tlv320aic3x.c 50.8 KB
Newer Older
1 2 3
/*
 * ALSA SoC TLV320AIC3X codec driver
 *
4
 * Author:      Vladimir Barinov, <vbarinov@embeddedalley.com>
5 6 7 8 9 10 11 12 13 14
 * Copyright:   (C) 2007 MontaVista Software, Inc., <source@mvista.com>
 *
 * Based on sound/soc/codecs/wm8753.c by Liam Girdwood
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Notes:
 *  The AIC3X is a driver for a low power stereo audio
15
 *  codecs aic31, aic32, aic33, aic3007.
16 17
 *
 *  It supports full aic33 codec functionality.
18 19
 *  The compatibility with aic32, aic31 and aic3007 is as follows:
 *    aic32/aic3007    |        aic31
20 21 22 23 24 25 26 27 28 29 30 31
 *  ---------------------------------------
 *   MONO_LOUT -> N/A  |  MONO_LOUT -> N/A
 *                     |  IN1L -> LINE1L
 *                     |  IN1R -> LINE1R
 *                     |  IN2L -> LINE2L
 *                     |  IN2R -> LINE2R
 *                     |  MIC3L/R -> N/A
 *   truncated internal functionality in
 *   accordance with documentation
 *  ---------------------------------------
 *
 *  Hence the machine layer should disable unsupported inputs/outputs by
32
 *  snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc.
33 34 35 36 37 38 39 40
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
41
#include <linux/gpio.h>
42
#include <linux/regulator/consumer.h>
43
#include <linux/slab.h>
44 45 46 47 48
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
49
#include <sound/tlv.h>
50
#include <sound/tlv320aic3x.h>
51 52 53

#include "tlv320aic3x.h"

54 55 56 57 58 59 60
#define AIC3X_NUM_SUPPLIES	4
static const char *aic3x_supply_names[AIC3X_NUM_SUPPLIES] = {
	"IOVDD",	/* I/O Voltage */
	"DVDD",		/* Digital Core Voltage */
	"AVDD",		/* Analog DAC Voltage */
	"DRVDD",	/* ADC Analog and Output Driver Voltage */
};
61

62 63
static LIST_HEAD(reset_list);

64 65 66 67 68 69 70
struct aic3x_priv;

struct aic3x_disable_nb {
	struct notifier_block nb;
	struct aic3x_priv *aic3x;
};

71 72
/* codec private data */
struct aic3x_priv {
73
	struct snd_soc_codec *codec;
74
	struct regulator_bulk_data supplies[AIC3X_NUM_SUPPLIES];
75
	struct aic3x_disable_nb disable_nb[AIC3X_NUM_SUPPLIES];
76 77
	enum snd_soc_control_type control_type;
	struct aic3x_setup_data *setup;
78
	unsigned int sysclk;
79
	struct list_head list;
80
	int master;
81
	int gpio_reset;
82
	int power;
83 84 85 86
#define AIC3X_MODEL_3X 0
#define AIC3X_MODEL_33 1
#define AIC3X_MODEL_3007 2
	u16 model;
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
};

/*
 * AIC3X register cache
 * We can't read the AIC3X register space when we are
 * using 2 wire for device control, so we cache them instead.
 * There is no point in caching the reset register
 */
static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
	0x00, 0x00, 0x00, 0x10,	/* 0 */
	0x04, 0x00, 0x00, 0x00,	/* 4 */
	0x00, 0x00, 0x00, 0x01,	/* 8 */
	0x00, 0x00, 0x00, 0x80,	/* 12 */
	0x80, 0xff, 0xff, 0x78,	/* 16 */
	0x78, 0x78, 0x78, 0x78,	/* 20 */
	0x78, 0x00, 0x00, 0xfe,	/* 24 */
	0x00, 0x00, 0xfe, 0x00,	/* 28 */
	0x18, 0x18, 0x00, 0x00,	/* 32 */
	0x00, 0x00, 0x00, 0x00,	/* 36 */
	0x00, 0x00, 0x00, 0x80,	/* 40 */
	0x80, 0x00, 0x00, 0x00,	/* 44 */
	0x00, 0x00, 0x00, 0x04,	/* 48 */
	0x00, 0x00, 0x00, 0x00,	/* 52 */
	0x00, 0x00, 0x04, 0x00,	/* 56 */
	0x00, 0x00, 0x00, 0x00,	/* 60 */
	0x00, 0x04, 0x00, 0x00,	/* 64 */
	0x00, 0x00, 0x00, 0x00,	/* 68 */
	0x04, 0x00, 0x00, 0x00,	/* 72 */
	0x00, 0x00, 0x00, 0x00,	/* 76 */
	0x00, 0x00, 0x00, 0x00,	/* 80 */
	0x00, 0x00, 0x00, 0x00,	/* 84 */
	0x00, 0x00, 0x00, 0x00,	/* 88 */
	0x00, 0x00, 0x00, 0x00,	/* 92 */
	0x00, 0x00, 0x00, 0x00,	/* 96 */
	0x00, 0x00, 0x02,	/* 100 */
};

/*
125 126 127
 * read from the aic3x register space. Only use for this function is if
 * wanting to read volatile bits from those registers that has both read-only
 * and read/write bits. All other cases should use snd_soc_read.
128
 */
129 130
static int aic3x_read(struct snd_soc_codec *codec, unsigned int reg,
		      u8 *value)
131 132 133
{
	u8 *cache = codec->reg_cache;

134 135
	if (codec->cache_only)
		return -EINVAL;
136
	if (reg >= AIC3X_CACHEREGNUM)
137
		return -1;
138

139 140 141 142
	codec->cache_bypass = 1;
	*value = snd_soc_read(codec, reg);
	codec->cache_bypass = 0;

143
	cache[reg] = *value;
144 145 146 147

	return 0;
}

148 149 150 151 152 153 154 155 156 157 158 159 160
#define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
	.info = snd_soc_info_volsw, \
	.get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
	.private_value =  SOC_SINGLE_VALUE(reg, shift, mask, invert) }

/*
 * All input lines are connected when !0xf and disconnected with 0xf bit field,
 * so we have to use specific dapm_put call for input mixer
 */
static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_value *ucontrol)
{
161 162
	struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
	struct snd_soc_dapm_widget *widget = wlist->widgets[0];
163 164 165 166 167 168 169
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	unsigned int reg = mc->reg;
	unsigned int shift = mc->shift;
	int max = mc->max;
	unsigned int mask = (1 << fls(max)) - 1;
	unsigned int invert = mc->invert;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	unsigned short val, val_mask;
	int ret;
	struct snd_soc_dapm_path *path;
	int found = 0;

	val = (ucontrol->value.integer.value[0] & mask);

	mask = 0xf;
	if (val)
		val = mask;

	if (invert)
		val = mask - val;
	val_mask = mask << shift;
	val = val << shift;

	mutex_lock(&widget->codec->mutex);

	if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
		/* find dapm widget path assoc with kcontrol */
190
		list_for_each_entry(path, &widget->dapm->card->paths, list) {
191 192 193 194 195 196 197 198 199 200 201
			if (path->kcontrol != kcontrol)
				continue;

