core-transaction.c 32.7 KB
Newer Older
1 2
/*
 * Core IEEE1394 transaction logic
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

S
Stefan Richter 已提交
21
#include <linux/bug.h>
22
#include <linux/completion.h>
S
Stefan Richter 已提交
23 24
#include <linux/device.h>
#include <linux/errno.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26 27 28
#include <linux/firewire-constants.h>
#include <linux/fs.h>
#include <linux/init.h>
29
#include <linux/idr.h>
S
Stefan Richter 已提交
30
#include <linux/jiffies.h>
31 32
#include <linux/kernel.h>
#include <linux/list.h>
S
Stefan Richter 已提交
33 34 35 36 37 38 39 40
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/types.h>

#include <asm/byteorder.h>
41

42
#include "core.h"
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#define HEADER_PRI(pri)			((pri) << 0)
#define HEADER_TCODE(tcode)		((tcode) << 4)
#define HEADER_RETRY(retry)		((retry) << 8)
#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
#define HEADER_DESTINATION(destination)	((destination) << 16)
#define HEADER_SOURCE(source)		((source) << 16)
#define HEADER_RCODE(rcode)		((rcode) << 12)
#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
#define HEADER_DATA_LENGTH(length)	((length) << 16)
#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)

#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)

64 65 66
#define HEADER_DESTINATION_IS_BROADCAST(q) \
	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))

67 68 69 70
#define PHY_PACKET_CONFIG	0x0
#define PHY_PACKET_LINK_ON	0x1
#define PHY_PACKET_SELF_ID	0x2

71 72 73
#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
#define PHY_IDENTIFIER(id)		((id) << 30)
74

75
static int close_transaction(struct fw_transaction *transaction,
76
			     struct fw_card *card, int rcode)
77
{
78
	struct fw_transaction *t;
79 80 81
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
82 83
	list_for_each_entry(t, &card->transaction_list, link) {
		if (t == transaction) {
84
			list_del_init(&t->link);
85
			card->tlabel_mask &= ~(1ULL << t->tlabel);
86 87 88
			break;
		}
	}
89 90
	spin_unlock_irqrestore(&card->lock, flags);

91
	if (&t->link != &card->transaction_list) {
92
		del_timer_sync(&t->split_timeout_timer);
93
		t->callback(card, rcode, NULL, 0, t->callback_data);
94 95 96 97
		return 0;
	}

	return -ENOENT;
98 99
}

100 101 102 103
/*
 * Only valid for transactions that are potentially pending (ie have
 * been sent).
 */
104 105
int fw_cancel_transaction(struct fw_card *card,
			  struct fw_transaction *transaction)
106
{
107 108
	/*
	 * Cancel the packet transmission if it's still queued.  That
109
	 * will call the packet transmission callback which cancels
110 111
	 * the transaction.
	 */
112 113 114 115

	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
		return 0;

116 117 118 119
	/*
	 * If the request packet has already been sent, we need to see
	 * if the transaction is still pending and remove it in that case.
	 */
120

121
	return close_transaction(transaction, card, RCODE_CANCELLED);
122 123 124
}
EXPORT_SYMBOL(fw_cancel_transaction);

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
static void split_transaction_timeout_callback(unsigned long data)
{
	struct fw_transaction *t = (struct fw_transaction *)data;
	struct fw_card *card = t->card;
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	if (list_empty(&t->link)) {
		spin_unlock_irqrestore(&card->lock, flags);
		return;
	}
	list_del(&t->link);
	card->tlabel_mask &= ~(1ULL << t->tlabel);
	spin_unlock_irqrestore(&card->lock, flags);

	card->driver->cancel_packet(card, &t->packet);

	/*
	 * At this point cancel_packet will never call the transaction
	 * callback, since we just took the transaction out of the list.
	 * So do it here.
	 */
	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
}

