skl-messages.c 35.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
 *  configurations
 *
 *  Copyright (C) 2015 Intel Corp
 *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
 *	   Jeeja KP <jeeja.kp@intel.com>
 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 */

#include <linux/slab.h>
#include <linux/pci.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include "skl-sst-dsp.h"
25
#include "cnl-sst-dsp.h"
26 27 28 29
#include "skl-sst-ipc.h"
#include "skl.h"
#include "../common/sst-dsp.h"
#include "../common/sst-dsp-priv.h"
30 31
#include "skl-topology.h"
#include "skl-tplg-interface.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

static int skl_alloc_dma_buf(struct device *dev,
		struct snd_dma_buffer *dmab, size_t size)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_bus *bus = ebus_to_hbus(ebus);

	if (!bus)
		return -ENODEV;

	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
}

static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_bus *bus = ebus_to_hbus(ebus);

	if (!bus)
		return -ENODEV;

	bus->io_ops->dma_free_pages(bus, dmab);

	return 0;
}

58 59 60 61 62 63 64 65 66 67 68 69 70
#define SKL_ASTATE_PARAM_ID	4

void skl_dsp_set_astate_cfg(struct skl_sst *ctx, u32 cnt, void *data)
{
	struct skl_ipc_large_config_msg	msg = {0};

	msg.large_param_id = SKL_ASTATE_PARAM_ID;
	msg.param_data_size = (cnt * sizeof(struct skl_astate_param) +
				sizeof(cnt));

	skl_ipc_set_large_config(&ctx->ipc, &msg, data);
}

71 72 73 74
#define NOTIFICATION_PARAM_ID 3
#define NOTIFICATION_MASK 0xf

/* disable notfication for underruns/overruns from firmware module */
75
void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
76 77 78 79 80 81 82 83 84 85 86 87 88
{
	struct notification_mask mask;
	struct skl_ipc_large_config_msg	msg = {0};

	mask.notify = NOTIFICATION_MASK;
	mask.enable = enable;

	msg.large_param_id = NOTIFICATION_PARAM_ID;
	msg.param_data_size = sizeof(mask);

	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
				int stream_tag, int enable)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_bus *bus = ebus_to_hbus(ebus);
	struct hdac_stream *stream = snd_hdac_get_stream(bus,
			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
	struct hdac_ext_stream *estream;

	if (!stream)
		return -EINVAL;

	estream = stream_to_hdac_ext_stream(stream);
	/* enable/disable SPIB for this hdac stream */
	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);

	/* set the spib value */
	snd_hdac_ext_stream_set_spib(ebus, estream, size);

	return 0;
}

static int skl_dsp_prepare(struct device *dev, unsigned int format,
			unsigned int size, struct snd_dma_buffer *dmab)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_bus *bus = ebus_to_hbus(ebus);
	struct hdac_ext_stream *estream;
	struct hdac_stream *stream;
	struct snd_pcm_substream substream;
	int ret;

	if (!bus)
		return -ENODEV;

	memset(&substream, 0, sizeof(substream));
	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;

	estream = snd_hdac_ext_stream_assign(ebus, &substream,
					HDAC_EXT_STREAM_TYPE_HOST);
	if (!estream)
		return -ENODEV;

	stream = hdac_stream(estream);

	/* assign decouple host dma channel */
	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
	if (ret < 0)
		return ret;

	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);

	return stream->stream_tag;
}

static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_stream *stream;
	struct hdac_bus *bus = ebus_to_hbus(ebus);

	if (!bus)
		return -ENODEV;

	stream = snd_hdac_get_stream(bus,
		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
	if (!stream)
		return -EINVAL;

	snd_hdac_dsp_trigger(stream, start);

	return 0;
}

static int skl_dsp_cleanup(struct device *dev,
		struct snd_dma_buffer *dmab, int stream_tag)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_stream *stream;
	struct hdac_ext_stream *estream;
	struct hdac_bus *bus = ebus_to_hbus(ebus);

	if (!bus)
		return -ENODEV;

	stream = snd_hdac_get_stream(bus,
		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
	if (!stream)
		return -EINVAL;

	estream = stream_to_hdac_ext_stream(stream);
	skl_dsp_setup_spib(dev, 0, stream_tag, false);
	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);

	snd_hdac_dsp_cleanup(stream, dmab);

	return 0;
}

188 189 190 191 192 193 194 195 196 197 198 199
static struct skl_dsp_loader_ops skl_get_loader_ops(void)
{
	struct skl_dsp_loader_ops loader_ops;

	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));

	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
	loader_ops.free_dma_buf = skl_free_dma_buf;

	return loader_ops;
};

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
{
	struct skl_dsp_loader_ops loader_ops;

	memset(&loader_ops, 0, sizeof(loader_ops));