			/* found, now check type */
			found = 1;
			if (val)
				/* new connection */
				path->connect = invert ? 0 : 1;
			else
				/* old connection must be powered down */
				path->connect = invert ? 1 : 0;
202 203 204 205

			dapm_mark_dirty(path->source, "tlv320aic3x source");
			dapm_mark_dirty(path->sink, "tlv320aic3x sink");

206 207 208 209
			break;
		}

		if (found)
L
Liam Girdwood 已提交
210
			snd_soc_dapm_sync(widget->dapm);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	}

	ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);

	mutex_unlock(&widget->codec->mutex);
	return ret;
}

static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
static const char *aic3x_left_hpcom_mux[] =
    { "differential of HPLOUT", "constant VCM", "single-ended" };
static const char *aic3x_right_hpcom_mux[] =
    { "differential of HPROUT", "constant VCM", "single-ended",
      "differential of HPLCOM", "external feedback" };
static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
227 228
static const char *aic3x_adc_hpf[] =
    { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" };
229 230 231 232 233

#define LDAC_ENUM	0
#define RDAC_ENUM	1
#define LHPCOM_ENUM	2
#define RHPCOM_ENUM	3
234 235 236 237 238 239 240
#define LINE1L_2_L_ENUM	4
#define LINE1L_2_R_ENUM	5
#define LINE1R_2_L_ENUM	6
#define LINE1R_2_R_ENUM	7
#define LINE2L_ENUM	8
#define LINE2R_ENUM	9
#define ADC_HPF_ENUM	10
241 242 243 244 245 246 247

static const struct soc_enum aic3x_enum[] = {
	SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
	SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
	SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
	SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
	SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
248 249
	SOC_ENUM_SINGLE(LINE1L_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
	SOC_ENUM_SINGLE(LINE1R_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
250 251 252
	SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
	SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
	SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
253
	SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf),
254 255
};

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/*
 * DAC digital volumes. From -63.5 to 0 dB in 0.5 dB steps
 */
static DECLARE_TLV_DB_SCALE(dac_tlv, -6350, 50, 0);
/* ADC PGA gain volumes. From 0 to 59.5 dB in 0.5 dB steps */
static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 50, 0);
/*
 * Output stage volumes. From -78.3 to 0 dB. Muted below -78.3 dB.
 * Step size is approximately 0.5 dB over most of the scale but increasing
 * near the very low levels.
 * Define dB scale so that it is mostly correct for range about -55 to 0 dB
 * but having increasing dB difference below that (and where it doesn't count
 * so much). This setting shows -50 dB (actual is -50.3 dB) for register
 * value 100 and -58.5 dB (actual is -78.3 dB) for register value 117.
 */
static DECLARE_TLV_DB_SCALE(output_stage_tlv, -5900, 50, 1);

273 274
static const struct snd_kcontrol_new aic3x_snd_controls[] = {
	/* Output */
275 276
	SOC_DOUBLE_R_TLV("PCM Playback Volume",
			 LDAC_VOL, RDAC_VOL, 0, 0x7f, 1, dac_tlv),
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	/*
	 * Output controls that map to output mixer switches. Note these are
	 * only for swapped L-to-R and R-to-L routes. See below stereo controls
	 * for direct L-to-L and R-to-R routes.
	 */
	SOC_SINGLE_TLV("Left Line Mixer Line2R Bypass Volume",
		       LINE2R_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left Line Mixer PGAR Bypass Volume",
		       PGAR_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left Line Mixer DACR1 Playback Volume",
		       DACR1_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),

	SOC_SINGLE_TLV("Right Line Mixer Line2L Bypass Volume",
		       LINE2L_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right Line Mixer PGAL Bypass Volume",
		       PGAL_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right Line Mixer DACL1 Playback Volume",
		       DACL1_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),

	SOC_SINGLE_TLV("Left HP Mixer Line2R Bypass Volume",
		       LINE2R_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left HP Mixer PGAR Bypass Volume",
		       PGAR_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left HP Mixer DACR1 Playback Volume",
		       DACR1_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),

	SOC_SINGLE_TLV("Right HP Mixer Line2L Bypass Volume",
		       LINE2L_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right HP Mixer PGAL Bypass Volume",
		       PGAL_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right HP Mixer DACL1 Playback Volume",
		       DACL1_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),

	SOC_SINGLE_TLV("Left HPCOM Mixer Line2R Bypass Volume",
		       LINE2R_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left HPCOM Mixer PGAR Bypass Volume",
		       PGAR_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Left HPCOM Mixer DACR1 Playback Volume",
		       DACR1_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),

	SOC_SINGLE_TLV("Right HPCOM Mixer Line2L Bypass Volume",
		       LINE2L_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right HPCOM Mixer PGAL Bypass Volume",
		       PGAL_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
	SOC_SINGLE_TLV("Right HPCOM Mixer DACL1 Playback Volume",
		       DACL1_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),

	/* Stereo output controls for direct L-to-L and R-to-R routes */
	SOC_DOUBLE_R_TLV("Line Line2 Bypass Volume",
			 LINE2L_2_LLOPM_VOL, LINE2R_2_RLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("Line PGA Bypass Volume",
			 PGAL_2_LLOPM_VOL, PGAR_2_RLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
332 333 334
	SOC_DOUBLE_R_TLV("Line DAC Playback Volume",
			 DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
335 336 337

	SOC_DOUBLE_R_TLV("Mono Line2 Bypass Volume",
			 LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL,
338
			 0, 118, 1, output_stage_tlv),
339 340
	SOC_DOUBLE_R_TLV("Mono PGA Bypass Volume",
			 PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL,
341 342 343 344
			 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("Mono DAC Playback Volume",
			 DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL,
			 0, 118, 1, output_stage_tlv),
345 346 347

	SOC_DOUBLE_R_TLV("HP Line2 Bypass Volume",
			 LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL,
348
			 0, 118, 1, output_stage_tlv),
349 350
	SOC_DOUBLE_R_TLV("HP PGA Bypass Volume",
			 PGAL_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL,
351 352 353 354
			 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("HP DAC Playback Volume",
			 DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL,
			 0, 118, 1, output_stage_tlv),
355 356 357

	SOC_DOUBLE_R_TLV("HPCOM Line2 Bypass Volume",
			 LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL,
358
			 0, 118, 1, output_stage_tlv),
359 360
	SOC_DOUBLE_R_TLV("HPCOM PGA Bypass Volume",
			 PGAL_2_HPLCOM_VOL, PGAR_2_HPRCOM_VOL,
361 362 363 364
			 0, 118, 1, output_stage_tlv),
	SOC_DOUBLE_R_TLV("HPCOM DAC Playback Volume",
			 DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL,
			 0, 118, 1, output_stage_tlv),
365 366 367 368 369 370 371

