memcontrol.c 29.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
24
#include <linux/smp.h>
25
#include <linux/page-flags.h>
26
#include <linux/backing-dev.h>
27 28
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
29 30 31
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
32
#include <linux/seq_file.h>
B
Balbir Singh 已提交
33

34 35
#include <asm/uaccess.h>

B
Balbir Singh 已提交
36
struct cgroup_subsys mem_cgroup_subsys;
37
static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
B
Balbir Singh 已提交
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx, int val)
{
	int cpu = smp_processor_id();
	stat->cpustat[cpu].count[idx] += val;
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

80 81 82 83 84 85 86 87 88 89 90 91
/*
 * per-zone information in memory controller.
 */

enum mem_cgroup_zstat_index {
	MEM_CGROUP_ZSTAT_ACTIVE,
	MEM_CGROUP_ZSTAT_INACTIVE,

	NR_MEM_CGROUP_ZSTAT,
};

struct mem_cgroup_per_zone {
92 93 94 95
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
	spinlock_t		lru_lock;
96 97
	struct list_head	active_list;
	struct list_head	inactive_list;
98 99 100 101 102 103 104 105 106 107 108 109 110
	unsigned long count[NR_MEM_CGROUP_ZSTAT];
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
111 112 113 114 115 116 117
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 119 120
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
121 122 123 124 125 126 127
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
128 129 130 131
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
132
	struct mem_cgroup_lru_info info;
133

134
	int	prev_priority;	/* for recording reclaim priority */
135 136 137 138
	/*
	 * statistics.
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
139 140
};

141 142
/*
 * We use the lower bit of the page->page_cgroup pointer as a bit spin
143 144 145 146
 * lock.  We need to ensure that page->page_cgroup is at least two
 * byte aligned (based on comments from Nick Piggin).  But since
 * bit_spin_lock doesn't actually set that lock bit in a non-debug
 * uniprocessor kernel, we should avoid setting it here too.
147 148
 */
#define PAGE_CGROUP_LOCK_BIT 	0x0
149 150 151 152 153
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
#define PAGE_CGROUP_LOCK 	(1 << PAGE_CGROUP_LOCK_BIT)
#else
#define PAGE_CGROUP_LOCK	0x0
#endif
154

B
Balbir Singh 已提交
155 156 157 158 159 160 161 162
/*
 * A page_cgroup page is associated with every page descriptor. The
 * page_cgroup helps us identify information about the cgroup
 */
struct page_cgroup {
	struct list_head lru;		/* per cgroup LRU list */
	struct page *page;
	struct mem_cgroup *mem_cgroup;
163 164
	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
					/* mapped and cached states     */
165
	int	 flags;
B
Balbir Singh 已提交
166
};
167
#define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
168
#define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
B
Balbir Singh 已提交
169

170 171 172 173 174 175 176 177 178 179
static inline int page_cgroup_nid(struct page_cgroup *pc)
{
	return page_to_nid(pc->page);
}

static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
{
	return page_zonenum(pc->page);
}

180 181 182 183 184 185 186 187
enum {
	MEM_CGROUP_TYPE_UNSPEC = 0,
	MEM_CGROUP_TYPE_MAPPED,
	MEM_CGROUP_TYPE_CACHED,
	MEM_CGROUP_TYPE_ALL,
	MEM_CGROUP_TYPE_MAX,
};

188 189 190 191 192
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
};

193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
/*
 * Always modified under lru lock. Then, not necessary to preempt_disable()
 */
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
					bool charge)
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	VM_BUG_ON(!irqs_disabled());

	if (flags & PAGE_CGROUP_FLAG_CACHE)
		__mem_cgroup_stat_add_safe(stat,
					MEM_CGROUP_STAT_CACHE, val);
	else
		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
}

static inline struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	BUG_ON(!mem->info.nodeinfo[nid]);
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

static inline struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
					enum mem_cgroup_zstat_index idx)
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
241 242
}

243
static struct mem_cgroup init_mem_cgroup;
B
Balbir Singh 已提交
244 245 246 247 248 249 250 251 252

static inline
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static inline
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
{
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_task(p);
	css_get(&mem->css);
	mm->mem_cgroup = mem;
}

void mm_free_cgroup(struct mm_struct *mm)
{
	css_put(&mm->mem_cgroup->css);
}

274 275 276 277 278 279
static inline int page_cgroup_locked(struct page *page)
{
	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
					&page->page_cgroup);
}