	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
	loader_ops.free_dma_buf = skl_free_dma_buf;
	loader_ops.prepare = skl_dsp_prepare;
	loader_ops.trigger = skl_dsp_trigger;
	loader_ops.cleanup = skl_dsp_cleanup;

	return loader_ops;
};

215 216 217
static const struct skl_dsp_ops dsp_ops[] = {
	{
		.id = 0x9d70,
218
		.num_cores = 2,
219 220
		.loader_ops = skl_get_loader_ops,
		.init = skl_sst_dsp_init,
221
		.init_fw = skl_sst_init_fw,
222 223
		.cleanup = skl_sst_dsp_cleanup
	},
V
Vinod Koul 已提交
224 225
	{
		.id = 0x9d71,
226
		.num_cores = 2,
V
Vinod Koul 已提交
227
		.loader_ops = skl_get_loader_ops,
228
		.init = kbl_sst_dsp_init,
229
		.init_fw = skl_sst_init_fw,
V
Vinod Koul 已提交
230 231
		.cleanup = skl_sst_dsp_cleanup
	},
232 233
	{
		.id = 0x5a98,
234
		.num_cores = 2,
235 236
		.loader_ops = bxt_get_loader_ops,
		.init = bxt_sst_dsp_init,
237
		.init_fw = bxt_sst_init_fw,
238 239
		.cleanup = bxt_sst_dsp_cleanup
	},
240 241
	{
		.id = 0x3198,
242
		.num_cores = 2,
243 244 245 246 247
		.loader_ops = bxt_get_loader_ops,
		.init = bxt_sst_dsp_init,
		.init_fw = bxt_sst_init_fw,
		.cleanup = bxt_sst_dsp_cleanup
	},
248 249 250 251 252 253 254 255
	{
		.id = 0x9dc8,
		.num_cores = 4,
		.loader_ops = bxt_get_loader_ops,
		.init = cnl_sst_dsp_init,
		.init_fw = cnl_sst_init_fw,
		.cleanup = cnl_sst_dsp_cleanup
	},
256 257
};

258
const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
259 260 261 262 263
{
	int i;

	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
		if (dsp_ops[i].id == pci_id)
264
			return &dsp_ops[i];
265 266
	}

267
	return NULL;
268 269
}

270 271 272 273 274 275
int skl_init_dsp(struct skl *skl)
{
	void __iomem *mmio_base;
	struct hdac_ext_bus *ebus = &skl->ebus;
	struct hdac_bus *bus = ebus_to_hbus(ebus);
	struct skl_dsp_loader_ops loader_ops;
276
	int irq = bus->irq;
277
	const struct skl_dsp_ops *ops;
278
	struct skl_dsp_cores *cores;
279
	int ret;
280 281 282 283 284 285 286 287 288 289 290 291

	/* enable ppcap interrupt */
	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);

	/* read the BAR of the ADSP MMIO */
	mmio_base = pci_ioremap_bar(skl->pci, 4);
	if (mmio_base == NULL) {
		dev_err(bus->dev, "ioremap error\n");
		return -ENXIO;
	}

292
	ops = skl_get_dsp_ops(skl->pci->device);
293 294
	if (!ops) {
		ret = -EIO;
295
		goto unmap_mmio;
296
	}
297

298 299 300 301
	loader_ops = ops->loader_ops();
	ret = ops->init(bus->dev, mmio_base, irq,
				skl->fw_name, loader_ops,
				&skl->skl_sst);
302

303
	if (ret < 0)
304
		goto unmap_mmio;
305

306
	skl->skl_sst->dsp_ops = ops;
307 308 309 310
	cores = &skl->skl_sst->cores;
	cores->count = ops->num_cores;

	cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
311 312 313 314
	if (!cores->state) {
		ret = -ENOMEM;
		goto unmap_mmio;
	}
315 316 317 318

	cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
				     GFP_KERNEL);
	if (!cores->usage_count) {
319 320
		ret = -ENOMEM;
		goto free_core_state;
321
	}
322

323 324
	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);

325 326 327 328 329 330 331 332
	return 0;

free_core_state:
	kfree(cores->state);

unmap_mmio:
	iounmap(mmio_base);

333 334 335
	return ret;
}

336
int skl_free_dsp(struct skl *skl)
337 338 339
{
	struct hdac_ext_bus *ebus = &skl->ebus;
	struct hdac_bus *bus = ebus_to_hbus(ebus);
340
	struct skl_sst *ctx = skl->skl_sst;
341 342 343 344

	/* disable  ppcap interrupt */
	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);

345
	ctx->dsp_ops->cleanup(bus->dev, ctx);
346

347 348 349
	kfree(ctx->cores.state);
	kfree(ctx->cores.usage_count);