	/* Output pin mute controls */
	SOC_DOUBLE_R("Line Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3,
		     0x01, 0),
	SOC_SINGLE("Mono Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
	SOC_DOUBLE_R("HP Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
		     0x01, 0),
372
	SOC_DOUBLE_R("HPCOM Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
373 374 375 376 377 378 379 380 381
		     0x01, 0),

	/*
	 * Note: enable Automatic input Gain Controller with care. It can
	 * adjust PGA to max value when ADC is on and will never go back.
	*/
	SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),

	/* Input */
382 383
	SOC_DOUBLE_R_TLV("PGA Capture Volume", LADC_VOL, RADC_VOL,
			 0, 119, 0, adc_tlv),
384
	SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
385 386

	SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]),
387 388
};

389 390 391 392 393 394 395 396
/*
 * Class-D amplifier gain. From 0 to 18 dB in 6 dB steps
 */
static DECLARE_TLV_DB_SCALE(classd_amp_tlv, 0, 600, 0);

static const struct snd_kcontrol_new aic3x_classd_amp_gain_ctrl =
	SOC_DOUBLE_TLV("Class-D Amplifier Gain", CLASSD_CTRL, 6, 4, 3, 0, classd_amp_tlv);

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
/* Left DAC Mux */
static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);

/* Right DAC Mux */
static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);

/* Left HPCOM Mux */
static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);

/* Right HPCOM Mux */
static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);

413 414 415 416 417 418 419 420
/* Left Line Mixer */
static const struct snd_kcontrol_new aic3x_left_line_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_LLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_LLOPM_VOL, 7, 1, 0),
421 422
};

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/* Right Line Mixer */
static const struct snd_kcontrol_new aic3x_right_line_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_RLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_RLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_RLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
};

/* Mono Mixer */
static const struct snd_kcontrol_new aic3x_mono_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
};

/* Left HP Mixer */
static const struct snd_kcontrol_new aic3x_left_hp_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLOUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLOUT_VOL, 7, 1, 0),
};

/* Right HP Mixer */
static const struct snd_kcontrol_new aic3x_right_hp_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
};

/* Left HPCOM Mixer */
static const struct snd_kcontrol_new aic3x_left_hpcom_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLCOM_VOL, 7, 1, 0),
};

/* Right HPCOM Mixer */
static const struct snd_kcontrol_new aic3x_right_hpcom_mixer_controls[] = {
	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPRCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPRCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPRCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
481 482 483 484 485
};

/* Left PGA Mixer */
static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
	SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
486
	SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1),
487 488
	SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
	SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
489
	SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1),
490 491 492 493 494
};

/* Right PGA Mixer */
static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
	SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
495
	SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1),
496
	SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
497
	SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1),
498 499 500 501
	SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
};

/* Left Line1 Mux */
502 503 504 505
static const struct snd_kcontrol_new aic3x_left_line1l_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_L_ENUM]);
static const struct snd_kcontrol_new aic3x_right_line1l_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_R_ENUM]);
506 507

/* Right Line1 Mux */
508 509 510 511
static const struct snd_kcontrol_new aic3x_right_line1r_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_R_ENUM]);
static const struct snd_kcontrol_new aic3x_left_line1r_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_L_ENUM]);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

/* Left Line2 Mux */
static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);

/* Right Line2 Mux */
static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);

static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
	/* Left DAC to Left Outputs */
	SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
	SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_left_dac_mux_controls),
	SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_left_hpcom_mux_controls),
	SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),

	/* Right DAC to Right Outputs */
	SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
	SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_right_dac_mux_controls),
	SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_right_hpcom_mux_controls),
	SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),

	/* Mono Output */
	SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),

545
	/* Inputs to Left ADC */
546 547 548 549 550
	SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
	SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_pga_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
	SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
551
			 &aic3x_left_line1l_mux_controls),
552
	SND_SOC_DAPM_MUX("Left Line1R Mux", SND_SOC_NOPM, 0, 0,
553
			 &aic3x_left_line1r_mux_controls),
554 555 556
	SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_left_line2_mux_controls),

557
	/* Inputs to Right ADC */
558 559 560 561 562
	SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
			 LINE1R_2_RADC_CTRL, 2, 0),
	SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_pga_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
563
	SND_SOC_DAPM_MUX("Right Line1L Mux", SND_SOC_NOPM, 0, 0,
564
			 &aic3x_right_line1l_mux_controls),
565
	SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
566
			 &aic3x_right_line1r_mux_controls),
567 568 569
	SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
			 &aic3x_right_line2_mux_controls),

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	/*
	 * Not a real mic bias widget but similar function. This is for dynamic
	 * control of GPIO1 digital mic modulator clock output function when
	 * using digital mic.
	 */
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
			 AIC3X_GPIO1_REG, 4, 0xf,
			 AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
			 AIC3X_GPIO1_FUNC_DISABLED),

	/*
	 * Also similar function like mic bias. Selects digital mic with
	 * configurable oversampling rate instead of ADC converter.
	 */
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
			 AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
			 AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
			 AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),

591
	/* Mic Bias */
592 593 594 595 596 597
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V",
			 MICBIAS_CTRL, 6, 3, 1, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V",
			 MICBIAS_CTRL, 6, 3, 2, 0),
	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD",
			 MICBIAS_CTRL, 6, 3, 3, 0),
598

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	/* Output mixers */
	SND_SOC_DAPM_MIXER("Left Line Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_line_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_line_mixer_controls)),
	SND_SOC_DAPM_MIXER("Right Line Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_line_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_line_mixer_controls)),
	SND_SOC_DAPM_MIXER("Mono Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_mono_mixer_controls[0],
			   ARRAY_SIZE(aic3x_mono_mixer_controls)),
	SND_SOC_DAPM_MIXER("Left HP Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_hp_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_hp_mixer_controls)),
	SND_SOC_DAPM_MIXER("Right HP Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_hp_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_hp_mixer_controls)),
	SND_SOC_DAPM_MIXER("Left HPCOM Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_left_hpcom_mixer_controls[0],
			   ARRAY_SIZE(aic3x_left_hpcom_mixer_controls)),
	SND_SOC_DAPM_MIXER("Right HPCOM Mixer", SND_SOC_NOPM, 0, 0,
			   &aic3x_right_hpcom_mixer_controls[0],
			   ARRAY_SIZE(aic3x_right_hpcom_mixer_controls)),
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

	SND_SOC_DAPM_OUTPUT("LLOUT"),
	SND_SOC_DAPM_OUTPUT("RLOUT"),
	SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
	SND_SOC_DAPM_OUTPUT("HPLOUT"),
	SND_SOC_DAPM_OUTPUT("HPROUT"),
	SND_SOC_DAPM_OUTPUT("HPLCOM"),
	SND_SOC_DAPM_OUTPUT("HPRCOM"),