280
static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
281
{
282 283
	VM_BUG_ON(!page_cgroup_locked(page));
	page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
284 285 286 287
}

struct page_cgroup *page_get_page_cgroup(struct page *page)
{
288 289 290 291
	return (struct page_cgroup *)
		(page->page_cgroup & ~PAGE_CGROUP_LOCK);
}

292
static void __always_inline lock_page_cgroup(struct page *page)
293 294 295 296 297
{
	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
	VM_BUG_ON(!page_cgroup_locked(page));
}

298
static void __always_inline unlock_page_cgroup(struct page *page)
299 300 301 302
{
	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}

303 304 305 306 307
/*
 * Tie new page_cgroup to struct page under lock_page_cgroup()
 * This can fail if the page has been tied to a page_cgroup.
 * If success, returns 0.
 */
308 309
static int page_cgroup_assign_new_page_cgroup(struct page *page,
						struct page_cgroup *pc)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
{
	int ret = 0;

	lock_page_cgroup(page);
	if (!page_get_page_cgroup(page))
		page_assign_page_cgroup(page, pc);
	else /* A page is tied to other pc. */
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

/*
 * Clear page->page_cgroup member under lock_page_cgroup().
 * If given "pc" value is different from one page->page_cgroup,
 * page->cgroup is not cleared.
 * Returns a value of page->page_cgroup at lock taken.
 * A can can detect failure of clearing by following
 *  clear_page_cgroup(page, pc) == pc
 */

331 332
static struct page_cgroup *clear_page_cgroup(struct page *page,
						struct page_cgroup *pc)
333 334 335 336 337 338 339 340 341 342 343
{
	struct page_cgroup *ret;
	/* lock and clear */
	lock_page_cgroup(page);
	ret = page_get_page_cgroup(page);
	if (likely(ret == pc))
		page_assign_page_cgroup(page, NULL);
	unlock_page_cgroup(page);
	return ret;
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
static void __mem_cgroup_remove_list(struct page_cgroup *pc)
{
	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (from)
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
	else
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;

	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
	list_del_init(&pc->lru);
}

static void __mem_cgroup_add_list(struct page_cgroup *pc)
{
	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (!to) {
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
365
		list_add(&pc->lru, &mz->inactive_list);
366 367
	} else {
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
368
		list_add(&pc->lru, &mz->active_list);
369 370 371 372
	}
	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
}

373
static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
374
{
375 376 377 378 379 380 381 382
	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (from)
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
	else
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;

383
	if (active) {
384
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
385
		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
386
		list_move(&pc->lru, &mz->active_list);
387
	} else {
388
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
389
		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
390
		list_move(&pc->lru, &mz->inactive_list);
391
	}
392 393
}

394 395 396 397 398
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;

	task_lock(task);
399
	ret = task->mm && mm_match_cgroup(task->mm, mem);
400 401 402 403
	task_unlock(task);
	return ret;
}

404 405 406
/*
 * This routine assumes that the appropriate zone's lru lock is already held
 */
407
void mem_cgroup_move_lists(struct page *page, bool active)
408
{
409
	struct page_cgroup *pc;
410 411 412
	struct mem_cgroup_per_zone *mz;
	unsigned long flags;

413
	pc = page_get_page_cgroup(page);
414 415 416
	if (!pc)
		return;

417 418
	mz = page_cgroup_zoneinfo(pc);
	spin_lock_irqsave(&mz->lru_lock, flags);
419
	__mem_cgroup_move_lists(pc, active);
420
	spin_unlock_irqrestore(&mz->lru_lock, flags);
421 422
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/*
 * Calculate mapped_ratio under memory controller. This will be used in
 * vmscan.c for deteremining we have to reclaim mapped pages.
 */
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
{
	long total, rss;

	/*
	 * usage is recorded in bytes. But, here, we assume the number of
	 * physical pages can be represented by "long" on any arch.
	 */
	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	return (int)((rss * 100L) / total);
}
439 440 441 442 443 444 445 446 447 448 449 450 451 452
/*
 * This function is called from vmscan.c. In page reclaiming loop. balance
 * between active and inactive list is calculated. For memory controller
 * page reclaiming, we should use using mem_cgroup's imbalance rather than
 * zone's global lru imbalance.
 */
long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
{
	unsigned long active, inactive;
	/* active and inactive are the number of pages. 'long' is ok.*/
	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
	return (long) (active / (inactive + 1));
}
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
	return mem->prev_priority;
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	mem->prev_priority = priority;
}