350 351
	if (ctx->dsp->addr.lpe)
		iounmap(ctx->dsp->addr.lpe);
352 353

	return 0;
354 355
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/*
 * In the case of "suspend_active" i.e, the Audio IP being active
 * during system suspend, immediately excecute any pending D0i3 work
 * before suspending. This is needed for the IP to work in low power
 * mode during system suspend. In the case of normal suspend, cancel
 * any pending D0i3 work.
 */
int skl_suspend_late_dsp(struct skl *skl)
{
	struct skl_sst *ctx = skl->skl_sst;
	struct delayed_work *dwork;

	if (!ctx)
		return 0;

	dwork = &ctx->d0i3.work;

	if (dwork->work.func) {
		if (skl->supend_active)
			flush_delayed_work(dwork);
		else
			cancel_delayed_work_sync(dwork);
	}

	return 0;
}

383 384 385 386 387 388
int skl_suspend_dsp(struct skl *skl)
{
	struct skl_sst *ctx = skl->skl_sst;
	int ret;

	/* if ppcap is not supported return 0 */
389
	if (!skl->ebus.bus.ppcap)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
		return 0;

	ret = skl_dsp_sleep(ctx->dsp);
	if (ret < 0)
		return ret;

	/* disable ppcap interrupt */
	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);

	return 0;
}

int skl_resume_dsp(struct skl *skl)
{
	struct skl_sst *ctx = skl->skl_sst;
406
	int ret;
407 408

	/* if ppcap is not supported return 0 */
409
	if (!skl->ebus.bus.ppcap)
410 411 412 413 414 415
		return 0;

	/* enable ppcap interrupt */
	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);

416 417 418 419
	/* check if DSP 1st boot is done */
	if (skl->skl_sst->is_first_boot == true)
		return 0;

420 421 422 423 424
	ret = skl_dsp_wake(ctx->dsp);
	if (ret < 0)
		return ret;

	skl_dsp_enable_notification(skl->skl_sst, false);
425 426 427 428 429

	if (skl->cfg.astate_cfg != NULL) {
		skl_dsp_set_astate_cfg(skl->skl_sst, skl->cfg.astate_cfg->count,
					skl->cfg.astate_cfg);
	}
430
	return ret;
431
}
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

enum skl_bitdepth skl_get_bit_depth(int params)
{
	switch (params) {
	case 8:
		return SKL_DEPTH_8BIT;

	case 16:
		return SKL_DEPTH_16BIT;

	case 24:
		return SKL_DEPTH_24BIT;

	case 32:
		return SKL_DEPTH_32BIT;

	default:
		return SKL_DEPTH_INVALID;

	}
}

/*
 * Each module in DSP expects a base module configuration, which consists of
 * PCM format information, which we calculate in driver and resource values
 * which are read from widget information passed through topology binary
 * This is send when we create a module with INIT_INSTANCE IPC msg
 */
static void skl_set_base_module_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_base_cfg *base_cfg)
{
464 465 466 467
	struct skl_module *module = mconfig->module;
	struct skl_module_res *res = &module->resources[mconfig->res_idx];
	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
	struct skl_module_fmt *format = &fmt->inputs[0].fmt;
468

469
	base_cfg->audio_fmt.number_of_channels = format->channels;
470 471 472 473 474 475 476 477 478 479

	base_cfg->audio_fmt.s_freq = format->s_freq;
	base_cfg->audio_fmt.bit_depth = format->bit_depth;
	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;

	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
			format->bit_depth, format->valid_bit_depth,
			format->ch_cfg);

480
	base_cfg->audio_fmt.channel_map = format->ch_map;
481

482
	base_cfg->audio_fmt.interleaving = format->interleaving_style;
483

484 485 486 487
	base_cfg->cps = res->cps;
	base_cfg->ibs = res->ibs;
	base_cfg->obs = res->obs;
	base_cfg->is_pages = res->is_pages;
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
}

/*
 * Copies copier capabilities into copier module and updates copier module
 * config size.
 */
static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
				struct skl_cpr_cfg *cpr_mconfig)
{
	if (mconfig->formats_config.caps_size == 0)
		return;

	memcpy(cpr_mconfig->gtw_cfg.config_data,
			mconfig->formats_config.caps,
			mconfig->formats_config.caps_size);

	cpr_mconfig->gtw_cfg.config_length =
			(mconfig->formats_config.caps_size) / 4;
}

508
#define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
509 510 511 512
/*
 * Calculate the gatewat settings required for copier module, type of
 * gateway and index of gateway to use
 */
513 514
static u32 skl_get_node_id(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig)
515 516
{
	union skl_connector_node_id node_id = {0};
517
	union skl_ssp_dma_node ssp_node  = {0};
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	struct skl_pipe_params *params = mconfig->pipe->p_params;

	switch (mconfig->dev_type) {
	case SKL_DEVICE_BT:
		node_id.node.dma_type =
			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
			SKL_DMA_I2S_LINK_INPUT_CLASS;
		node_id.node.vindex = params->host_dma_id +
					(mconfig->vbus_id << 3);
		break;

	case SKL_DEVICE_I2S:
		node_id.node.dma_type =
			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
			SKL_DMA_I2S_LINK_INPUT_CLASS;
535 536 537
		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
		node_id.node.vindex = ssp_node.val;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		break;

	case SKL_DEVICE_DMIC:
		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
		node_id.node.vindex = mconfig->vbus_id +
					 (mconfig->time_slot);
		break;

	case SKL_DEVICE_HDALINK:
		node_id.node.dma_type =
			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
			SKL_DMA_HDA_LINK_INPUT_CLASS;
		node_id.node.vindex = params->link_dma_id;
		break;