150 151
static void transmit_complete_callback(struct fw_packet *packet,
				       struct fw_card *card, int status)
152 153 154 155 156 157
{
	struct fw_transaction *t =
	    container_of(packet, struct fw_transaction, packet);

	switch (status) {
	case ACK_COMPLETE:
158
		close_transaction(t, card, RCODE_COMPLETE);
159 160 161 162 163 164 165
		break;
	case ACK_PENDING:
		t->timestamp = packet->timestamp;
		break;
	case ACK_BUSY_X:
	case ACK_BUSY_A:
	case ACK_BUSY_B:
166
		close_transaction(t, card, RCODE_BUSY);
167 168
		break;
	case ACK_DATA_ERROR:
169
		close_transaction(t, card, RCODE_DATA_ERROR);
170
		break;
171
	case ACK_TYPE_ERROR:
172
		close_transaction(t, card, RCODE_TYPE_ERROR);
173 174
		break;
	default:
175 176 177 178
		/*
		 * In this case the ack is really a juju specific
		 * rcode, so just forward that to the callback.
		 */
179
		close_transaction(t, card, status);
180 181 182 183
		break;
	}
}

184
static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
185
		int destination_id, int source_id, int generation, int speed,
186
		unsigned long long offset, void *payload, size_t length)
187 188 189
{
	int ext_tcode;

190 191 192 193 194 195 196 197 198 199 200 201
	if (tcode == TCODE_STREAM_DATA) {
		packet->header[0] =
			HEADER_DATA_LENGTH(length) |
			destination_id |
			HEADER_TCODE(TCODE_STREAM_DATA);
		packet->header_length = 4;
		packet->payload = payload;
		packet->payload_length = length;

		goto common;
	}

202
	if (tcode > 0x10) {
203
		ext_tcode = tcode & ~0x10;
204 205 206 207 208
		tcode = TCODE_LOCK_REQUEST;
	} else
		ext_tcode = 0;

	packet->header[0] =
209 210 211
		HEADER_RETRY(RETRY_X) |
		HEADER_TLABEL(tlabel) |
		HEADER_TCODE(tcode) |
212
		HEADER_DESTINATION(destination_id);
213
	packet->header[1] =
214
		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
215 216 217 218 219 220 221 222 223 224 225 226 227
	packet->header[2] =
		offset;

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
		packet->header[3] = *(u32 *)payload;
		packet->header_length = 16;
		packet->payload_length = 0;
		break;

	case TCODE_LOCK_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
		packet->header[3] =
228 229
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(ext_tcode);
230 231 232 233 234 235 236 237 238 239 240 241
		packet->header_length = 16;
		packet->payload = payload;
		packet->payload_length = length;
		break;

	case TCODE_READ_QUADLET_REQUEST:
		packet->header_length = 12;
		packet->payload_length = 0;
		break;

	case TCODE_READ_BLOCK_REQUEST:
		packet->header[3] =
242 243
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(ext_tcode);
244 245 246
		packet->header_length = 16;
		packet->payload_length = 0;
		break;
247 248

	default:
249
		WARN(1, "wrong tcode %d", tcode);
250
	}
251
 common:
252 253
	packet->speed = speed;
	packet->generation = generation;
254
	packet->ack = 0;
255
	packet->payload_mapped = false;
256 257
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static int allocate_tlabel(struct fw_card *card)
{
	int tlabel;

	tlabel = card->current_tlabel;
	while (card->tlabel_mask & (1ULL << tlabel)) {
		tlabel = (tlabel + 1) & 0x3f;
		if (tlabel == card->current_tlabel)
			return -EBUSY;
	}

	card->current_tlabel = (tlabel + 1) & 0x3f;
	card->tlabel_mask |= 1ULL << tlabel;

	return tlabel;
}

275
/**
276 277 278 279 280 281 282 283 284 285 286 287
 * fw_send_request() - submit a request packet for transmission
 * @card:		interface to send the request at
 * @t:			transaction instance to which the request belongs
 * @tcode:		transaction code
 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 * @generation:		bus generation in which request and response are valid
 * @speed:		transmission speed
 * @offset:		48bit wide offset into destination's address space
 * @payload:		data payload for the request subaction
 * @length:		length of the payload, in bytes
 * @callback:		function to be called when the transaction is completed
 * @callback_data:	data to be passed to the transaction completion callback
288
 *
289 290 291
 * Submit a request packet into the asynchronous request transmission queue.
 * Can be called from atomic context.  If you prefer a blocking API, use
 * fw_run_transaction() in a context that can sleep.
292
 *
293 294
 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
295
 *
296 297
 * Make sure that the value in @destination_id is not older than the one in
 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
298
 *
299
 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
300
 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
 * It will contain tag, channel, and sy data instead of a node ID then.
 *
 * The payload buffer at @data is going to be DMA-mapped except in case of
 * quadlet-sized payload or of local (loopback) requests.  Hence make sure that
 * the buffer complies with the restrictions for DMA-mapped memory.  The
 * @payload must not be freed before the @callback is called.
 *
 * In case of request types without payload, @data is NULL and @length is 0.
 *
 * After the transaction is completed successfully or unsuccessfully, the
 * @callback will be called.  Among its parameters is the response code which
 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 * the firewire-core specific %RCODE_SEND_ERROR.
 *
 * Note some timing corner cases:  fw_send_request() may complete much earlier
 * than when the request packet actually hits the wire.  On the other hand,
 * transaction completion and hence execution of @callback may happen even
 * before fw_send_request() returns.
319
 */
320 321 322 323
void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
		     int destination_id, int generation, int speed,
		     unsigned long long offset, void *payload, size_t length,
		     fw_transaction_callback_t callback, void *callback_data)
324 325
{
	unsigned long flags;
326
	int tlabel;
327