	SND_SOC_DAPM_INPUT("MIC3L"),
	SND_SOC_DAPM_INPUT("MIC3R"),
	SND_SOC_DAPM_INPUT("LINE1L"),
	SND_SOC_DAPM_INPUT("LINE1R"),
	SND_SOC_DAPM_INPUT("LINE2L"),
	SND_SOC_DAPM_INPUT("LINE2R"),
636 637 638 639 640 641 642 643

	/*
	 * Virtual output pin to detection block inside codec. This can be
	 * used to keep codec bias on if gpio or detection features are needed.
	 * Force pin on or construct a path with an input jack and mic bias
	 * widgets.
	 */
	SND_SOC_DAPM_OUTPUT("Detection"),
644 645
};

646 647 648 649 650 651 652 653 654
static const struct snd_soc_dapm_widget aic3007_dapm_widgets[] = {
	/* Class-D outputs */
	SND_SOC_DAPM_PGA("Left Class-D Out", CLASSD_CTRL, 3, 0, NULL, 0),
	SND_SOC_DAPM_PGA("Right Class-D Out", CLASSD_CTRL, 2, 0, NULL, 0),

	SND_SOC_DAPM_OUTPUT("SPOP"),
	SND_SOC_DAPM_OUTPUT("SPOM"),
};

655
static const struct snd_soc_dapm_route intercon[] = {
656 657 658 659 660 661 662 663
	/* Left Input */
	{"Left Line1L Mux", "single-ended", "LINE1L"},
	{"Left Line1L Mux", "differential", "LINE1L"},

	{"Left Line2L Mux", "single-ended", "LINE2L"},
	{"Left Line2L Mux", "differential", "LINE2L"},

	{"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
664
	{"Left PGA Mixer", "Line1R Switch", "Left Line1R Mux"},
665 666
	{"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
	{"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
667
	{"Left PGA Mixer", "Mic3R Switch", "MIC3R"},
668 669

	{"Left ADC", NULL, "Left PGA Mixer"},
670
	{"Left ADC", NULL, "GPIO1 dmic modclk"},
671 672 673 674 675 676 677 678

	/* Right Input */
	{"Right Line1R Mux", "single-ended", "LINE1R"},
	{"Right Line1R Mux", "differential", "LINE1R"},

	{"Right Line2R Mux", "single-ended", "LINE2R"},
	{"Right Line2R Mux", "differential", "LINE2R"},

679
	{"Right PGA Mixer", "Line1L Switch", "Right Line1L Mux"},
680 681
	{"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
	{"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
682
	{"Right PGA Mixer", "Mic3L Switch", "MIC3L"},
683 684 685
	{"Right PGA Mixer", "Mic3R Switch", "MIC3R"},

	{"Right ADC", NULL, "Right PGA Mixer"},
686
	{"Right ADC", NULL, "GPIO1 dmic modclk"},
687

688 689 690 691 692 693 694
	/*
	 * Logical path between digital mic enable and GPIO1 modulator clock
	 * output function
	 */
	{"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
	{"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
	{"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

	/* Left DAC Output */
	{"Left DAC Mux", "DAC_L1", "Left DAC"},
	{"Left DAC Mux", "DAC_L2", "Left DAC"},
	{"Left DAC Mux", "DAC_L3", "Left DAC"},

	/* Right DAC Output */
	{"Right DAC Mux", "DAC_R1", "Right DAC"},
	{"Right DAC Mux", "DAC_R2", "Right DAC"},
	{"Right DAC Mux", "DAC_R3", "Right DAC"},

	/* Left Line Output */
	{"Left Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Left Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Left Line Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Left Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Left Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Left Line Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Left Line Out", NULL, "Left Line Mixer"},
	{"Left Line Out", NULL, "Left DAC Mux"},
	{"LLOUT", NULL, "Left Line Out"},

	/* Right Line Output */
	{"Right Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Right Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Right Line Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Right Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Right Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Right Line Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Right Line Out", NULL, "Right Line Mixer"},
	{"Right Line Out", NULL, "Right DAC Mux"},
	{"RLOUT", NULL, "Right Line Out"},

	/* Mono Output */
	{"Mono Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Mono Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Mono Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Mono Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Mono Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Mono Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Mono Out", NULL, "Mono Mixer"},
	{"MONO_LOUT", NULL, "Mono Out"},

	/* Left HP Output */
	{"Left HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Left HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Left HP Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Left HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Left HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Left HP Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Left HP Out", NULL, "Left HP Mixer"},
	{"Left HP Out", NULL, "Left DAC Mux"},
	{"HPLOUT", NULL, "Left HP Out"},

	/* Right HP Output */
	{"Right HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Right HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Right HP Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Right HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Right HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Right HP Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Right HP Out", NULL, "Right HP Mixer"},
	{"Right HP Out", NULL, "Right DAC Mux"},
	{"HPROUT", NULL, "Right HP Out"},

	/* Left HPCOM Output */
	{"Left HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Left HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Left HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Left HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Left HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Left HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Left HPCOM Mux", "differential of HPLOUT", "Left HP Mixer"},
	{"Left HPCOM Mux", "constant VCM", "Left HPCOM Mixer"},
	{"Left HPCOM Mux", "single-ended", "Left HPCOM Mixer"},
	{"Left HP Com", NULL, "Left HPCOM Mux"},
	{"HPLCOM", NULL, "Left HP Com"},

	/* Right HPCOM Output */
	{"Right HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
	{"Right HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
	{"Right HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
	{"Right HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
	{"Right HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
	{"Right HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},

	{"Right HPCOM Mux", "differential of HPROUT", "Right HP Mixer"},
	{"Right HPCOM Mux", "constant VCM", "Right HPCOM Mixer"},
	{"Right HPCOM Mux", "single-ended", "Right HPCOM Mixer"},
	{"Right HPCOM Mux", "differential of HPLCOM", "Left HPCOM Mixer"},
	{"Right HPCOM Mux", "external feedback", "Right HPCOM Mixer"},
	{"Right HP Com", NULL, "Right HPCOM Mux"},
	{"HPRCOM", NULL, "Right HP Com"},
794 795
};

796 797 798 799 800 801 802 803
static const struct snd_soc_dapm_route intercon_3007[] = {
	/* Class-D outputs */
	{"Left Class-D Out", NULL, "Left Line Out"},
	{"Right Class-D Out", NULL, "Left Line Out"},
	{"SPOP", NULL, "Left Class-D Out"},
	{"SPOM", NULL, "Right Class-D Out"},
};

804 805
static int aic3x_add_widgets(struct snd_soc_codec *codec)
{
806
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
L
Liam Girdwood 已提交
807
	struct snd_soc_dapm_context *dapm = &codec->dapm;
808

L
Liam Girdwood 已提交
809
	snd_soc_dapm_new_controls(dapm, aic3x_dapm_widgets,
810
				  ARRAY_SIZE(aic3x_dapm_widgets));
811 812

