcc_clear_mapping(void)
{
	if (pcch_virt_addr)
		iounmap(pcch_virt_addr);
	pcch_virt_addr = NULL;
}

static unsigned int pcc_get_freq(unsigned int cpu)
{
	struct pcc_cpu *pcc_cpu_data;
	unsigned int curr_freq;
	unsigned int freq_limit;
	u16 status;
	u32 input_buffer;
	u32 output_buffer;

	spin_lock(&pcc_lock);

151
	pr_debug("get: get_freq for CPU %d\n", cpu);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
	pcc_cpu_data = per_cpu_ptr(pcc_cpu_info, cpu);

	input_buffer = 0x1;
	iowrite32(input_buffer,
			(pcch_virt_addr + pcc_cpu_data->input_offset));
	iowrite16(CMD_GET_FREQ, &pcch_hdr->command);

	pcc_cmd();

	output_buffer =
		ioread32(pcch_virt_addr + pcc_cpu_data->output_offset);

	/* Clear the input buffer - we are done with the current command */
	memset_io((pcch_virt_addr + pcc_cpu_data->input_offset), 0, BUF_SZ);

	status = ioread16(&pcch_hdr->status);
	if (status != CMD_COMPLETE) {
169
		pr_debug("get: FAILED: for CPU %d, status is %d\n",
170 171 172 173 174 175 176
			cpu, status);
		goto cmd_incomplete;
	}
	iowrite16(0, &pcch_hdr->status);
	curr_freq = (((ioread32(&pcch_hdr->nominal) * (output_buffer & 0xff))
			/ 100) * 1000);

177 178
	pr_debug("get: SUCCESS: (virtual) output_offset for cpu %d is "
		"0x%p, contains a value of: 0x%x. Speed is: %d MHz\n",
179 180 181 182 183
		cpu, (pcch_virt_addr + pcc_cpu_data->output_offset),
		output_buffer, curr_freq);

	freq_limit = (output_buffer >> 8) & 0xff;
	if (freq_limit != 0xff) {
184
		pr_debug("get: frequency for cpu %d is being temporarily"
185 186 187 188 189 190 191 192 193
			" capped at %d\n", cpu, curr_freq);
	}

	spin_unlock(&pcc_lock);
	return curr_freq;

cmd_incomplete:
	iowrite16(0, &pcch_hdr->status);
	spin_unlock(&pcc_lock);
194
	return 0;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
}

static int pcc_cpufreq_target(struct cpufreq_policy *policy,
			      unsigned int target_freq,
			      unsigned int relation)
{
	struct pcc_cpu *pcc_cpu_data;
	struct cpufreq_freqs freqs;
	u16 status;
	u32 input_buffer;
	int cpu;

	cpu = policy->cpu;
	pcc_cpu_data = per_cpu_ptr(pcc_cpu_info, cpu);

210 211
	pr_debug("target: CPU %d should go to target freq: %d "
		"(virtual) input_offset is 0x%p\n",
212 213 214
		cpu, target_freq,
		(pcch_virt_addr + pcc_cpu_data->input_offset));

215
	freqs.old = policy->cur;
216
	freqs.new = target_freq;
217
	cpufreq_freq_transition_begin(policy, &freqs);
218
	spin_lock(&pcc_lock);
219 220 221 222 223 224 225 226 227 228 229 230 231

	input_buffer = 0x1 | (((target_freq * 100)
			       / (ioread32(&pcch_hdr->nominal) * 1000)) << 8);
	iowrite32(input_buffer,
			(pcch_virt_addr + pcc_cpu_data->input_offset));
	iowrite16(CMD_SET_FREQ, &pcch_hdr->command);

	pcc_cmd();

	/* Clear the input buffer - we are done with the current command */
	memset_io((pcch_virt_addr + pcc_cpu_data->input_offset), 0, BUF_SZ);

	status = ioread16(&pcch_hdr->status);
232 233
	iowrite16(0, &pcch_hdr->status);

234
	cpufreq_freq_transition_end(policy, &freqs, status != CMD_COMPLETE);
235 236
	spin_unlock(&pcc_lock);

237
	if (status != CMD_COMPLETE) {
238
		pr_debug("target: FAILED for cpu %d, with status: 0x%x\n",
239
			cpu, status);
240
		return -EINVAL;
241 242
	}