554
	case SKL_DEVICE_HDAHOST:
555 556 557 558 559 560
		node_id.node.dma_type =
			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
			SKL_DMA_HDA_HOST_INPUT_CLASS;
		node_id.node.vindex = params->host_dma_id;
		break;
561 562

	default:
563 564 565 566 567 568 569 570 571 572 573
		node_id.val = 0xFFFFFFFF;
		break;
	}

	return node_id.val;
}

static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_cpr_cfg *cpr_mconfig)
{
574
	u32 dma_io_buf;
575 576 577
	struct skl_module_res *res;
	int res_idx = mconfig->res_idx;
	struct skl *skl = get_skl_ctx(ctx->dev);
578

579 580 581
	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);

	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
582 583
		cpr_mconfig->cpr_feature_mask = 0;
		return;
584 585
	}

586 587 588 589 590 591 592 593
	if (skl->nr_modules) {
		res = &mconfig->module->resources[mconfig->res_idx];
		cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
		goto skip_buf_size_calc;
	} else {
		res = &mconfig->module->resources[res_idx];
	}

594 595 596
	switch (mconfig->hw_conn_type) {
	case SKL_CONN_SOURCE:
		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
597
			dma_io_buf =  res->ibs;
598
		else
599
			dma_io_buf =  res->obs;
600 601 602 603
		break;

	case SKL_CONN_SINK:
		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
604
			dma_io_buf =  res->obs;
605
		else
606
			dma_io_buf =  res->ibs;
607 608 609 610 611 612 613 614 615 616
		break;

	default:
		dev_warn(ctx->dev, "wrong connection type: %d\n",
				mconfig->hw_conn_type);
		return;
	}

	cpr_mconfig->gtw_cfg.dma_buffer_size =
				mconfig->dma_buffer_size * dma_io_buf;
617

618 619 620
	/* fallback to 2ms default value */
	if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
		if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
621
			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
622
		else
623
			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
624 625
	}

626
skip_buf_size_calc:
627 628 629 630 631 632
	cpr_mconfig->cpr_feature_mask = 0;
	cpr_mconfig->gtw_cfg.config_length  = 0;

	skl_copy_copier_caps(mconfig, cpr_mconfig);
}

633
#define DMA_CONTROL_ID 5
634
#define DMA_I2S_BLOB_SIZE 21
635

636 637
int skl_dsp_set_dma_control(struct skl_sst *ctx, u32 *caps,
				u32 caps_size, u32 node_id)
638 639 640 641 642 643 644
{
	struct skl_dma_control *dma_ctrl;
	struct skl_ipc_large_config_msg msg = {0};
	int err = 0;


	/*
645
	 * if blob size zero, then return
646
	 */
647
	if (caps_size == 0)
648 649 650
		return 0;

	msg.large_param_id = DMA_CONTROL_ID;
651
	msg.param_data_size = sizeof(struct skl_dma_control) + caps_size;
652 653 654 655 656

	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
	if (dma_ctrl == NULL)
		return -ENOMEM;

657
	dma_ctrl->node_id = node_id;
658

659 660 661 662 663 664 665
	/*
	 * NHLT blob may contain additional configs along with i2s blob.
	 * firmware expects only the i2s blob size as the config_length.
	 * So fix to i2s blob size.
	 * size in dwords.
	 */
	dma_ctrl->config_length = DMA_I2S_BLOB_SIZE;
666

667
	memcpy(dma_ctrl->config_data, caps, caps_size);
668 669 670 671 672 673 674

	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);

	kfree(dma_ctrl);
	return err;
}

675 676 677 678
static void skl_setup_out_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_audio_data_format *out_fmt)
{
679 680 681
	struct skl_module *module = mconfig->module;
	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
	struct skl_module_fmt *format = &fmt->outputs[0].fmt;
682 683 684 685 686 687 688

	out_fmt->number_of_channels = (u8)format->channels;
	out_fmt->s_freq = format->s_freq;
	out_fmt->bit_depth = format->bit_depth;
	out_fmt->valid_bit_depth = format->valid_bit_depth;
	out_fmt->ch_cfg = format->ch_cfg;

689 690 691
	out_fmt->channel_map = format->ch_map;
	out_fmt->interleaving = format->interleaving_style;
	out_fmt->sample_type = format->sample_type;
692 693 694 695 696