	/* set up audio path interconnects */
L
Liam Girdwood 已提交
813
	snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon));
814

815
	if (aic3x->model == AIC3X_MODEL_3007) {
L
Liam Girdwood 已提交
816
		snd_soc_dapm_new_controls(dapm, aic3007_dapm_widgets,
817
			ARRAY_SIZE(aic3007_dapm_widgets));
L
Liam Girdwood 已提交
818 819
		snd_soc_dapm_add_routes(dapm, intercon_3007,
					ARRAY_SIZE(intercon_3007));
820 821
	}

822 823 824 825
	return 0;
}

static int aic3x_hw_params(struct snd_pcm_substream *substream,
826 827
			   struct snd_pcm_hw_params *params,
			   struct snd_soc_dai *dai)
828 829
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
830
	struct snd_soc_codec *codec =rtd->codec;
831
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
832
	int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
833 834 835
	u8 data, j, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
	u16 d, pll_d = 1;
	int clk;
836

837
	/* select data word length */
838
	data = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
839 840
	switch (params_format(params)) {
	case SNDRV_PCM_FORMAT_S16_LE:
841
		break;
842 843
	case SNDRV_PCM_FORMAT_S20_3LE:
		data |= (0x01 << 4);
844
		break;
845 846
	case SNDRV_PCM_FORMAT_S24_LE:
		data |= (0x02 << 4);
847
		break;
848 849
	case SNDRV_PCM_FORMAT_S32_LE:
		data |= (0x03 << 4);
850 851
		break;
	}
852
	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, data);
853 854 855 856 857 858 859 860 861 862 863 864 865 866

	/* Fsref can be 44100 or 48000 */
	fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;

	/* Try to find a value for Q which allows us to bypass the PLL and
	 * generate CODEC_CLK directly. */
	for (pll_q = 2; pll_q < 18; pll_q++)
		if (aic3x->sysclk / (128 * pll_q) == fsref) {
			bypass_pll = 1;
			break;
		}

	if (bypass_pll) {
		pll_q &= 0xf;
867 868
		snd_soc_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
		snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
869
		/* disable PLL if it is bypassed */
870
		snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG, PLL_ENABLE, 0);
871 872

	} else {
873
		snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
874
		/* enable PLL when it is used */
875 876
		snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
				    PLL_ENABLE, PLL_ENABLE);
877
	}
878 879 880 881 882 883 884

	/* Route Left DAC to left channel input and
	 * right DAC to right channel input */
	data = (LDAC2LCH | RDAC2RCH);
	data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
	if (params_rate(params) >= 64000)
		data |= DUAL_RATE_MODE;
885
	snd_soc_write(codec, AIC3X_CODEC_DATAPATH_REG, data);
886 887

	/* codec sample rate select */
888 889 890 891 892
	data = (fsref * 20) / params_rate(params);
	if (params_rate(params) < 64000)
		data /= 2;
	data /= 5;
	data -= 2;
893
	data |= (data << 4);
894
	snd_soc_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);
895

896 897 898
	if (bypass_pll)
		return 0;

L
Lucas De Marchi 已提交
899
	/* Use PLL, compute appropriate setup for j, d, r and p, the closest
900 901
	 * one wins the game. Try with d==0 first, next with d!=0.
	 * Constraints for j are according to the datasheet.
902
	 * The sysclk is divided by 1000 to prevent integer overflows.
903
	 */
904

905 906 907 908
	codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);

	for (r = 1; r <= 16; r++)
		for (p = 1; p <= 8; p++) {
909 910 911 912 913
			for (j = 4; j <= 55; j++) {
				/* This is actually 1000*((j+(d/10000))*r)/p
				 * The term had to be converted to get
				 * rid of the division by 10000; d = 0 here
				 */
914
				int tmp_clk = (1000 * j * r) / p;
915 916 917 918

				/* Check whether this values get closer than
				 * the best ones we had before
				 */
919
				if (abs(codec_clk - tmp_clk) <
920 921 922
					abs(codec_clk - last_clk)) {
					pll_j = j; pll_d = 0;
					pll_r = r; pll_p = p;
923
					last_clk = tmp_clk;
924 925 926
				}

				/* Early exit for exact matches */
927
				if (tmp_clk == codec_clk)
928 929 930
					goto found;
			}
		}
931

932 933 934
	/* try with d != 0 */
	for (p = 1; p <= 8; p++) {
		j = codec_clk * p / 1000;
935

936 937
		if (j < 4 || j > 11)
			continue;
938

939 940 941
		/* do not use codec_clk here since we'd loose precision */
		d = ((2048 * p * fsref) - j * aic3x->sysclk)
			* 100 / (aic3x->sysclk/100);
942

943
		clk = (10000 * j + d) / (10 * p);
944

945 946 947 948 949
		/* check whether this values get closer than the best
		 * ones we had before */
		if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
			pll_j = j; pll_d = d; pll_r = 1; pll_p = p;
			last_clk = clk;
950 951
		}

952 953 954 955 956
		/* Early exit for exact matches */
		if (clk == codec_clk)
			goto found;
	}

957 958 959 960
	if (last_clk == 0) {
		printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
		return -EINVAL;
	}
961

962
found:
963 964 965 966 967 968 969 970 971 972
	data = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
	snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
		      data | (pll_p << PLLP_SHIFT));
	snd_soc_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG,
		      pll_r << PLLR_SHIFT);
	snd_soc_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
	snd_soc_write(codec, AIC3X_PLL_PROGC_REG,
		      (pll_d >> 6) << PLLD_MSB_SHIFT);
	snd_soc_write(codec, AIC3X_PLL_PROGD_REG,
		      (pll_d & 0x3F) << PLLD_LSB_SHIFT);
973 974 975 976

	return 0;
}

977
static int aic3x_mute(struct snd_soc_dai *dai, int mute)
978 979
{
	struct snd_soc_codec *codec = dai->codec;
980 981
	u8 ldac_reg = snd_soc_read(codec, LDAC_VOL) & ~MUTE_ON;
	u8 rdac_reg = snd_soc_read(codec, RDAC_VOL) & ~MUTE_ON;
982 983

	if (mute) {
984 985
		snd_soc_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
		snd_soc_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
986
	} else {
987 988
		snd_soc_write(codec, LDAC_VOL, ldac_reg);
		snd_soc_write(codec, RDAC_VOL, rdac_reg);
989 990 991 992 993
	}

	return 0;
}

994
static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
995 996 997
				int clk_id, unsigned int freq, int dir)
{
	struct snd_soc_codec *codec = codec_dai->codec;
998
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
999

1000 1001
	aic3x->sysclk = freq;
	return 0;
1002 1003
}

1004
static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai,
1005 1006 1007
			     unsigned int fmt)
{
	struct snd_soc_codec *codec = codec_dai->codec;
1008
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1009
	u8 iface_areg, iface_breg;
T
Troy Kisky 已提交
1010
	int delay = 0;
1011

