skl-messages.c 30.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
 *  configurations
 *
 *  Copyright (C) 2015 Intel Corp
 *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
 *	   Jeeja KP <jeeja.kp@intel.com>
 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 */

#include <linux/slab.h>
#include <linux/pci.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include "skl-sst-dsp.h"
#include "skl-sst-ipc.h"
#include "skl.h"
#include "../common/sst-dsp.h"
#include "../common/sst-dsp-priv.h"
29 30
#include "skl-topology.h"
#include "skl-tplg-interface.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

static int skl_alloc_dma_buf(struct device *dev,
		struct snd_dma_buffer *dmab, size_t size)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_bus *bus = ebus_to_hbus(ebus);

	if (!bus)
		return -ENODEV;

	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
}

static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_bus *bus = ebus_to_hbus(ebus);

	if (!bus)
		return -ENODEV;

	bus->io_ops->dma_free_pages(bus, dmab);

	return 0;
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
#define NOTIFICATION_PARAM_ID 3
#define NOTIFICATION_MASK 0xf

/* disable notfication for underruns/overruns from firmware module */
static void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
{
	struct notification_mask mask;
	struct skl_ipc_large_config_msg	msg = {0};

	mask.notify = NOTIFICATION_MASK;
	mask.enable = enable;

	msg.large_param_id = NOTIFICATION_PARAM_ID;
	msg.param_data_size = sizeof(mask);

	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
				int stream_tag, int enable)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_bus *bus = ebus_to_hbus(ebus);
	struct hdac_stream *stream = snd_hdac_get_stream(bus,
			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
	struct hdac_ext_stream *estream;

	if (!stream)
		return -EINVAL;

	estream = stream_to_hdac_ext_stream(stream);
	/* enable/disable SPIB for this hdac stream */
	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);

	/* set the spib value */
	snd_hdac_ext_stream_set_spib(ebus, estream, size);

	return 0;
}

static int skl_dsp_prepare(struct device *dev, unsigned int format,
			unsigned int size, struct snd_dma_buffer *dmab)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_bus *bus = ebus_to_hbus(ebus);
	struct hdac_ext_stream *estream;
	struct hdac_stream *stream;
	struct snd_pcm_substream substream;
	int ret;

	if (!bus)
		return -ENODEV;

	memset(&substream, 0, sizeof(substream));
	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;

	estream = snd_hdac_ext_stream_assign(ebus, &substream,
					HDAC_EXT_STREAM_TYPE_HOST);
	if (!estream)
		return -ENODEV;

	stream = hdac_stream(estream);

	/* assign decouple host dma channel */
	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
	if (ret < 0)
		return ret;

	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);

	return stream->stream_tag;
}

static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_stream *stream;
	struct hdac_bus *bus = ebus_to_hbus(ebus);

	if (!bus)
		return -ENODEV;

	stream = snd_hdac_get_stream(bus,
		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
	if (!stream)
		return -EINVAL;

	snd_hdac_dsp_trigger(stream, start);

	return 0;
}

static int skl_dsp_cleanup(struct device *dev,
		struct snd_dma_buffer *dmab, int stream_tag)
{
	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
	struct hdac_stream *stream;
	struct hdac_ext_stream *estream;
	struct hdac_bus *bus = ebus_to_hbus(ebus);

	if (!bus)
		return -ENODEV;

	stream = snd_hdac_get_stream(bus,
		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
	if (!stream)
		return -EINVAL;

	estream = stream_to_hdac_ext_stream(stream);
	skl_dsp_setup_spib(dev, 0, stream_tag, false);
	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);

	snd_hdac_dsp_cleanup(stream, dmab);

	return 0;
}

174 175 176 177 178 179 180 181 182 183 184 185
static struct skl_dsp_loader_ops skl_get_loader_ops(void)
{
	struct skl_dsp_loader_ops loader_ops;

	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));

	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
	loader_ops.free_dma_buf = skl_free_dma_buf;

	return loader_ops;
};

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
{
	struct skl_dsp_loader_ops loader_ops;

	memset(&loader_ops, 0, sizeof(loader_ops));