	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
}

697 698 699 700 701 702 703 704 705
/*
 * DSP needs SRC module for frequency conversion, SRC takes base module
 * configuration and the target frequency as extra parameter passed as src
 * config
 */
static void skl_set_src_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_src_module_cfg *src_mconfig)
{
706 707 708
	struct skl_module *module = mconfig->module;
	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

	skl_set_base_module_format(ctx, mconfig,
		(struct skl_base_cfg *)src_mconfig);

	src_mconfig->src_cfg = fmt->s_freq;
}

/*
 * DSP needs updown module to do channel conversion. updown module take base
 * module configuration and channel configuration
 * It also take coefficients and now we have defaults applied here
 */
static void skl_set_updown_mixer_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_up_down_mixer_cfg *mixer_mconfig)
{
725 726 727
	struct skl_module *module = mconfig->module;
	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
728 729 730 731 732 733 734 735 736 737 738 739 740 741
	int i = 0;

	skl_set_base_module_format(ctx,	mconfig,
		(struct skl_base_cfg *)mixer_mconfig);
	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;

	/* Select F/W default coefficient */
	mixer_mconfig->coeff_sel = 0x0;

	/* User coeff, don't care since we are selecting F/W defaults */
	for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
		mixer_mconfig->coeff[i] = 0xDEADBEEF;
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/*
 * 'copier' is DSP internal module which copies data from Host DMA (HDA host
 * dma) or link (hda link, SSP, PDM)
 * Here we calculate the copier module parameters, like PCM format, output
 * format, gateway settings
 * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
 */
static void skl_set_copier_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_cpr_cfg *cpr_mconfig)
{
	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;

	skl_set_base_module_format(ctx, mconfig, base_cfg);

	skl_setup_out_format(ctx, mconfig, out_fmt);
	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
/*
 * Algo module are DSP pre processing modules. Algo module take base module
 * configuration and params
 */

static void skl_set_algo_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_algo_cfg *algo_mcfg)
{
	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;

	skl_set_base_module_format(ctx, mconfig, base_cfg);

	if (mconfig->formats_config.caps_size == 0)
		return;

	memcpy(algo_mcfg->params,
			mconfig->formats_config.caps,
			mconfig->formats_config.caps_size);

}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
/*
 * Mic select module allows selecting one or many input channels, thus
 * acting as a demux.
 *
 * Mic select module take base module configuration and out-format
 * configuration
 */
static void skl_set_base_outfmt_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
{
	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
	struct skl_base_cfg *base_cfg =
				(struct skl_base_cfg *)base_outfmt_mcfg;

	skl_set_base_module_format(ctx, mconfig, base_cfg);
	skl_setup_out_format(ctx, mconfig, out_fmt);
}

803 804 805 806 807 808 809 810 811 812 813
static u16 skl_get_module_param_size(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig)
{
	u16 param_size;

	switch (mconfig->m_type) {
	case SKL_MODULE_TYPE_COPIER:
		param_size = sizeof(struct skl_cpr_cfg);
		param_size += mconfig->formats_config.caps_size;
		return param_size;

814 815 816 817 818 819
	case SKL_MODULE_TYPE_SRCINT:
		return sizeof(struct skl_src_module_cfg);

	case SKL_MODULE_TYPE_UPDWMIX:
		return sizeof(struct skl_up_down_mixer_cfg);

820 821 822 823 824
	case SKL_MODULE_TYPE_ALGO:
		param_size = sizeof(struct skl_base_cfg);
		param_size += mconfig->formats_config.caps_size;
		return param_size;

825
	case SKL_MODULE_TYPE_BASE_OUTFMT:
826
	case SKL_MODULE_TYPE_MIC_SELECT:
827
	case SKL_MODULE_TYPE_KPB:
828 829
		return sizeof(struct skl_base_outfmt_cfg);

830 831 832 833 834 835 836 837 838 839 840 841
	default:
		/*
		 * return only base cfg when no specific module type is
		 * specified
		 */
		return sizeof(struct skl_base_cfg);
	}

	return 0;
}

/*
842 843 844 845
 * DSP firmware supports various modules like copier, SRC, updown etc.
 * These modules required various parameters to be calculated and sent for
 * the module initialization to DSP. By default a generic module needs only
 * base module format configuration
846
 */
847

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
static int skl_set_module_format(struct skl_sst *ctx,
			struct skl_module_cfg *module_config,
			u16 *module_config_size,
			void **param_data)
{
	u16 param_size;

	param_size  = skl_get_module_param_size(ctx, module_config);

	*param_data = kzalloc(param_size, GFP_KERNEL);
	if (NULL == *param_data)
		return -ENOMEM;

	*module_config_size = param_size;

	switch (module_config->m_type) {
	case SKL_MODULE_TYPE_COPIER:
		skl_set_copier_format(ctx, module_config, *param_data);
		break;