1012 1013
	iface_areg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
	iface_breg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
1014 1015 1016 1017 1018 1019 1020 1021 1022

	/* set master/slave audio interface */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBM_CFM:
		aic3x->master = 1;
		iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
		break;
	case SND_SOC_DAIFMT_CBS_CFS:
		aic3x->master = 0;
1023
		iface_areg &= ~(BIT_CLK_MASTER | WORD_CLK_MASTER);
1024 1025 1026 1027 1028
		break;
	default:
		return -EINVAL;
	}

1029 1030 1031 1032 1033 1034 1035
	/*
	 * match both interface format and signal polarities since they
	 * are fixed
	 */
	switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
		       SND_SOC_DAIFMT_INV_MASK)) {
	case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
1036
		break;
T
Troy Kisky 已提交
1037 1038
	case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF):
		delay = 1;
1039
	case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF):
1040 1041
		iface_breg |= (0x01 << 6);
		break;
1042
	case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF):
1043 1044
		iface_breg |= (0x02 << 6);
		break;
1045
	case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
1046 1047 1048 1049 1050 1051 1052
		iface_breg |= (0x03 << 6);
		break;
	default:
		return -EINVAL;
	}

	/* set iface */
1053 1054 1055
	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLC, delay);
1056 1057 1058 1059

	return 0;
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static int aic3x_init_3007(struct snd_soc_codec *codec)
{
	u8 tmp1, tmp2, *cache = codec->reg_cache;

	/*
	 * There is no need to cache writes to undocumented page 0xD but
	 * respective page 0 register cache entries must be preserved
	 */
	tmp1 = cache[0xD];
	tmp2 = cache[0x8];
	/* Class-D speaker driver init; datasheet p. 46 */
	snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x0D);
	snd_soc_write(codec, 0xD, 0x0D);
	snd_soc_write(codec, 0x8, 0x5C);
	snd_soc_write(codec, 0x8, 0x5D);
	snd_soc_write(codec, 0x8, 0x5C);
	snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x00);
	cache[0xD] = tmp1;
	cache[0x8] = tmp2;

	return 0;
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static int aic3x_regulator_event(struct notifier_block *nb,
				 unsigned long event, void *data)
{
	struct aic3x_disable_nb *disable_nb =
		container_of(nb, struct aic3x_disable_nb, nb);
	struct aic3x_priv *aic3x = disable_nb->aic3x;

	if (event & REGULATOR_EVENT_DISABLE) {
		/*
		 * Put codec to reset and require cache sync as at least one
		 * of the supplies was disabled
		 */
1095
		if (gpio_is_valid(aic3x->gpio_reset))
1096 1097 1098 1099 1100 1101 1102
			gpio_set_value(aic3x->gpio_reset, 0);
		aic3x->codec->cache_sync = 1;
	}

	return 0;
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
static int aic3x_set_power(struct snd_soc_codec *codec, int power)
{
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
	int i, ret;
	u8 *cache = codec->reg_cache;

	if (power) {
		ret = regulator_bulk_enable(ARRAY_SIZE(aic3x->supplies),
					    aic3x->supplies);
		if (ret)
			goto out;
		aic3x->power = 1;
1115 1116 1117 1118 1119 1120 1121
		/*
		 * Reset release and cache sync is necessary only if some
		 * supply was off or if there were cached writes
		 */
		if (!codec->cache_sync)
			goto out;

1122
		if (gpio_is_valid(aic3x->gpio_reset)) {
1123 1124 1125 1126 1127 1128
			udelay(1);
			gpio_set_value(aic3x->gpio_reset, 1);
		}

		/* Sync reg_cache with the hardware */
		codec->cache_only = 0;
1129
		for (i = AIC3X_SAMPLE_RATE_SEL_REG; i < ARRAY_SIZE(aic3x_reg); i++)
1130 1131 1132 1133 1134
			snd_soc_write(codec, i, cache[i]);
		if (aic3x->model == AIC3X_MODEL_3007)
			aic3x_init_3007(codec);
		codec->cache_sync = 0;
	} else {
1135 1136 1137 1138 1139 1140 1141
		/*
		 * Do soft reset to this codec instance in order to clear
		 * possible VDD leakage currents in case the supply regulators
		 * remain on
		 */
		snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
		codec->cache_sync = 1;
1142
		aic3x->power = 0;
1143 1144
		/* HW writes are needless when bias is off */
		codec->cache_only = 1;
1145 1146 1147 1148 1149 1150 1151
		ret = regulator_bulk_disable(ARRAY_SIZE(aic3x->supplies),
					     aic3x->supplies);
	}
out:
	return ret;
}

1152 1153
static int aic3x_set_bias_level(struct snd_soc_codec *codec,
				enum snd_soc_bias_level level)
1154
{
1155
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1156

1157 1158
	switch (level) {
	case SND_SOC_BIAS_ON:
1159 1160
		break;
	case SND_SOC_BIAS_PREPARE:
L
Liam Girdwood 已提交
1161
		if (codec->dapm.bias_level == SND_SOC_BIAS_STANDBY &&
1162
		    aic3x->master) {
1163
			/* enable pll */
1164 1165
			snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
					    PLL_ENABLE, PLL_ENABLE);
1166 1167
		}
		break;
1168
	case SND_SOC_BIAS_STANDBY:
1169 1170
		if (!aic3x->power)
			aic3x_set_power(codec, 1);
L
Liam Girdwood 已提交
1171
		if (codec->dapm.bias_level == SND_SOC_BIAS_PREPARE &&
1172
		    aic3x->master) {
1173
			/* disable pll */
1174 1175
			snd_soc_update_bits(codec, AIC3X_PLL_PROGA_REG,
					    PLL_ENABLE, 0);
1176 1177
		}
		break;
1178
	case SND_SOC_BIAS_OFF:
1179 1180
		if (aic3x->power)
			aic3x_set_power(codec, 0);
1181
		break;
1182
	}
L
Liam Girdwood 已提交
1183
	codec->dapm.bias_level = level;
1184 1185 1186 1187

	return 0;
}

1188 1189 1190 1191
void aic3x_set_gpio(struct snd_soc_codec *codec, int gpio, int state)
{
	u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
	u8 bit = gpio ? 3: 0;
1192 1193
	u8 val = snd_soc_read(codec, reg) & ~(1 << bit);
	snd_soc_write(codec, reg, val | (!!state << bit));
1194 1195 1196 1197 1198 1199
}
EXPORT_SYMBOL_GPL(aic3x_set_gpio);

int aic3x_get_gpio(struct snd_soc_codec *codec, int gpio)
{
	u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
1200
	u8 val = 0, bit = gpio ? 2 : 1;
1201 1202 1203 1204 1205 1206

	aic3x_read(codec, reg, &val);
	return (val >> bit) & 1;
}
EXPORT_SYMBOL_GPL(aic3x_get_gpio);