	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
	loader_ops.free_dma_buf = skl_free_dma_buf;
	loader_ops.prepare = skl_dsp_prepare;
	loader_ops.trigger = skl_dsp_trigger;
	loader_ops.cleanup = skl_dsp_cleanup;

	return loader_ops;
};

201 202 203 204 205
static const struct skl_dsp_ops dsp_ops[] = {
	{
		.id = 0x9d70,
		.loader_ops = skl_get_loader_ops,
		.init = skl_sst_dsp_init,
206
		.init_fw = skl_sst_init_fw,
207 208
		.cleanup = skl_sst_dsp_cleanup
	},
V
Vinod Koul 已提交
209 210 211 212
	{
		.id = 0x9d71,
		.loader_ops = skl_get_loader_ops,
		.init = skl_sst_dsp_init,
213
		.init_fw = skl_sst_init_fw,
V
Vinod Koul 已提交
214 215
		.cleanup = skl_sst_dsp_cleanup
	},
216 217 218 219
	{
		.id = 0x5a98,
		.loader_ops = bxt_get_loader_ops,
		.init = bxt_sst_dsp_init,
220
		.init_fw = bxt_sst_init_fw,
221 222
		.cleanup = bxt_sst_dsp_cleanup
	},
223 224
};

225
const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
226 227 228 229 230
{
	int i;

	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
		if (dsp_ops[i].id == pci_id)
231
			return &dsp_ops[i];
232 233
	}

234
	return NULL;
235 236
}

237 238 239 240 241 242
int skl_init_dsp(struct skl *skl)
{
	void __iomem *mmio_base;
	struct hdac_ext_bus *ebus = &skl->ebus;
	struct hdac_bus *bus = ebus_to_hbus(ebus);
	struct skl_dsp_loader_ops loader_ops;
243
	int irq = bus->irq;
244 245
	const struct skl_dsp_ops *ops;
	int ret;
246 247 248 249 250 251 252 253 254 255 256 257

	/* enable ppcap interrupt */
	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);

	/* read the BAR of the ADSP MMIO */
	mmio_base = pci_ioremap_bar(skl->pci, 4);
	if (mmio_base == NULL) {
		dev_err(bus->dev, "ioremap error\n");
		return -ENXIO;
	}

258 259 260
	ops = skl_get_dsp_ops(skl->pci->device);
	if (!ops)
		return -EIO;
261

262 263 264 265
	loader_ops = ops->loader_ops();
	ret = ops->init(bus->dev, mmio_base, irq,
				skl->fw_name, loader_ops,
				&skl->skl_sst);
266

267 268 269
	if (ret < 0)
		return ret;

270 271 272 273 274
	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);

	return ret;
}

275
int skl_free_dsp(struct skl *skl)
276 277 278
{
	struct hdac_ext_bus *ebus = &skl->ebus;
	struct hdac_bus *bus = ebus_to_hbus(ebus);
279
	struct skl_sst *ctx = skl->skl_sst;
280
	const struct skl_dsp_ops *ops;
281 282 283 284

	/* disable  ppcap interrupt */
	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);

285 286
	ops = skl_get_dsp_ops(skl->pci->device);
	if (!ops)
287 288
		return -EIO;

289
	ops->cleanup(bus->dev, ctx);
290

291 292
	if (ctx->dsp->addr.lpe)
		iounmap(ctx->dsp->addr.lpe);
293 294

	return 0;
295 296 297 298 299 300 301 302
}

int skl_suspend_dsp(struct skl *skl)
{
	struct skl_sst *ctx = skl->skl_sst;
	int ret;

	/* if ppcap is not supported return 0 */
303
	if (!skl->ebus.bus.ppcap)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		return 0;

	ret = skl_dsp_sleep(ctx->dsp);
	if (ret < 0)
		return ret;

	/* disable ppcap interrupt */
	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);

	return 0;
}

int skl_resume_dsp(struct skl *skl)
{
	struct skl_sst *ctx = skl->skl_sst;
320
	int ret;
321 322