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/*
 * Calculate # of pages to be scanned in this priority/zone.
 * See also vmscan.c
 *
 * priority starts from "DEF_PRIORITY" and decremented in each loop.
 * (see include/linux/mmzone.h)
 */

long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
				   struct zone *zone, int priority)
{
	long nr_active;
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);

	nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
	return (nr_active >> priority);
}

long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
					struct zone *zone, int priority)
{
	long nr_inactive;
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);

	nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);

	return (nr_inactive >> priority);
}

506 507 508 509 510 511 512 513 514 515 516 517
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
					int active)
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
518
	struct page_cgroup *pc, *tmp;
519 520 521
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
522

523
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
524
	if (active)
525
		src = &mz->active_list;
526
	else
527 528
		src = &mz->inactive_list;

529

530
	spin_lock(&mz->lru_lock);
531 532
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
533
		if (scan >= nr_to_scan)
534
			break;
535 536
		page = pc->page;

H
Hugh Dickins 已提交
537
		if (unlikely(!PageLRU(page)))
538 539
			continue;

540 541 542 543 544 545 546 547 548
		if (PageActive(page) && !active) {
			__mem_cgroup_move_lists(pc, true);
			continue;
		}
		if (!PageActive(page) && active) {
			__mem_cgroup_move_lists(pc, false);
			continue;
		}

H
Hugh Dickins 已提交
549 550
		scan++;
		list_move(&pc->lru, &pc_list);
551 552 553 554 555 556 557 558

		if (__isolate_lru_page(page, mode) == 0) {
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	list_splice(&pc_list, src);
559
	spin_unlock(&mz->lru_lock);
560 561 562 563 564

	*scanned = scan;
	return nr_taken;
}

565 566 567 568 569 570
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
571 572
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype)
573 574
{
	struct mem_cgroup *mem;
575
	struct page_cgroup *pc;
576 577
	unsigned long flags;
	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
578
	struct mem_cgroup_per_zone *mz;
579 580 581 582 583 584 585 586

	/*
	 * Should page_cgroup's go to their own slab?
	 * One could optimize the performance of the charging routine
	 * by saving a bit in the page_flags and using it as a lock
	 * to see if the cgroup page already has a page_cgroup associated
	 * with it
	 */
587
retry:
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	if (page) {
		lock_page_cgroup(page);
		pc = page_get_page_cgroup(page);
		/*
		 * The page_cgroup exists and
		 * the page has already been accounted.
		 */
		if (pc) {
			if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
				/* this page is under being uncharged ? */
				unlock_page_cgroup(page);
				cpu_relax();
				goto retry;
			} else {
				unlock_page_cgroup(page);
				goto done;
			}
605
		}
606
		unlock_page_cgroup(page);
607 608
	}

609
	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
610 611 612 613
	if (pc == NULL)
		goto err;

	/*
614 615
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
616 617 618 619 620 621
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
	if (!mm)
		mm = &init_mm;

622
	rcu_read_lock();
623 624 625 626 627 628 629 630 631 632 633 634
	mem = rcu_dereference(mm->mem_cgroup);
	/*
	 * For every charge from the cgroup, increment reference
	 * count
	 */
	css_get(&mem->css);
	rcu_read_unlock();

	/*
	 * If we created the page_cgroup, we should free it on exceeding
	 * the cgroup limit.
	 */
635
	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
636 637
		if (!(gfp_mask & __GFP_WAIT))
			goto out;
638 639

		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
640 641 642 643 644 645 646 647 648 649 650
			continue;

		/*
 		 * try_to_free_mem_cgroup_pages() might not give us a full
 		 * picture of reclaim. Some pages are reclaimed and might be
 		 * moved to swap cache or just unmapped from the cgroup.
 		 * Check the limit again to see if the reclaim reduced the
 		 * current usage of the cgroup before giving up
 		 */
		if (res_counter_check_under_limit(&mem->res))
			continue;
651 652 653 654

		if (!nr_retries--) {
			mem_cgroup_out_of_memory(mem, gfp_mask);
			goto out;
655
		}
656
		congestion_wait(WRITE, HZ/10);
657 658 659 660 661
	}

	atomic_set(&pc->ref_cnt, 1);
	pc->mem_cgroup = mem;
	pc->page = page;
662
	pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
663 664
	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
		pc->flags |= PAGE_CGROUP_FLAG_CACHE;
665

666
	if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
667
		/*
668 669
		 * Another charge has been added to this page already.
		 * We take lock_page_cgroup(page) again and read
670 671 672 673 674
		 * page->cgroup, increment refcnt.... just retry is OK.
		 */
		res_counter_uncharge(&mem->res, PAGE_SIZE);
		css_put(&mem->css);
		kfree(pc);
675 676
		if (!page)
			goto done;
677 678
		goto retry;
	}
679