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
void aic3x_set_headset_detection(struct snd_soc_codec *codec, int detect,
				 int headset_debounce, int button_debounce)
{
	u8 val;

	val = ((detect & AIC3X_HEADSET_DETECT_MASK)
		<< AIC3X_HEADSET_DETECT_SHIFT) |
	      ((headset_debounce & AIC3X_HEADSET_DEBOUNCE_MASK)
		<< AIC3X_HEADSET_DEBOUNCE_SHIFT) |
	      ((button_debounce & AIC3X_BUTTON_DEBOUNCE_MASK)
		<< AIC3X_BUTTON_DEBOUNCE_SHIFT);

	if (detect & AIC3X_HEADSET_DETECT_MASK)
		val |= AIC3X_HEADSET_DETECT_ENABLED;

1222
	snd_soc_write(codec, AIC3X_HEADSET_DETECT_CTRL_A, val);
1223 1224 1225
}
EXPORT_SYMBOL_GPL(aic3x_set_headset_detection);

1226 1227
int aic3x_headset_detected(struct snd_soc_codec *codec)
{
1228
	u8 val = 0;
1229 1230
	aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
	return (val >> 4) & 1;
1231 1232 1233
}
EXPORT_SYMBOL_GPL(aic3x_headset_detected);

1234 1235
int aic3x_button_pressed(struct snd_soc_codec *codec)
{
1236
	u8 val = 0;
1237 1238 1239 1240 1241
	aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
	return (val >> 5) & 1;
}
EXPORT_SYMBOL_GPL(aic3x_button_pressed);

1242 1243 1244 1245
#define AIC3X_RATES	SNDRV_PCM_RATE_8000_96000
#define AIC3X_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
			 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)

1246
static const struct snd_soc_dai_ops aic3x_dai_ops = {
1247 1248 1249 1250 1251 1252
	.hw_params	= aic3x_hw_params,
	.digital_mute	= aic3x_mute,
	.set_sysclk	= aic3x_set_dai_sysclk,
	.set_fmt	= aic3x_set_dai_fmt,
};

1253 1254
static struct snd_soc_dai_driver aic3x_dai = {
	.name = "tlv320aic3x-hifi",
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	.playback = {
		.stream_name = "Playback",
		.channels_min = 1,
		.channels_max = 2,
		.rates = AIC3X_RATES,
		.formats = AIC3X_FORMATS,},
	.capture = {
		.stream_name = "Capture",
		.channels_min = 1,
		.channels_max = 2,
		.rates = AIC3X_RATES,
		.formats = AIC3X_FORMATS,},
1267
	.ops = &aic3x_dai_ops,
1268
	.symmetric_rates = 1,
1269 1270
};

1271
static int aic3x_suspend(struct snd_soc_codec *codec, pm_message_t state)
1272
{
1273
	aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1274 1275 1276 1277

	return 0;
}

1278
static int aic3x_resume(struct snd_soc_codec *codec)
1279
{
1280
	aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1281 1282 1283 1284 1285 1286 1287 1288

	return 0;
}

/*
 * initialise the AIC3X driver
 * register the mixer and dsp interfaces with the kernel
 */
1289
static int aic3x_init(struct snd_soc_codec *codec)
1290
{
1291
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1292

1293 1294
	snd_soc_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
	snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1295 1296

	/* DAC default volume and mute */
1297 1298
	snd_soc_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
	snd_soc_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);
1299 1300

	/* DAC to HP default volume and route to Output mixer */
1301 1302 1303 1304
	snd_soc_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
	snd_soc_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
	snd_soc_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
	snd_soc_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1305
	/* DAC to Line Out default volume and route to Output mixer */
1306 1307
	snd_soc_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
	snd_soc_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1308
	/* DAC to Mono Line Out default volume and route to Output mixer */
1309 1310
	snd_soc_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
	snd_soc_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1311 1312

	/* unmute all outputs */
1313 1314 1315 1316 1317 1318 1319
	snd_soc_update_bits(codec, LLOPM_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, RLOPM_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, MONOLOPM_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, HPLOUT_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, HPROUT_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, HPLCOM_CTRL, UNMUTE, UNMUTE);
	snd_soc_update_bits(codec, HPRCOM_CTRL, UNMUTE, UNMUTE);
1320 1321

	/* ADC default volume and unmute */
1322 1323
	snd_soc_write(codec, LADC_VOL, DEFAULT_GAIN);
	snd_soc_write(codec, RADC_VOL, DEFAULT_GAIN);
1324
	/* By default route Line1 to ADC PGA mixer */
1325 1326
	snd_soc_write(codec, LINE1L_2_LADC_CTRL, 0x0);
	snd_soc_write(codec, LINE1R_2_RADC_CTRL, 0x0);
1327 1328

	/* PGA to HP Bypass default volume, disconnect from Output Mixer */
1329 1330 1331 1332
	snd_soc_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
	snd_soc_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
	snd_soc_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
1333
	/* PGA to Line Out default volume, disconnect from Output Mixer */
1334 1335
	snd_soc_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
1336
	/* PGA to Mono Line Out default volume, disconnect from Output Mixer */
1337 1338
	snd_soc_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);
1339 1340

	/* Line2 to HP Bypass default volume, disconnect from Output Mixer */
1341 1342 1343 1344
	snd_soc_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
	snd_soc_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
	snd_soc_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
1345
	/* Line2 Line Out default volume, disconnect from Output Mixer */
1346 1347
	snd_soc_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
1348
	/* Line2 to Mono Out default volume, disconnect from Output Mixer */
1349 1350
	snd_soc_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
	snd_soc_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);
1351

1352
	if (aic3x->model == AIC3X_MODEL_3007) {
1353
		aic3x_init_3007(codec);
1354
		snd_soc_write(codec, CLASSD_CTRL, 0);
1355 1356
	}

1357 1358
	return 0;
}
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
static bool aic3x_is_shared_reset(struct aic3x_priv *aic3x)
{
	struct aic3x_priv *a;

	list_for_each_entry(a, &reset_list, list) {
		if (gpio_is_valid(aic3x->gpio_reset) &&
		    aic3x->gpio_reset == a->gpio_reset)
			return true;
	}

	return false;
}

1373
static int aic3x_probe(struct snd_soc_codec *codec)
1374
{
1375
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1376
	int ret, i;
1377

1378
	INIT_LIST_HEAD(&aic3x->list);
1379
	aic3x->codec = codec;
L
Liam Girdwood 已提交
1380
	codec->dapm.idle_bias_off = 1;
1381

1382 1383 1384 1385 1386 1387
	ret = snd_soc_codec_set_cache_io(codec, 8, 8, aic3x->control_type);
	if (ret != 0) {
		dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
		return ret;
	}