328 329 330 331
	/*
	 * Allocate tlabel from the bitmap and put the transaction on
	 * the list while holding the card spinlock.
	 */
332 333 334

	spin_lock_irqsave(&card->lock, flags);

335 336
	tlabel = allocate_tlabel(card);
	if (tlabel < 0) {
337 338 339 340 341
		spin_unlock_irqrestore(&card->lock, flags);
		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
		return;
	}

J
Jay Fenlason 已提交
342
	t->node_id = destination_id;
343
	t->tlabel = tlabel;
344 345 346 347
	t->card = card;
	setup_timer(&t->split_timeout_timer,
		    split_transaction_timeout_callback, (unsigned long)t);
	/* FIXME: start this timer later, relative to t->timestamp */
348 349
	mod_timer(&t->split_timeout_timer,
		  jiffies + card->split_timeout_jiffies);
350 351 352
	t->callback = callback;
	t->callback_data = callback_data;

J
Jay Fenlason 已提交
353 354 355
	fw_fill_request(&t->packet, tcode, t->tlabel,
			destination_id, card->node_id, generation,
			speed, offset, payload, length);
356 357
	t->packet.callback = transmit_complete_callback;

358 359 360 361
	list_add_tail(&t->link, &card->transaction_list);

	spin_unlock_irqrestore(&card->lock, flags);

362 363 364 365
	card->driver->send_request(card, &t->packet);
}
EXPORT_SYMBOL(fw_send_request);

J
Jay Fenlason 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
struct transaction_callback_data {
	struct completion done;
	void *payload;
	int rcode;
};

static void transaction_callback(struct fw_card *card, int rcode,
				 void *payload, size_t length, void *data)
{
	struct transaction_callback_data *d = data;

	if (rcode == RCODE_COMPLETE)
		memcpy(d->payload, payload, length);
	d->rcode = rcode;
	complete(&d->done);
}

/**
384
 * fw_run_transaction() - send request and sleep until transaction is completed
J
Jay Fenlason 已提交
385
 *
386 387 388
 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 * Unlike fw_send_request(), @data points to the payload of the request or/and
 * to the payload of the response.
J
Jay Fenlason 已提交
389 390
 */
int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
391
		       int generation, int speed, unsigned long long offset,
392
		       void *payload, size_t length)
J
Jay Fenlason 已提交
393 394 395 396
{
	struct transaction_callback_data d;
	struct fw_transaction t;

397
	init_timer_on_stack(&t.split_timeout_timer);
J
Jay Fenlason 已提交
398
	init_completion(&d.done);
399
	d.payload = payload;
J
Jay Fenlason 已提交
400
	fw_send_request(card, &t, tcode, destination_id, generation, speed,
401
			offset, payload, length, transaction_callback, &d);
J
Jay Fenlason 已提交
402
	wait_for_completion(&d.done);
403
	destroy_timer_on_stack(&t.split_timeout_timer);
J
Jay Fenlason 已提交
404 405 406 407 408

	return d.rcode;
}
EXPORT_SYMBOL(fw_run_transaction);

409 410
static DEFINE_MUTEX(phy_config_mutex);
static DECLARE_COMPLETION(phy_config_done);
411 412 413

static void transmit_phy_packet_callback(struct fw_packet *packet,
					 struct fw_card *card, int status)
414
{
415
	complete(&phy_config_done);
416 417
}