680 681
	mz = page_cgroup_zoneinfo(pc);
	spin_lock_irqsave(&mz->lru_lock, flags);
682
	/* Update statistics vector */
683
	__mem_cgroup_add_list(pc);
684
	spin_unlock_irqrestore(&mz->lru_lock, flags);
685

686 687
done:
	return 0;
688 689
out:
	css_put(&mem->css);
690 691 692 693 694
	kfree(pc);
err:
	return -ENOMEM;
}

695 696 697 698 699 700 701
int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
			gfp_t gfp_mask)
{
	return mem_cgroup_charge_common(page, mm, gfp_mask,
			MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

702 703 704
/*
 * See if the cached pages should be charged at all?
 */
705 706
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
707
{
708
	int ret = 0;
709 710 711
	if (!mm)
		mm = &init_mm;

712
	ret = mem_cgroup_charge_common(page, mm, gfp_mask,
713
				MEM_CGROUP_CHARGE_TYPE_CACHE);
714
	return ret;
715 716
}

717 718
/*
 * Uncharging is always a welcome operation, we never complain, simply
719
 * uncharge. This routine should be called with lock_page_cgroup held
720 721 722 723
 */
void mem_cgroup_uncharge(struct page_cgroup *pc)
{
	struct mem_cgroup *mem;
724
	struct mem_cgroup_per_zone *mz;
725
	struct page *page;
726
	unsigned long flags;
727

728
	/*
729
	 * Check if our page_cgroup is valid
730
	 */
731 732 733 734 735
	if (!pc)
		return;

	if (atomic_dec_and_test(&pc->ref_cnt)) {
		page = pc->page;
736
		mz = page_cgroup_zoneinfo(pc);
737 738
		/*
		 * get page->cgroup and clear it under lock.
739
		 * force_empty can drop page->cgroup without checking refcnt.
740
		 */
741
		unlock_page_cgroup(page);
742 743 744 745
		if (clear_page_cgroup(page, pc) == pc) {
			mem = pc->mem_cgroup;
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
746
			spin_lock_irqsave(&mz->lru_lock, flags);
747
			__mem_cgroup_remove_list(pc);
748
			spin_unlock_irqrestore(&mz->lru_lock, flags);
749 750
			kfree(pc);
		}
751
		lock_page_cgroup(page);
752
	}
753
}
754

755 756 757 758 759 760 761
void mem_cgroup_uncharge_page(struct page *page)
{
	lock_page_cgroup(page);
	mem_cgroup_uncharge(page_get_page_cgroup(page));
	unlock_page_cgroup(page);
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/*
 * Returns non-zero if a page (under migration) has valid page_cgroup member.
 * Refcnt of page_cgroup is incremented.
 */

int mem_cgroup_prepare_migration(struct page *page)
{
	struct page_cgroup *pc;
	int ret = 0;
	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
	if (pc && atomic_inc_not_zero(&pc->ref_cnt))
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

void mem_cgroup_end_migration(struct page *page)
{
781 782 783 784
	struct page_cgroup *pc;

	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
785
	mem_cgroup_uncharge(pc);
786
	unlock_page_cgroup(page);
787 788 789 790 791 792 793 794 795 796
}
/*
 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
 * And no race with uncharge() routines because page_cgroup for *page*
 * has extra one reference by mem_cgroup_prepare_migration.
 */

void mem_cgroup_page_migration(struct page *page, struct page *newpage)
{
	struct page_cgroup *pc;
797 798
	struct mem_cgroup *mem;
	unsigned long flags;
799
	struct mem_cgroup_per_zone *mz;
800 801 802 803
retry:
	pc = page_get_page_cgroup(page);
	if (!pc)
		return;
804
	mem = pc->mem_cgroup;
805
	mz = page_cgroup_zoneinfo(pc);
806 807
	if (clear_page_cgroup(page, pc) != pc)
		goto retry;
808
	spin_lock_irqsave(&mz->lru_lock, flags);
809 810

	__mem_cgroup_remove_list(pc);
811 812
	spin_unlock_irqrestore(&mz->lru_lock, flags);

813 814 815 816
	pc->page = newpage;
	lock_page_cgroup(newpage);
	page_assign_page_cgroup(newpage, pc);
	unlock_page_cgroup(newpage);
817