868 869 870 871 872 873 874 875
	case SKL_MODULE_TYPE_SRCINT:
		skl_set_src_format(ctx, module_config, *param_data);
		break;

	case SKL_MODULE_TYPE_UPDWMIX:
		skl_set_updown_mixer_format(ctx, module_config, *param_data);
		break;

876 877 878 879
	case SKL_MODULE_TYPE_ALGO:
		skl_set_algo_format(ctx, module_config, *param_data);
		break;

880
	case SKL_MODULE_TYPE_BASE_OUTFMT:
881
	case SKL_MODULE_TYPE_MIC_SELECT:
882
	case SKL_MODULE_TYPE_KPB:
883 884 885
		skl_set_base_outfmt_format(ctx, module_config, *param_data);
		break;

886 887 888 889 890 891 892 893
	default:
		skl_set_base_module_format(ctx, module_config, *param_data);
		break;

	}

	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
			module_config->id.module_id, param_size);
894
	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
			*param_data, param_size, false);
	return 0;
}

static int skl_get_queue_index(struct skl_module_pin *mpin,
				struct skl_module_inst_id id, int max)
{
	int i;

	for (i = 0; i < max; i++)  {
		if (mpin[i].id.module_id == id.module_id &&
			mpin[i].id.instance_id == id.instance_id)
			return i;
	}

	return -EINVAL;
}

/*
 * Allocates queue for each module.
 * if dynamic, the pin_index is allocated 0 to max_pin.
 * In static, the pin_index is fixed based on module_id and instance id
 */
static int skl_alloc_queue(struct skl_module_pin *mpin,
919
			struct skl_module_cfg *tgt_cfg, int max)
920 921
{
	int i;
922
	struct skl_module_inst_id id = tgt_cfg->id;
923 924 925 926 927 928 929 930
	/*
	 * if pin in dynamic, find first free pin
	 * otherwise find match module and instance id pin as topology will
	 * ensure a unique pin is assigned to this so no need to
	 * allocate/free
	 */
	for (i = 0; i < max; i++)  {
		if (mpin[i].is_dynamic) {
931 932 933
			if (!mpin[i].in_use &&
				mpin[i].pin_state == SKL_PIN_UNBIND) {

934 935 936
				mpin[i].in_use = true;
				mpin[i].id.module_id = id.module_id;
				mpin[i].id.instance_id = id.instance_id;
937
				mpin[i].id.pvt_id = id.pvt_id;
938
				mpin[i].tgt_mcfg = tgt_cfg;
939 940 941 942
				return i;
			}
		} else {
			if (mpin[i].id.module_id == id.module_id &&
943 944 945 946
				mpin[i].id.instance_id == id.instance_id &&
				mpin[i].pin_state == SKL_PIN_UNBIND) {

				mpin[i].tgt_mcfg = tgt_cfg;
947
				return i;
948
			}
949 950 951 952 953 954 955 956 957 958 959 960
		}
	}

	return -EINVAL;
}

static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
{
	if (mpin[q_index].is_dynamic) {
		mpin[q_index].in_use = false;
		mpin[q_index].id.module_id = 0;
		mpin[q_index].id.instance_id = 0;
961
		mpin[q_index].id.pvt_id = 0;
962
	}
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	mpin[q_index].pin_state = SKL_PIN_UNBIND;
	mpin[q_index].tgt_mcfg = NULL;
}

/* Module state will be set to unint, if all the out pin state is UNBIND */

static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
						struct skl_module_cfg *mcfg)
{
	int i;
	bool found = false;

	for (i = 0; i < max; i++)  {
		if (mpin[i].pin_state == SKL_PIN_UNBIND)
			continue;
		found = true;
		break;
	}

	if (!found)
983
		mcfg->m_state = SKL_MODULE_INIT_DONE;
984
	return;
985
}
986 987 988 989 990 991 992 993

/*
 * A module needs to be instanataited in DSP. A mdoule is present in a
 * collection of module referred as a PIPE.
 * We first calculate the module format, based on module type and then
 * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
 */
int skl_init_module(struct skl_sst *ctx,
994
			struct skl_module_cfg *mconfig)
995 996 997 998 999 1000 1001
{
	u16 module_config_size = 0;
	void *param_data = NULL;
	int ret;
	struct skl_ipc_init_instance_msg msg;

	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
1002
		 mconfig->id.module_id, mconfig->id.pvt_id);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
				 mconfig->pipe->state, mconfig->pipe->ppl_id);
		return -EIO;
	}

	ret = skl_set_module_format(ctx, mconfig,
			&module_config_size, &param_data);
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
		return ret;
	}

	msg.module_id = mconfig->id.module_id;
1018
	msg.instance_id = mconfig->id.pvt_id;
1019 1020 1021
	msg.ppl_instance_id = mconfig->pipe->ppl_id;
	msg.param_data_size = module_config_size;
	msg.core_id = mconfig->core_id;
1022
	msg.domain = mconfig->domain;
1023 1024 1025 1026 1027 1028 1029 1030