	/* if ppcap is not supported return 0 */
323
	if (!skl->ebus.bus.ppcap)
324 325 326 327 328 329
		return 0;

	/* enable ppcap interrupt */
	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);

330 331 332 333
	/* check if DSP 1st boot is done */
	if (skl->skl_sst->is_first_boot == true)
		return 0;

334 335 336 337 338 339
	ret = skl_dsp_wake(ctx->dsp);
	if (ret < 0)
		return ret;

	skl_dsp_enable_notification(skl->skl_sst, false);
	return ret;
340
}
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

enum skl_bitdepth skl_get_bit_depth(int params)
{
	switch (params) {
	case 8:
		return SKL_DEPTH_8BIT;

	case 16:
		return SKL_DEPTH_16BIT;

	case 24:
		return SKL_DEPTH_24BIT;

	case 32:
		return SKL_DEPTH_32BIT;

	default:
		return SKL_DEPTH_INVALID;

	}
}

/*
 * Each module in DSP expects a base module configuration, which consists of
 * PCM format information, which we calculate in driver and resource values
 * which are read from widget information passed through topology binary
 * This is send when we create a module with INIT_INSTANCE IPC msg
 */
static void skl_set_base_module_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_base_cfg *base_cfg)
{
373
	struct skl_module_fmt *format = &mconfig->in_fmt[0];
374 375 376 377 378 379 380 381 382 383 384 385

	base_cfg->audio_fmt.number_of_channels = (u8)format->channels;

	base_cfg->audio_fmt.s_freq = format->s_freq;
	base_cfg->audio_fmt.bit_depth = format->bit_depth;
	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;

	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
			format->bit_depth, format->valid_bit_depth,
			format->ch_cfg);

386
	base_cfg->audio_fmt.channel_map = format->ch_map;
387

388
	base_cfg->audio_fmt.interleaving = format->interleaving_style;
389 390 391 392

	base_cfg->cps = mconfig->mcps;
	base_cfg->ibs = mconfig->ibs;
	base_cfg->obs = mconfig->obs;
393
	base_cfg->is_pages = mconfig->mem_pages;
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
}

/*
 * Copies copier capabilities into copier module and updates copier module
 * config size.
 */
static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
				struct skl_cpr_cfg *cpr_mconfig)
{
	if (mconfig->formats_config.caps_size == 0)
		return;

	memcpy(cpr_mconfig->gtw_cfg.config_data,
			mconfig->formats_config.caps,
			mconfig->formats_config.caps_size);

	cpr_mconfig->gtw_cfg.config_length =
			(mconfig->formats_config.caps_size) / 4;
}

414
#define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
415 416 417 418
/*
 * Calculate the gatewat settings required for copier module, type of
 * gateway and index of gateway to use
 */
419 420
static u32 skl_get_node_id(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig)
421 422
{
	union skl_connector_node_id node_id = {0};
423
	union skl_ssp_dma_node ssp_node  = {0};
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	struct skl_pipe_params *params = mconfig->pipe->p_params;

	switch (mconfig->dev_type) {
	case SKL_DEVICE_BT:
		node_id.node.dma_type =
			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
			SKL_DMA_I2S_LINK_INPUT_CLASS;
		node_id.node.vindex = params->host_dma_id +
					(mconfig->vbus_id << 3);
		break;

	case SKL_DEVICE_I2S:
		node_id.node.dma_type =
			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
			SKL_DMA_I2S_LINK_INPUT_CLASS;
441 442 443
		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
		node_id.node.vindex = ssp_node.val;
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
		break;

	case SKL_DEVICE_DMIC:
		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
		node_id.node.vindex = mconfig->vbus_id +
					 (mconfig->time_slot);
		break;

	case SKL_DEVICE_HDALINK:
		node_id.node.dma_type =
			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
			SKL_DMA_HDA_LINK_INPUT_CLASS;
		node_id.node.vindex = params->link_dma_id;
		break;