818 819 820 821
	mz = page_cgroup_zoneinfo(pc);
	spin_lock_irqsave(&mz->lru_lock, flags);
	__mem_cgroup_add_list(pc);
	spin_unlock_irqrestore(&mz->lru_lock, flags);
822 823
	return;
}
824

825 826 827 828 829 830 831
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * This routine ignores page_cgroup->ref_cnt.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
#define FORCE_UNCHARGE_BATCH	(128)
static void
832 833 834
mem_cgroup_force_empty_list(struct mem_cgroup *mem,
			    struct mem_cgroup_per_zone *mz,
			    int active)
835 836 837 838 839
{
	struct page_cgroup *pc;
	struct page *page;
	int count;
	unsigned long flags;
840 841 842 843 844 845
	struct list_head *list;

	if (active)
		list = &mz->active_list;
	else
		list = &mz->inactive_list;
846

847 848
	if (list_empty(list))
		return;
849 850
retry:
	count = FORCE_UNCHARGE_BATCH;
851
	spin_lock_irqsave(&mz->lru_lock, flags);
852 853 854 855 856 857 858 859 860

	while (--count && !list_empty(list)) {
		pc = list_entry(list->prev, struct page_cgroup, lru);
		page = pc->page;
		/* Avoid race with charge */
		atomic_set(&pc->ref_cnt, 0);
		if (clear_page_cgroup(page, pc) == pc) {
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
861
			__mem_cgroup_remove_list(pc);
862 863 864 865
			kfree(pc);
		} else 	/* being uncharged ? ...do relax */
			break;
	}
866
	spin_unlock_irqrestore(&mz->lru_lock, flags);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	if (!list_empty(list)) {
		cond_resched();
		goto retry;
	}
	return;
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */

int mem_cgroup_force_empty(struct mem_cgroup *mem)
{
	int ret = -EBUSY;
882
	int node, zid;
883 884 885 886 887 888
	css_get(&mem->css);
	/*
	 * page reclaim code (kswapd etc..) will move pages between
`	 * active_list <-> inactive_list while we don't take a lock.
	 * So, we have to do loop here until all lists are empty.
	 */
889
	while (mem->res.usage > 0) {
890 891
		if (atomic_read(&mem->css.cgroup->count) > 0)
			goto out;
892 893 894 895 896
		for_each_node_state(node, N_POSSIBLE)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				struct mem_cgroup_per_zone *mz;
				mz = mem_cgroup_zoneinfo(mem, node, zid);
				/* drop all page_cgroup in active_list */
897
				mem_cgroup_force_empty_list(mem, mz, 1);
898
				/* drop all page_cgroup in inactive_list */
899
				mem_cgroup_force_empty_list(mem, mz, 0);
900
			}
901 902 903 904 905 906 907 908 909
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
}



910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
{
	*tmp = memparse(buf, &buf);
	if (*buf != '\0')
		return -EINVAL;

	/*
	 * Round up the value to the closest page size
	 */
	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
	return 0;
}

static ssize_t mem_cgroup_read(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			char __user *userbuf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
926 927
{
	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
928 929
				cft->private, userbuf, nbytes, ppos,
				NULL);
B
Balbir Singh 已提交
930 931 932 933 934 935 936
}

static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
				struct file *file, const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
937 938
				cft->private, userbuf, nbytes, ppos,
				mem_cgroup_write_strategy);
B
Balbir Singh 已提交
939 940
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static ssize_t mem_force_empty_write(struct cgroup *cont,
				struct cftype *cft, struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	int ret;
	ret = mem_cgroup_force_empty(mem);
	if (!ret)
		ret = nbytes;
	return ret;
}

/*
 * Note: This should be removed if cgroup supports write-only file.
 */

static ssize_t mem_force_empty_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return -EINVAL;
}


967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
static const struct mem_cgroup_stat_desc {
	const char *msg;
	u64 unit;
} mem_cgroup_stat_desc[] = {
	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
};

static int mem_control_stat_show(struct seq_file *m, void *arg)
{
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
	struct mem_cgroup_stat *stat = &mem_cont->stat;
	int i;

	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
		s64 val;

		val = mem_cgroup_read_stat(stat, i);
		val *= mem_cgroup_stat_desc[i].unit;
		seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
				(long long)val);
	}
990 991 992 993 994 995 996 997 998 999 1000
	/* showing # of active pages */
	{
		unsigned long active, inactive;

		inactive = mem_cgroup_get_all_zonestat(mem_cont,
						MEM_CGROUP_ZSTAT_INACTIVE);
		active = mem_cgroup_get_all_zonestat(mem_cont,
						MEM_CGROUP_ZSTAT_ACTIVE);
		seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
		seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
	}
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	return 0;
}

static const struct file_operations mem_control_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_stat_open(struct inode *unused, struct file *file)
{
	/* XXX __d_cont */
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_stat_file_operations;
	return single_open(file, mem_control_stat_show, cont);
}