	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
		kfree(param_data);
		return ret;
	}
	mconfig->m_state = SKL_MODULE_INIT_DONE;
1031
	kfree(param_data);
1032 1033 1034 1035 1036 1037 1038
	return ret;
}

static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
	*src_module, struct skl_module_cfg *dst_module)
{
	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
1039
		__func__, src_module->id.module_id, src_module->id.pvt_id);
1040
	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1041
		 dst_module->id.module_id, dst_module->id.pvt_id);
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
		src_module->m_state, dst_module->m_state);
}

/*
 * On module freeup, we need to unbind the module with modules
 * it is already bind.
 * Find the pin allocated and unbind then using bind_unbind IPC
 */
int skl_unbind_modules(struct skl_sst *ctx,
			struct skl_module_cfg *src_mcfg,
			struct skl_module_cfg *dst_mcfg)
{
	int ret;
	struct skl_ipc_bind_unbind_msg msg;
	struct skl_module_inst_id src_id = src_mcfg->id;
	struct skl_module_inst_id dst_id = dst_mcfg->id;
1060 1061
	int in_max = dst_mcfg->module->max_input_pins;
	int out_max = src_mcfg->module->max_output_pins;
1062
	int src_index, dst_index, src_pin_state, dst_pin_state;
1063 1064 1065 1066 1067 1068

	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);

	/* get src queue index */
	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
	if (src_index < 0)
1069
		return 0;
1070

1071
	msg.src_queue = src_index;
1072 1073 1074 1075

	/* get dst queue index */
	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
	if (dst_index < 0)
1076
		return 0;
1077

1078 1079 1080 1081 1082 1083 1084 1085
	msg.dst_queue = dst_index;

	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;

	if (src_pin_state != SKL_PIN_BIND_DONE ||
		dst_pin_state != SKL_PIN_BIND_DONE)
		return 0;
1086 1087

	msg.module_id = src_mcfg->id.module_id;
1088
	msg.instance_id = src_mcfg->id.pvt_id;
1089
	msg.dst_module_id = dst_mcfg->id.module_id;
1090
	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1091 1092 1093 1094 1095 1096 1097
	msg.bind = false;

	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
	if (!ret) {
		/* free queue only if unbind is success */
		skl_free_queue(src_mcfg->m_out_pin, src_index);
		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1098 1099 1100 1101 1102 1103

		/*
		 * check only if src module bind state, bind is
		 * always from src -> sink
		 */
		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1104 1105 1106 1107 1108
	}

	return ret;
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
				struct skl_module_fmt *format)
{
	pin_fmt->number_of_channels = format->channels;
	pin_fmt->s_freq = format->s_freq;
	pin_fmt->bit_depth = format->bit_depth;
	pin_fmt->valid_bit_depth = format->valid_bit_depth;
	pin_fmt->ch_cfg = format->ch_cfg;
	pin_fmt->sample_type = format->sample_type;
	pin_fmt->channel_map = format->ch_map;
	pin_fmt->interleaving = format->interleaving_style;
}

#define CPR_SINK_FMT_PARAM_ID 2

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/*
 * Once a module is instantiated it need to be 'bind' with other modules in
 * the pipeline. For binding we need to find the module pins which are bind
 * together
 * This function finds the pins and then sends bund_unbind IPC message to
 * DSP using IPC helper
 */
int skl_bind_modules(struct skl_sst *ctx,
			struct skl_module_cfg *src_mcfg,
			struct skl_module_cfg *dst_mcfg)
{
1135
	int ret = 0;
1136
	struct skl_ipc_bind_unbind_msg msg;
1137 1138
	int in_max = dst_mcfg->module->max_input_pins;
	int out_max = src_mcfg->module->max_output_pins;
1139
	int src_index, dst_index;
1140 1141 1142 1143
	struct skl_module_fmt *format;
	struct skl_cpr_pin_fmt pin_fmt;
	struct skl_module *module;
	struct skl_module_iface *fmt;
1144 1145 1146

	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);

1147
	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1148 1149 1150
		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
		return 0;

1151
	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1152 1153 1154
	if (src_index < 0)
		return -EINVAL;

1155 1156
	msg.src_queue = src_index;
	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1157 1158 1159 1160 1161
	if (dst_index < 0) {
		skl_free_queue(src_mcfg->m_out_pin, src_index);
		return -EINVAL;
	}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	/*
	 * Copier module requires the separate large_config_set_ipc to
	 * configure the pins other than 0
	 */
	if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
		pin_fmt.sink_id = src_index;
		module = src_mcfg->module;
		fmt = &module->formats[src_mcfg->fmt_idx];