243
	pr_debug("target: was SUCCESSFUL for cpu %d\n", cpu);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

	return 0;
}

static int pcc_get_offset(int cpu)
{
	acpi_status status;
	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
	union acpi_object *pccp, *offset;
	struct pcc_cpu *pcc_cpu_data;
	struct acpi_processor *pr;
	int ret = 0;

	pr = per_cpu(processors, cpu);
	pcc_cpu_data = per_cpu_ptr(pcc_cpu_info, cpu);

260 261 262
	if (!pr)
		return -ENODEV;

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	status = acpi_evaluate_object(pr->handle, "PCCP", NULL, &buffer);
	if (ACPI_FAILURE(status))
		return -ENODEV;

	pccp = buffer.pointer;
	if (!pccp || pccp->type != ACPI_TYPE_PACKAGE) {
		ret = -ENODEV;
		goto out_free;
	};

	offset = &(pccp->package.elements[0]);
	if (!offset || offset->type != ACPI_TYPE_INTEGER) {
		ret = -ENODEV;
		goto out_free;
	}

	pcc_cpu_data->input_offset = offset->integer.value;

	offset = &(pccp->package.elements[1]);
	if (!offset || offset->type != ACPI_TYPE_INTEGER) {
		ret = -ENODEV;
		goto out_free;
	}

	pcc_cpu_data->output_offset = offset->integer.value;

	memset_io((pcch_virt_addr + pcc_cpu_data->input_offset), 0, BUF_SZ);
	memset_io((pcch_virt_addr + pcc_cpu_data->output_offset), 0, BUF_SZ);

292
	pr_debug("pcc_get_offset: for CPU %d: pcc_cpu_data "
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
		"input_offset: 0x%x, pcc_cpu_data output_offset: 0x%x\n",
		cpu, pcc_cpu_data->input_offset, pcc_cpu_data->output_offset);
out_free:
	kfree(buffer.pointer);
	return ret;
}

static int __init pcc_cpufreq_do_osc(acpi_handle *handle)
{
	acpi_status status;
	struct acpi_object_list input;
	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
	union acpi_object in_params[4];
	union acpi_object *out_obj;
	u32 capabilities[2];
	u32 errors;
	u32 supported;
	int ret = 0;

	input.count = 4;
	input.pointer = in_params;
	in_params[0].type               = ACPI_TYPE_BUFFER;
	in_params[0].buffer.length      = 16;
	in_params[0].buffer.pointer     = OSC_UUID;
	in_params[1].type               = ACPI_TYPE_INTEGER;
	in_params[1].integer.value      = 1;
	in_params[2].type               = ACPI_TYPE_INTEGER;
	in_params[2].integer.value      = 2;
	in_params[3].type               = ACPI_TYPE_BUFFER;
	in_params[3].buffer.length      = 8;
	in_params[3].buffer.pointer     = (u8 *)&capabilities;

	capabilities[0] = OSC_QUERY_ENABLE;
	capabilities[1] = 0x1;

	status = acpi_evaluate_object(*handle, "_OSC", &input, &output);
	if (ACPI_FAILURE(status))
		return -ENODEV;

	if (!output.length)
		return -ENODEV;

	out_obj = output.pointer;
	if (out_obj->type != ACPI_TYPE_BUFFER) {
		ret = -ENODEV;
		goto out_free;
	}

	errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0);
	if (errors) {
		ret = -ENODEV;
		goto out_free;
	}

	supported = *((u32 *)(out_obj->buffer.pointer + 4));
	if (!(supported & 0x1)) {
		ret = -ENODEV;
		goto out_free;
	}

	kfree(output.pointer);
	capabilities[0] = 0x0;
	capabilities[1] = 0x1;

	status = acpi_evaluate_object(*handle, "_OSC", &input, &output);
	if (ACPI_FAILURE(status))
		return -ENODEV;

	if (!output.length)
		return -ENODEV;

	out_obj = output.pointer;
365 366 367 368
	if (out_obj->type != ACPI_TYPE_BUFFER) {
		ret = -ENODEV;
		goto out_free;
	}
369 370

	errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0);
371 372 373 374
	if (errors) {
		ret = -ENODEV;
		goto out_free;
	}
375 376

	supported = *((u32 *)(out_obj->buffer.pointer + 4));
377 378 379 380
	if (!(supported & 0x1)) {
		ret = -ENODEV;
		goto out_free;
	}
381 382 383 384 385 386 387 388 389 390 391 392 393

out_free:
	kfree(output.pointer);
	return ret;
}

static int __init pcc_cpufreq_probe(void)
{
	acpi_status status;
	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
	struct pcc_memory_resource *mem_resource;
	struct pcc_register_resource *reg_resource;
	union acpi_object *out_obj, *member;
394
	acpi_handle handle, osc_handle;
395 396 397 398 399 400
	int ret = 0;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
		return -ENODEV;