B
Balbir Singh 已提交
1021 1022
static struct cftype mem_cgroup_files[] = {
	{
1023
		.name = "usage_in_bytes",
B
Balbir Singh 已提交
1024 1025 1026 1027
		.private = RES_USAGE,
		.read = mem_cgroup_read,
	},
	{
1028
		.name = "limit_in_bytes",
B
Balbir Singh 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037
		.private = RES_LIMIT,
		.write = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "failcnt",
		.private = RES_FAILCNT,
		.read = mem_cgroup_read,
	},
1038 1039 1040 1041 1042
	{
		.name = "force_empty",
		.write = mem_force_empty_write,
		.read = mem_force_empty_read,
	},
1043 1044 1045 1046
	{
		.name = "stat",
		.open = mem_control_stat_open,
	},
B
Balbir Singh 已提交
1047 1048
};

1049 1050 1051
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	struct mem_cgroup_per_zone *mz;
	int zone;
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
	if (node_state(node, N_HIGH_MEMORY))
		pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
	else
		pn = kmalloc(sizeof(*pn), GFP_KERNEL);
1066 1067
	if (!pn)
		return 1;
1068

1069 1070
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
1071 1072 1073 1074 1075

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
		INIT_LIST_HEAD(&mz->active_list);
		INIT_LIST_HEAD(&mz->inactive_list);
1076
		spin_lock_init(&mz->lru_lock);
1077
	}
1078 1079 1080
	return 0;
}

1081 1082 1083 1084 1085 1086
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}


1087 1088
static struct mem_cgroup init_mem_cgroup;

B
Balbir Singh 已提交
1089 1090 1091 1092
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct mem_cgroup *mem;
1093
	int node;
B
Balbir Singh 已提交
1094

1095 1096 1097 1098 1099 1100 1101
	if (unlikely((cont->parent) == NULL)) {
		mem = &init_mem_cgroup;
		init_mm.mem_cgroup = mem;
	} else
		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);

	if (mem == NULL)
1102
		return ERR_PTR(-ENOMEM);
B
Balbir Singh 已提交
1103 1104

	res_counter_init(&mem->res);
1105

1106 1107 1108 1109 1110 1111
	memset(&mem->info, 0, sizeof(mem->info));

	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;

B
Balbir Singh 已提交
1112
	return &mem->css;
1113 1114
free_out:
	for_each_node_state(node, N_POSSIBLE)
1115
		free_mem_cgroup_per_zone_info(mem, node);
1116 1117
	if (cont->parent != NULL)
		kfree(mem);
1118
	return ERR_PTR(-ENOMEM);
B
Balbir Singh 已提交
1119 1120
}

1121 1122 1123 1124 1125 1126 1127
static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	mem_cgroup_force_empty(mem);
}

B
Balbir Singh 已提交
1128 1129 1130
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
1131 1132 1133 1134
	int node;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	for_each_node_state(node, N_POSSIBLE)
1135
		free_mem_cgroup_per_zone_info(mem, node);
1136

B
Balbir Singh 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	kfree(mem_cgroup_from_cont(cont));
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, mem_cgroup_files,
					ARRAY_SIZE(mem_cgroup_files));
}

B
Balbir Singh 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
	struct mm_struct *mm;
	struct mem_cgroup *mem, *old_mem;

	mm = get_task_mm(p);
	if (mm == NULL)
		return;

	mem = mem_cgroup_from_cont(cont);
	old_mem = mem_cgroup_from_cont(old_cont);

	if (mem == old_mem)
		goto out;

	/*
	 * Only thread group leaders are allowed to migrate, the mm_struct is
	 * in effect owned by the leader
	 */
	if (p->tgid != p->pid)
		goto out;

	css_get(&mem->css);
	rcu_assign_pointer(mm->mem_cgroup, mem);
	css_put(&old_mem->css);

out:
	mmput(mm);
	return;
}

B
Balbir Singh 已提交
1181 1182 1183 1184
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
1185
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
1186 1187
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
1188
	.attach = mem_cgroup_move_task,
1189
	.early_init = 0,
B
Balbir Singh 已提交
1190
};