1388 1389
	if (gpio_is_valid(aic3x->gpio_reset) &&
	    !aic3x_is_shared_reset(aic3x)) {
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
		ret = gpio_request(aic3x->gpio_reset, "tlv320aic3x reset");
		if (ret != 0)
			goto err_gpio;
		gpio_direction_output(aic3x->gpio_reset, 0);
	}

	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
		aic3x->supplies[i].supply = aic3x_supply_names[i];

	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(aic3x->supplies),
				 aic3x->supplies);
	if (ret != 0) {
		dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
		goto err_get;
	}
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++) {
		aic3x->disable_nb[i].nb.notifier_call = aic3x_regulator_event;
		aic3x->disable_nb[i].aic3x = aic3x;
		ret = regulator_register_notifier(aic3x->supplies[i].consumer,
						  &aic3x->disable_nb[i].nb);
		if (ret) {
			dev_err(codec->dev,
				"Failed to request regulator notifier: %d\n",
				 ret);
			goto err_notif;
		}
	}
1417

1418
	codec->cache_only = 1;
1419 1420
	aic3x_init(codec);

1421 1422
	if (aic3x->setup) {
		/* setup GPIO functions */
1423 1424 1425 1426
		snd_soc_write(codec, AIC3X_GPIO1_REG,
			      (aic3x->setup->gpio_func[0] & 0xf) << 4);
		snd_soc_write(codec, AIC3X_GPIO2_REG,
			      (aic3x->setup->gpio_func[1] & 0xf) << 4);
1427 1428
	}

1429 1430
	snd_soc_add_controls(codec, aic3x_snd_controls,
			     ARRAY_SIZE(aic3x_snd_controls));
1431 1432
	if (aic3x->model == AIC3X_MODEL_3007)
		snd_soc_add_controls(codec, &aic3x_classd_amp_gain_ctrl, 1);
1433

1434
	aic3x_add_widgets(codec);
1435
	list_add(&aic3x->list, &reset_list);
1436 1437

	return 0;
1438

1439 1440 1441 1442
err_notif:
	while (i--)
		regulator_unregister_notifier(aic3x->supplies[i].consumer,
					      &aic3x->disable_nb[i].nb);
1443 1444
	regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
err_get:
1445 1446
	if (gpio_is_valid(aic3x->gpio_reset) &&
	    !aic3x_is_shared_reset(aic3x))
1447 1448 1449
		gpio_free(aic3x->gpio_reset);
err_gpio:
	return ret;
1450 1451
}

1452
static int aic3x_remove(struct snd_soc_codec *codec)
1453
{
1454
	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1455
	int i;
1456

1457
	aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1458 1459 1460
	list_del(&aic3x->list);
	if (gpio_is_valid(aic3x->gpio_reset) &&
	    !aic3x_is_shared_reset(aic3x)) {
1461 1462 1463
		gpio_set_value(aic3x->gpio_reset, 0);
		gpio_free(aic3x->gpio_reset);
	}
1464 1465 1466
	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
		regulator_unregister_notifier(aic3x->supplies[i].consumer,
					      &aic3x->disable_nb[i].nb);
1467 1468
	regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);

1469 1470
	return 0;
}
1471

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static struct snd_soc_codec_driver soc_codec_dev_aic3x = {
	.set_bias_level = aic3x_set_bias_level,
	.reg_cache_size = ARRAY_SIZE(aic3x_reg),
	.reg_word_size = sizeof(u8),
	.reg_cache_default = aic3x_reg,
	.probe = aic3x_probe,
	.remove = aic3x_remove,
	.suspend = aic3x_suspend,
	.resume = aic3x_resume,
};

1483 1484 1485 1486 1487
/*
 * AIC3X 2 wire address can be up to 4 devices with device addresses
 * 0x18, 0x19, 0x1A, 0x1B
 */

1488
static const struct i2c_device_id aic3x_i2c_id[] = {
1489 1490 1491
	{ "tlv320aic3x", AIC3X_MODEL_3X },
	{ "tlv320aic33", AIC3X_MODEL_33 },
	{ "tlv320aic3007", AIC3X_MODEL_3007 },
1492 1493 1494 1495
	{ }
};
MODULE_DEVICE_TABLE(i2c, aic3x_i2c_id);

1496 1497 1498 1499
/*
 * If the i2c layer weren't so broken, we could pass this kind of data
 * around
 */
1500 1501
static int aic3x_i2c_probe(struct i2c_client *i2c,
			   const struct i2c_device_id *id)
1502
{
1503
	struct aic3x_pdata *pdata = i2c->dev.platform_data;
1504
	struct aic3x_priv *aic3x;
1505
	int ret;
1506

1507 1508 1509 1510 1511 1512
	aic3x = kzalloc(sizeof(struct aic3x_priv), GFP_KERNEL);
	if (aic3x == NULL) {
		dev_err(&i2c->dev, "failed to create private data\n");
		return -ENOMEM;
	}

1513 1514
	aic3x->control_type = SND_SOC_I2C;

1515
	i2c_set_clientdata(i2c, aic3x);
1516 1517 1518 1519 1520 1521
	if (pdata) {
		aic3x->gpio_reset = pdata->gpio_reset;
		aic3x->setup = pdata->setup;
	} else {
		aic3x->gpio_reset = -1;
	}
1522

1523
	aic3x->model = id->driver_data;
1524

1525 1526 1527
	ret = snd_soc_register_codec(&i2c->dev,
			&soc_codec_dev_aic3x, &aic3x_dai, 1);
	if (ret < 0)
1528
		kfree(aic3x);
1529
	return ret;
1530 1531
}

1532
static int aic3x_i2c_remove(struct i2c_client *client)
1533
{
1534 1535 1536
	snd_soc_unregister_codec(&client->dev);
	kfree(i2c_get_clientdata(client));
	return 0;
1537 1538 1539 1540 1541
}

/* machine i2c codec control layer */
static struct i2c_driver aic3x_i2c_driver = {
	.driver = {
1542
		.name = "tlv320aic3x-codec",
1543 1544
		.owner = THIS_MODULE,
	},
1545
	.probe	= aic3x_i2c_probe,
1546 1547
	.remove = aic3x_i2c_remove,
	.id_table = aic3x_i2c_id,
1548 1549
};

1550
static int __init aic3x_modinit(void)
1551 1552
{
	int ret = 0;
1553 1554 1555 1556
	ret = i2c_add_driver(&aic3x_i2c_driver);
	if (ret != 0) {
		printk(KERN_ERR "Failed to register TLV320AIC3x I2C driver: %d\n",
		       ret);
1557 1558 1559
	}
	return ret;
}
M
Mark Brown 已提交
1560 1561 1562 1563
module_init(aic3x_modinit);

static void __exit aic3x_exit(void)
{
1564
	i2c_del_driver(&aic3x_i2c_driver);
M
Mark Brown 已提交
1565 1566 1567
}
module_exit(aic3x_exit);

1568 1569 1570
MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
MODULE_AUTHOR("Vladimir Barinov");
MODULE_LICENSE("GPL");