401
	if (!acpi_has_method(handle, "PCCH"))
402 403
		return -ENODEV;

404 405 406 407
	status = acpi_get_handle(handle, "_OSC", &osc_handle);
	if (ACPI_SUCCESS(status)) {
		ret = pcc_cpufreq_do_osc(&osc_handle);
		if (ret)
408
			pr_debug("probe: _OSC evaluation did not succeed\n");
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
		/* Firmware's use of _OSC is optional */
		ret = 0;
	}

	status = acpi_evaluate_object(handle, "PCCH", NULL, &output);
	if (ACPI_FAILURE(status))
		return -ENODEV;

	out_obj = output.pointer;
	if (out_obj->type != ACPI_TYPE_PACKAGE) {
		ret = -ENODEV;
		goto out_free;
	}

	member = &out_obj->package.elements[0];
	if (member->type != ACPI_TYPE_BUFFER) {
		ret = -ENODEV;
		goto out_free;
	}

	mem_resource = (struct pcc_memory_resource *)member->buffer.pointer;

431
	pr_debug("probe: mem_resource descriptor: 0x%x,"
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
		" length: %d, space_id: %d, resource_usage: %d,"
		" type_specific: %d, granularity: 0x%llx,"
		" minimum: 0x%llx, maximum: 0x%llx,"
		" translation_offset: 0x%llx, address_length: 0x%llx\n",
		mem_resource->descriptor, mem_resource->length,
		mem_resource->space_id, mem_resource->resource_usage,
		mem_resource->type_specific, mem_resource->granularity,
		mem_resource->minimum, mem_resource->maximum,
		mem_resource->translation_offset,
		mem_resource->address_length);

	if (mem_resource->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) {
		ret = -ENODEV;
		goto out_free;
	}

	pcch_virt_addr = ioremap_nocache(mem_resource->minimum,
					mem_resource->address_length);
	if (pcch_virt_addr == NULL) {
451
		pr_debug("probe: could not map shared mem region\n");
452
		ret = -ENOMEM;
453 454 455 456
		goto out_free;
	}
	pcch_hdr = pcch_virt_addr;

457 458
	pr_debug("probe: PCCH header (virtual) addr: 0x%p\n", pcch_hdr);
	pr_debug("probe: PCCH header is at physical address: 0x%llx,"
459 460 461 462 463 464 465 466 467
		" signature: 0x%x, length: %d bytes, major: %d, minor: %d,"
		" supported features: 0x%x, command field: 0x%x,"
		" status field: 0x%x, nominal latency: %d us\n",
		mem_resource->minimum, ioread32(&pcch_hdr->signature),
		ioread16(&pcch_hdr->length), ioread8(&pcch_hdr->major),
		ioread8(&pcch_hdr->minor), ioread32(&pcch_hdr->features),
		ioread16(&pcch_hdr->command), ioread16(&pcch_hdr->status),
		ioread32(&pcch_hdr->latency));

468
	pr_debug("probe: min time between commands: %d us,"
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
		" max time between commands: %d us,"
		" nominal CPU frequency: %d MHz,"
		" minimum CPU frequency: %d MHz,"
		" minimum CPU frequency without throttling: %d MHz\n",
		ioread32(&pcch_hdr->minimum_time),
		ioread32(&pcch_hdr->maximum_time),
		ioread32(&pcch_hdr->nominal),
		ioread32(&pcch_hdr->throttled_frequency),
		ioread32(&pcch_hdr->minimum_frequency));

	member = &out_obj->package.elements[1];
	if (member->type != ACPI_TYPE_BUFFER) {
		ret = -ENODEV;
		goto pcch_free;
	}

	reg_resource = (struct pcc_register_resource *)member->buffer.pointer;

	doorbell.space_id = reg_resource->space_id;
	doorbell.bit_width = reg_resource->bit_width;
	doorbell.bit_offset = reg_resource->bit_offset;
	doorbell.access_width = 64;
	doorbell.address = reg_resource->address;