460
	case SKL_DEVICE_HDAHOST:
461 462 463 464 465 466
		node_id.node.dma_type =
			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
			SKL_DMA_HDA_HOST_INPUT_CLASS;
		node_id.node.vindex = params->host_dma_id;
		break;
467 468

	default:
469 470 471 472 473 474 475 476 477 478 479 480 481 482
		node_id.val = 0xFFFFFFFF;
		break;
	}

	return node_id.val;
}

static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_cpr_cfg *cpr_mconfig)
{
	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);

	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
483 484
		cpr_mconfig->cpr_feature_mask = 0;
		return;
485 486 487 488 489 490 491 492 493 494 495 496 497
	}

	if (SKL_CONN_SOURCE == mconfig->hw_conn_type)
		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
	else
		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;

	cpr_mconfig->cpr_feature_mask = 0;
	cpr_mconfig->gtw_cfg.config_length  = 0;

	skl_copy_copier_caps(mconfig, cpr_mconfig);
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
#define DMA_CONTROL_ID 5

int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig)
{
	struct skl_dma_control *dma_ctrl;
	struct skl_i2s_config_blob config_blob;
	struct skl_ipc_large_config_msg msg = {0};
	int err = 0;


	/*
	 * if blob size is same as capablity size, then no dma control
	 * present so return
	 */
	if (mconfig->formats_config.caps_size == sizeof(config_blob))
		return 0;

	msg.large_param_id = DMA_CONTROL_ID;
	msg.param_data_size = sizeof(struct skl_dma_control) +
				mconfig->formats_config.caps_size;

	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
	if (dma_ctrl == NULL)
		return -ENOMEM;

	dma_ctrl->node_id = skl_get_node_id(ctx, mconfig);

	/* size in dwords */
	dma_ctrl->config_length = sizeof(config_blob) / 4;

	memcpy(dma_ctrl->config_data, mconfig->formats_config.caps,
				mconfig->formats_config.caps_size);

	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);

	kfree(dma_ctrl);

	return err;
}

538 539 540 541
static void skl_setup_out_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_audio_data_format *out_fmt)
{
542
	struct skl_module_fmt *format = &mconfig->out_fmt[0];
543 544 545 546 547 548 549

	out_fmt->number_of_channels = (u8)format->channels;
	out_fmt->s_freq = format->s_freq;
	out_fmt->bit_depth = format->bit_depth;
	out_fmt->valid_bit_depth = format->valid_bit_depth;
	out_fmt->ch_cfg = format->ch_cfg;

550 551 552
	out_fmt->channel_map = format->ch_map;
	out_fmt->interleaving = format->interleaving_style;
	out_fmt->sample_type = format->sample_type;
553 554 555 556 557

	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
}

558 559 560 561 562 563 564 565 566
/*
 * DSP needs SRC module for frequency conversion, SRC takes base module
 * configuration and the target frequency as extra parameter passed as src
 * config
 */
static void skl_set_src_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_src_module_cfg *src_mconfig)
{
567
	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

	skl_set_base_module_format(ctx, mconfig,
		(struct skl_base_cfg *)src_mconfig);

	src_mconfig->src_cfg = fmt->s_freq;
}

/*
 * DSP needs updown module to do channel conversion. updown module take base
 * module configuration and channel configuration
 * It also take coefficients and now we have defaults applied here
 */
static void skl_set_updown_mixer_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_up_down_mixer_cfg *mixer_mconfig)
{
584
	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
585 586 587 588 589 590 591 592 593 594 595 596 597 598
	int i = 0;

	skl_set_base_module_format(ctx,	mconfig,
		(struct skl_base_cfg *)mixer_mconfig);
	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;

	/* Select F/W default coefficient */
	mixer_mconfig->coeff_sel = 0x0;