		/* Input fmt is same as that of src module input cfg */
		format = &fmt->inputs[0].fmt;
		fill_pin_params(&(pin_fmt.src_fmt), format);

		format = &fmt->outputs[src_index].fmt;
		fill_pin_params(&(pin_fmt.dst_fmt), format);
		ret = skl_set_module_params(ctx, (void *)&pin_fmt,
					sizeof(struct skl_cpr_pin_fmt),
					CPR_SINK_FMT_PARAM_ID, src_mcfg);

		if (ret < 0)
			goto out;
	}

1185
	msg.dst_queue = dst_index;
1186 1187 1188 1189 1190

	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
			 msg.src_queue, msg.dst_queue);

	msg.module_id = src_mcfg->id.module_id;
1191
	msg.instance_id = src_mcfg->id.pvt_id;
1192
	msg.dst_module_id = dst_mcfg->id.module_id;
1193
	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1194 1195 1196 1197 1198 1199
	msg.bind = true;

	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);

	if (!ret) {
		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1200 1201
		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1202
		return ret;
1203
	}
1204 1205 1206 1207
out:
	/* error case , if IPC fails, clear the queue index */
	skl_free_queue(src_mcfg->m_out_pin, src_index);
	skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1208 1209 1210

	return ret;
}
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
	enum skl_ipc_pipeline_state state)
{
	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);

	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
}

/*
 * A pipeline is a collection of modules. Before a module in instantiated a
 * pipeline needs to be created for it.
 * This function creates pipeline, by sending create pipeline IPC messages
 * to FW
 */
int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
{
	int ret;

	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);

	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1233 1234
				pipe->pipe_priority, pipe->ppl_id,
				pipe->lp_mode);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to create pipeline\n");
		return ret;
	}

	pipe->state = SKL_PIPE_CREATED;

	return 0;
}

/*
 * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
 * pause the pipeline first and then delete it
 * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
 * DMA engines and releases resources
 */
int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
{
	int ret;

	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);

1257
	/* If pipe is started, do stop the pipe in FW. */
1258
	if (pipe->state >= SKL_PIPE_STARTED) {
1259 1260 1261 1262 1263 1264 1265
		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
		if (ret < 0) {
			dev_err(ctx->dev, "Failed to stop pipeline\n");
			return ret;
		}

		pipe->state = SKL_PIPE_PAUSED;
1266
	}
1267

1268 1269 1270
	/* If pipe was not created in FW, do not try to delete it */
	if (pipe->state < SKL_PIPE_CREATED)
		return 0;
1271

1272 1273 1274 1275
	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to delete pipeline\n");
		return ret;
1276 1277
	}

1278 1279
	pipe->state = SKL_PIPE_INVALID;

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	return ret;
}

/*
 * A pipeline is also a scheduling entity in DSP which can be run, stopped
 * For processing data the pipe need to be run by sending IPC set pipe state
 * to DSP
 */
int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
{
	int ret;

	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);

	/* If pipe was not created in FW, do not try to pause or delete */
	if (pipe->state < SKL_PIPE_CREATED)
		return 0;

	/* Pipe has to be paused before it is started */
	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to pause pipe\n");
		return ret;
	}

	pipe->state = SKL_PIPE_PAUSED;

	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to start pipe\n");
		return ret;
	}

	pipe->state = SKL_PIPE_STARTED;

	return 0;
}

/*
 * Stop the pipeline by sending set pipe state IPC
 * DSP doesnt implement stop so we always send pause message
 */
int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
{
	int ret;

	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);

	/* If pipe was not created in FW, do not try to pause or delete */
	if (pipe->state < SKL_PIPE_PAUSED)
		return 0;

	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
	if (ret < 0) {
		dev_dbg(ctx->dev, "Failed to stop pipe\n");
		return ret;
	}

1338
	pipe->state = SKL_PIPE_PAUSED;
1339 1340 1341

	return 0;
}
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/*
 * Reset the pipeline by sending set pipe state IPC this will reset the DMA
 * from the DSP side
 */
int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
{
	int ret;

	/* If pipe was not created in FW, do not try to pause or delete */
	if (pipe->state < SKL_PIPE_PAUSED)
		return 0;

	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
	if (ret < 0) {
		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
		return ret;
	}

	pipe->state = SKL_PIPE_RESET;

	return 0;
}

1366 1367 1368 1369 1370 1371 1372
/* Algo parameter set helper function */
int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
				u32 param_id, struct skl_module_cfg *mcfg)
{
	struct skl_ipc_large_config_msg msg;

	msg.module_id = mcfg->id.module_id;
1373
	msg.instance_id = mcfg->id.pvt_id;
1374 1375 1376 1377 1378
	msg.param_data_size = size;
	msg.large_param_id = param_id;

	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
}
1379 1380 1381 1382 1383 1384 1385

int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
			  u32 param_id, struct skl_module_cfg *mcfg)
{
	struct skl_ipc_large_config_msg msg;

	msg.module_id = mcfg->id.module_id;
1386
	msg.instance_id = mcfg->id.pvt_id;
1387 1388 1389 1390 1391
	msg.param_data_size = size;
	msg.large_param_id = param_id;

	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
}