493
	pr_debug("probe: doorbell: space_id is %d, bit_width is %d, "
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		"bit_offset is %d, access_width is %d, address is 0x%llx\n",
		doorbell.space_id, doorbell.bit_width, doorbell.bit_offset,
		doorbell.access_width, reg_resource->address);

	member = &out_obj->package.elements[2];
	if (member->type != ACPI_TYPE_INTEGER) {
		ret = -ENODEV;
		goto pcch_free;
	}

	doorbell_preserve = member->integer.value;

	member = &out_obj->package.elements[3];
	if (member->type != ACPI_TYPE_INTEGER) {
		ret = -ENODEV;
		goto pcch_free;
	}

	doorbell_write = member->integer.value;

514
	pr_debug("probe: doorbell_preserve: 0x%llx,"
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
		" doorbell_write: 0x%llx\n",
		doorbell_preserve, doorbell_write);

	pcc_cpu_info = alloc_percpu(struct pcc_cpu);
	if (!pcc_cpu_info) {
		ret = -ENOMEM;
		goto pcch_free;
	}

	printk(KERN_DEBUG "pcc-cpufreq: (v%s) driver loaded with frequency"
	       " limits: %d MHz, %d MHz\n", PCC_VERSION,
	       ioread32(&pcch_hdr->minimum_frequency),
	       ioread32(&pcch_hdr->nominal));
	kfree(output.pointer);
	return ret;
pcch_free:
	pcc_clear_mapping();
out_free:
	kfree(output.pointer);
	return ret;
}

static int pcc_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	unsigned int cpu = policy->cpu;
	unsigned int result = 0;

	if (!pcch_virt_addr) {
		result = -1;
544
		goto out;
545 546 547 548
	}

	result = pcc_get_offset(cpu);
	if (result) {
549
		pr_debug("init: PCCP evaluation failed\n");
550
		goto out;
551 552 553 554 555 556
	}

	policy->max = policy->cpuinfo.max_freq =
		ioread32(&pcch_hdr->nominal) * 1000;
	policy->min = policy->cpuinfo.min_freq =
		ioread32(&pcch_hdr->minimum_frequency) * 1000;
557

558 559
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;

560
	pr_debug("init: policy->max is %d, policy->min is %d\n",
561
		policy->max, policy->min);
562
out:
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	return result;
}

static int pcc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
	return 0;
}

static struct cpufreq_driver pcc_cpufreq_driver = {
	.flags = CPUFREQ_CONST_LOOPS,
	.get = pcc_get_freq,
	.verify = pcc_cpufreq_verify,
	.target = pcc_cpufreq_target,
	.init = pcc_cpufreq_cpu_init,
	.exit = pcc_cpufreq_cpu_exit,
	.name = "pcc-cpufreq",
};

static int __init pcc_cpufreq_init(void)
{
	int ret;

	if (acpi_disabled)
		return 0;

	ret = pcc_cpufreq_probe();
	if (ret) {
590
		pr_debug("pcc_cpufreq_init: PCCH evaluation failed\n");
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
		return ret;
	}

	ret = cpufreq_register_driver(&pcc_cpufreq_driver);

	return ret;
}

static void __exit pcc_cpufreq_exit(void)
{
	cpufreq_unregister_driver(&pcc_cpufreq_driver);

	pcc_clear_mapping();

	free_percpu(pcc_cpu_info);
}

608 609 610 611 612 613 614
static const struct acpi_device_id processor_device_ids[] = {
	{ACPI_PROCESSOR_OBJECT_HID, },
	{ACPI_PROCESSOR_DEVICE_HID, },
	{},
};
MODULE_DEVICE_TABLE(acpi, processor_device_ids);

615 616 617 618 619 620 621
MODULE_AUTHOR("Matthew Garrett, Naga Chumbalkar");
MODULE_VERSION(PCC_VERSION);
MODULE_DESCRIPTION("Processor Clocking Control interface driver");
MODULE_LICENSE("GPL");

late_initcall(pcc_cpufreq_init);
module_exit(pcc_cpufreq_exit);