	/* User coeff, don't care since we are selecting F/W defaults */
	for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
		mixer_mconfig->coeff[i] = 0xDEADBEEF;
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/*
 * 'copier' is DSP internal module which copies data from Host DMA (HDA host
 * dma) or link (hda link, SSP, PDM)
 * Here we calculate the copier module parameters, like PCM format, output
 * format, gateway settings
 * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
 */
static void skl_set_copier_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_cpr_cfg *cpr_mconfig)
{
	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;

	skl_set_base_module_format(ctx, mconfig, base_cfg);

	skl_setup_out_format(ctx, mconfig, out_fmt);
	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/*
 * Algo module are DSP pre processing modules. Algo module take base module
 * configuration and params
 */

static void skl_set_algo_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_algo_cfg *algo_mcfg)
{
	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;

	skl_set_base_module_format(ctx, mconfig, base_cfg);

	if (mconfig->formats_config.caps_size == 0)
		return;

	memcpy(algo_mcfg->params,
			mconfig->formats_config.caps,
			mconfig->formats_config.caps_size);

}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/*
 * Mic select module allows selecting one or many input channels, thus
 * acting as a demux.
 *
 * Mic select module take base module configuration and out-format
 * configuration
 */
static void skl_set_base_outfmt_format(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig,
			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
{
	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
	struct skl_base_cfg *base_cfg =
				(struct skl_base_cfg *)base_outfmt_mcfg;

	skl_set_base_module_format(ctx, mconfig, base_cfg);
	skl_setup_out_format(ctx, mconfig, out_fmt);
}

660 661 662 663 664 665 666 667 668 669 670
static u16 skl_get_module_param_size(struct skl_sst *ctx,
			struct skl_module_cfg *mconfig)
{
	u16 param_size;

	switch (mconfig->m_type) {
	case SKL_MODULE_TYPE_COPIER:
		param_size = sizeof(struct skl_cpr_cfg);
		param_size += mconfig->formats_config.caps_size;
		return param_size;

671 672 673 674 675 676
	case SKL_MODULE_TYPE_SRCINT:
		return sizeof(struct skl_src_module_cfg);

	case SKL_MODULE_TYPE_UPDWMIX:
		return sizeof(struct skl_up_down_mixer_cfg);

677 678 679 680 681
	case SKL_MODULE_TYPE_ALGO:
		param_size = sizeof(struct skl_base_cfg);
		param_size += mconfig->formats_config.caps_size;
		return param_size;

682
	case SKL_MODULE_TYPE_BASE_OUTFMT:
683
	case SKL_MODULE_TYPE_KPB:
684 685
		return sizeof(struct skl_base_outfmt_cfg);

686 687 688 689 690 691 692 693 694 695 696 697
	default:
		/*
		 * return only base cfg when no specific module type is
		 * specified
		 */
		return sizeof(struct skl_base_cfg);
	}

	return 0;
}

/*
698 699 700 701
 * DSP firmware supports various modules like copier, SRC, updown etc.
 * These modules required various parameters to be calculated and sent for
 * the module initialization to DSP. By default a generic module needs only
 * base module format configuration
702
 */
703

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
static int skl_set_module_format(struct skl_sst *ctx,
			struct skl_module_cfg *module_config,
			u16 *module_config_size,
			void **param_data)
{
	u16 param_size;

	param_size  = skl_get_module_param_size(ctx, module_config);

	*param_data = kzalloc(param_size, GFP_KERNEL);
	if (NULL == *param_data)
		return -ENOMEM;

	*module_config_size = param_size;

	switch (module_config->m_type) {
	case SKL_MODULE_TYPE_COPIER:
		skl_set_copier_format(ctx, module_config, *param_data);
		break;

724 725 726 727 728 729 730 731
	case SKL_MODULE_TYPE_SRCINT:
		skl_set_src_format(ctx, module_config, *param_data);
		break;

	case SKL_MODULE_TYPE_UPDWMIX:
		skl_set_updown_mixer_format(ctx, module_config, *param_data);
		break;

732 733 734 735
	case SKL_MODULE_TYPE_ALGO:
		skl_set_algo_format(ctx, module_config, *param_data);
		break;

736
	case SKL_MODULE_TYPE_BASE_OUTFMT:
737
	case SKL_MODULE_TYPE_KPB:
738 739 740
		skl_set_base_outfmt_format(ctx, module_config, *param_data);
		break;

741 742 743 744 745 746 747 748
	default:
		skl_set_base_module_format(ctx, module_config, *param_data);
		break;

	}

	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
			module_config->id.module_id, param_size);
749
	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
			*param_data, param_size, false);
	return 0;
}

static int skl_get_queue_index(struct skl_module_pin *mpin,
				struct skl_module_inst_id id, int max)
{
	int i;

	for (i = 0; i < max; i++)  {
		if (mpin[i].id.module_id == id.module_id &&
			mpin[i].id.instance_id == id.instance_id)
			return i;
	}

	return -EINVAL;
}

/*
 * Allocates queue for each module.
 * if dynamic, the pin_index is allocated 0 to max_pin.
 * In static, the pin_index is fixed based on module_id and instance id
 */
static int skl_alloc_queue(struct skl_module_pin *mpin,
774
			struct skl_module_cfg *tgt_cfg, int max)
775 776
{
	int i;
777
	struct skl_module_inst_id id = tgt_cfg->id;
778 779 780 781 782 783 784 785
	/*
	 * if pin in dynamic, find first free pin
	 * otherwise find match module and instance id pin as topology will
	 * ensure a unique pin is assigned to this so no need to
	 * allocate/free
	 */
	for (i = 0; i < max; i++)  {
		if (mpin[i].is_dynamic) {
786 787 788
			if (!mpin[i].in_use &&
				mpin[i].pin_state == SKL_PIN_UNBIND) {

789 790 791
				mpin[i].in_use = true;
				mpin[i].id.module_id = id.module_id;
				mpin[i].id.instance_id = id.instance_id;
792
				mpin[i].id.pvt_id = id.pvt_id;
793
				mpin[i].tgt_mcfg = tgt_cfg;
794 795 796 797
				return i;
			}
		} else {
			if (mpin[i].id.module_id == id.module_id &&
798 799 800 801
				mpin[i].id.instance_id == id.instance_id &&
				mpin[i].pin_state == SKL_PIN_UNBIND) {

				mpin[i].tgt_mcfg = tgt_cfg;
802
				return i;
803
			}
804 805 806 807 808 809 810 811 812 813 814 815
		}
	}

	return -EINVAL;
}

static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
{
	if (mpin[q_index].is_dynamic) {
		mpin[q_index].in_use = false;
		mpin[q_index].id.module_id = 0;
		mpin[q_index].id.instance_id = 0;
816
		mpin[q_index].id.pvt_id = 0;
817
	}
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	mpin[q_index].pin_state = SKL_PIN_UNBIND;
	mpin[q_index].tgt_mcfg = NULL;
}

/* Module state will be set to unint, if all the out pin state is UNBIND */

static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
						struct skl_module_cfg *mcfg)
{
	int i;
	bool found = false;

	for (i = 0; i < max; i++)  {
		if (mpin[i].pin_state == SKL_PIN_UNBIND)
			continue;
		found = true;
		break;
	}

	if (!found)
		mcfg->m_state = SKL_MODULE_UNINIT;
	return;
840
}
841 842 843 844 845 846 847 848

/*
 * A module needs to be instanataited in DSP. A mdoule is present in a
 * collection of module referred as a PIPE.
 * We first calculate the module format, based on module type and then
 * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
 */
int skl_init_module(struct skl_sst *ctx,
849
			struct skl_module_cfg *mconfig)
850 851 852 853 854 855 856
{
	u16 module_config_size = 0;
	void *param_data = NULL;
	int ret;
	struct skl_ipc_init_instance_msg msg;

	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
857
		 mconfig->id.module_id, mconfig->id.pvt_id);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
				 mconfig->pipe->state, mconfig->pipe->ppl_id);
		return -EIO;
	}

	ret = skl_set_module_format(ctx, mconfig,
			&module_config_size, &param_data);
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
		return ret;
	}

	msg.module_id = mconfig->id.module_id;
873
	msg.instance_id = mconfig->id.pvt_id;
874 875 876
	msg.ppl_instance_id = mconfig->pipe->ppl_id;
	msg.param_data_size = module_config_size;
	msg.core_id = mconfig->core_id;
877
	msg.domain = mconfig->domain;
878 879 880 881 882 883 884 885

	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
		kfree(param_data);
		return ret;
	}
	mconfig->m_state = SKL_MODULE_INIT_DONE;
886
	kfree(param_data);
887 888 889 890 891 892 893
	return ret;
}

static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
	*src_module, struct skl_module_cfg *dst_module)
{
	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
894
		__func__, src_module->id.module_id, src_module->id.pvt_id);
895
	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
896
		 dst_module->id.module_id, dst_module->id.pvt_id);
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916

	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
		src_module->m_state, dst_module->m_state);
}

/*
 * On module freeup, we need to unbind the module with modules
 * it is already bind.
 * Find the pin allocated and unbind then using bind_unbind IPC
 */
int skl_unbind_modules(struct skl_sst *ctx,
			struct skl_module_cfg *src_mcfg,
			struct skl_module_cfg *dst_mcfg)
{
	int ret;
	struct skl_ipc_bind_unbind_msg msg;
	struct skl_module_inst_id src_id = src_mcfg->id;
	struct skl_module_inst_id dst_id = dst_mcfg->id;
	int in_max = dst_mcfg->max_in_queue;
	int out_max = src_mcfg->max_out_queue;
917
	int src_index, dst_index, src_pin_state, dst_pin_state;
918 919 920 921 922 923

	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);

	/* get src queue index */
	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
	if (src_index < 0)
924
		return 0;
925

926
	msg.src_queue = src_index;
927 928 929 930

	/* get dst queue index */
	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
	if (dst_index < 0)
931
		return 0;
932

933 934 935 936 937 938 939 940
	msg.dst_queue = dst_index;

	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;

	if (src_pin_state != SKL_PIN_BIND_DONE ||
		dst_pin_state != SKL_PIN_BIND_DONE)
		return 0;
941 942

	msg.module_id = src_mcfg->id.module_id;
943
	msg.instance_id = src_mcfg->id.pvt_id;
944
	msg.dst_module_id = dst_mcfg->id.module_id;
945
	msg.dst_instance_id = dst_mcfg->id.pvt_id;
946 947 948 949 950 951 952
	msg.bind = false;

	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
	if (!ret) {
		/* free queue only if unbind is success */
		skl_free_queue(src_mcfg->m_out_pin, src_index);
		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
953 954 955 956 957 958

		/*
		 * check only if src module bind state, bind is
		 * always from src -> sink
		 */
		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	}

	return ret;
}

/*
 * Once a module is instantiated it need to be 'bind' with other modules in
 * the pipeline. For binding we need to find the module pins which are bind
 * together
 * This function finds the pins and then sends bund_unbind IPC message to
 * DSP using IPC helper
 */
int skl_bind_modules(struct skl_sst *ctx,
			struct skl_module_cfg *src_mcfg,
			struct skl_module_cfg *dst_mcfg)
{
	int ret;
	struct skl_ipc_bind_unbind_msg msg;
	int in_max = dst_mcfg->max_in_queue;
	int out_max = src_mcfg->max_out_queue;
	int src_index, dst_index;

	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);

983
	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
984 985 986
		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
		return 0;

987
	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
988 989 990
	if (src_index < 0)
		return -EINVAL;

991 992
	msg.src_queue = src_index;
	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
993 994 995 996 997
	if (dst_index < 0) {
		skl_free_queue(src_mcfg->m_out_pin, src_index);
		return -EINVAL;
	}

998
	msg.dst_queue = dst_index;
999 1000 1001 1002 1003

	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
			 msg.src_queue, msg.dst_queue);

	msg.module_id = src_mcfg->id.module_id;
1004
	msg.instance_id = src_mcfg->id.pvt_id;
1005
	msg.dst_module_id = dst_mcfg->id.module_id;
1006
	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1007 1008 1009 1010 1011 1012
	msg.bind = true;

	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);

	if (!ret) {
		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1013 1014
		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1015 1016 1017 1018 1019 1020 1021 1022
	} else {
		/* error case , if IPC fails, clear the queue index */
		skl_free_queue(src_mcfg->m_out_pin, src_index);
		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
	}

	return ret;
}
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
	enum skl_ipc_pipeline_state state)
{
	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);

	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
}

/*
 * A pipeline is a collection of modules. Before a module in instantiated a
 * pipeline needs to be created for it.
 * This function creates pipeline, by sending create pipeline IPC messages
 * to FW
 */
int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
{
	int ret;

	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);

	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
				pipe->pipe_priority, pipe->ppl_id);
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to create pipeline\n");
		return ret;
	}

	pipe->state = SKL_PIPE_CREATED;

	return 0;
}

/*
 * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
 * pause the pipeline first and then delete it
 * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
 * DMA engines and releases resources
 */
int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
{
	int ret;

	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);

1068
	/* If pipe is started, do stop the pipe in FW. */
1069 1070 1071 1072 1073 1074 1075 1076
	if (pipe->state > SKL_PIPE_STARTED) {
		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
		if (ret < 0) {
			dev_err(ctx->dev, "Failed to stop pipeline\n");
			return ret;
		}

		pipe->state = SKL_PIPE_PAUSED;
1077
	}
1078

1079 1080 1081
	/* If pipe was not created in FW, do not try to delete it */
	if (pipe->state < SKL_PIPE_CREATED)
		return 0;
1082

1083 1084 1085 1086
	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to delete pipeline\n");
		return ret;
1087 1088
	}

1089 1090
	pipe->state = SKL_PIPE_INVALID;

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	return ret;
}

/*
 * A pipeline is also a scheduling entity in DSP which can be run, stopped
 * For processing data the pipe need to be run by sending IPC set pipe state
 * to DSP
 */
int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
{
	int ret;

	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);

	/* If pipe was not created in FW, do not try to pause or delete */
	if (pipe->state < SKL_PIPE_CREATED)
		return 0;

	/* Pipe has to be paused before it is started */
	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to pause pipe\n");
		return ret;
	}

	pipe->state = SKL_PIPE_PAUSED;

	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
	if (ret < 0) {
		dev_err(ctx->dev, "Failed to start pipe\n");
		return ret;
	}

	pipe->state = SKL_PIPE_STARTED;

	return 0;
}

/*
 * Stop the pipeline by sending set pipe state IPC
 * DSP doesnt implement stop so we always send pause message
 */
int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
{
	int ret;

	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);

	/* If pipe was not created in FW, do not try to pause or delete */
	if (pipe->state < SKL_PIPE_PAUSED)
		return 0;

	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
	if (ret < 0) {
		dev_dbg(ctx->dev, "Failed to stop pipe\n");
		return ret;
	}

1149
	pipe->state = SKL_PIPE_PAUSED;
1150 1151 1152

	return 0;
}
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/*
 * Reset the pipeline by sending set pipe state IPC this will reset the DMA
 * from the DSP side
 */
int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
{
	int ret;

	/* If pipe was not created in FW, do not try to pause or delete */
	if (pipe->state < SKL_PIPE_PAUSED)
		return 0;

	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
	if (ret < 0) {
		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
		return ret;
	}

	pipe->state = SKL_PIPE_RESET;

	return 0;
}

1177 1178 1179 1180 1181 1182 1183
/* Algo parameter set helper function */
int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
				u32 param_id, struct skl_module_cfg *mcfg)
{
	struct skl_ipc_large_config_msg msg;

	msg.module_id = mcfg->id.module_id;
1184
	msg.instance_id = mcfg->id.pvt_id;
1185 1186 1187 1188 1189
	msg.param_data_size = size;
	msg.large_param_id = param_id;

	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
}
1190 1191 1192 1193 1194 1195 1196

int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
			  u32 param_id, struct skl_module_cfg *mcfg)
{
	struct skl_ipc_large_config_msg msg;

	msg.module_id = mcfg->id.module_id;
1197
	msg.instance_id = mcfg->id.pvt_id;
1198 1199 1200 1201 1202
	msg.param_data_size = size;
	msg.large_param_id = param_id;

	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
}