418 419 420 421 422 423 424
static struct fw_packet phy_config_packet = {
	.header_length	= 8,
	.payload_length	= 0,
	.speed		= SCODE_100,
	.callback	= transmit_phy_packet_callback,
};

425 426
void fw_send_phy_config(struct fw_card *card,
			int node_id, int generation, int gap_count)
427
{
428
	long timeout = DIV_ROUND_UP(HZ, 10);
429 430 431 432
	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG) |
		   PHY_CONFIG_ROOT_ID(node_id) |
		   PHY_CONFIG_GAP_COUNT(gap_count);

433 434 435 436 437 438 439 440 441
	mutex_lock(&phy_config_mutex);

	phy_config_packet.header[0] = data;
	phy_config_packet.header[1] = ~data;
	phy_config_packet.generation = generation;
	INIT_COMPLETION(phy_config_done);

	card->driver->send_request(card, &phy_config_packet);
	wait_for_completion_timeout(&phy_config_done, timeout);
442

443
	mutex_unlock(&phy_config_mutex);
444 445
}

446 447
static struct fw_address_handler *lookup_overlapping_address_handler(
	struct list_head *list, unsigned long long offset, size_t length)
448 449 450 451 452 453 454 455 456 457 458 459
{
	struct fw_address_handler *handler;

	list_for_each_entry(handler, list, link) {
		if (handler->offset < offset + length &&
		    offset < handler->offset + handler->length)
			return handler;
	}

	return NULL;
}

460 461 462 463 464 465 466
static bool is_enclosing_handler(struct fw_address_handler *handler,
				 unsigned long long offset, size_t length)
{
	return handler->offset <= offset &&
		offset + length <= handler->offset + handler->length;
}

467 468
static struct fw_address_handler *lookup_enclosing_address_handler(
	struct list_head *list, unsigned long long offset, size_t length)
469 470 471 472
{
	struct fw_address_handler *handler;

	list_for_each_entry(handler, list, link) {
473
		if (is_enclosing_handler(handler, offset, length))
474 475 476 477 478 479 480 481 482
			return handler;
	}

	return NULL;
}

static DEFINE_SPINLOCK(address_handler_lock);
static LIST_HEAD(address_handler_list);

483
const struct fw_address_region fw_high_memory_region =
484
	{ .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
A
Adrian Bunk 已提交
485 486 487 488 489
EXPORT_SYMBOL(fw_high_memory_region);

#if 0
const struct fw_address_region fw_low_memory_region =
	{ .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
490
const struct fw_address_region fw_private_region =
491
	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
492
const struct fw_address_region fw_csr_region =
493 494
	{ .start = CSR_REGISTER_BASE,
	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
495
const struct fw_address_region fw_unit_space_region =
496
	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
A
Adrian Bunk 已提交
497
#endif  /*  0  */
498

499 500 501 502 503 504
static bool is_in_fcp_region(u64 offset, size_t length)
{
	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
}

505
/**
506 507 508
 * fw_core_add_address_handler() - register for incoming requests
 * @handler:	callback
 * @region:	region in the IEEE 1212 node space address range
509 510 511 512 513 514
 *
 * region->start, ->end, and handler->length have to be quadlet-aligned.
 *
 * When a request is received that falls within the specified address range,
 * the specified callback is invoked.  The parameters passed to the callback
 * give the details of the particular request.
515 516
 *
 * Return value:  0 on success, non-zero otherwise.
517
 *
518 519
 * The start offset of the handler's address region is determined by
 * fw_core_add_address_handler() and is returned in handler->offset.
520 521
 *
 * Address allocations are exclusive, except for the FCP registers.
522
 */
523 524
int fw_core_add_address_handler(struct fw_address_handler *handler,
				const struct fw_address_region *region)
525 526 527 528 529
{
	struct fw_address_handler *other;
	unsigned long flags;
	int ret = -EBUSY;

530 531 532 533 534 535 536
	if (region->start & 0xffff000000000003ULL ||
	    region->end   & 0xffff000000000003ULL ||
	    region->start >= region->end ||
	    handler->length & 3 ||
	    handler->length == 0)
		return -EINVAL;

537 538
	spin_lock_irqsave(&address_handler_lock, flags);

539
	handler->offset = region->start;
540
	while (handler->offset + handler->length <= region->end) {
541 542 543 544 545 546
		if (is_in_fcp_region(handler->offset, handler->length))
			other = NULL;
		else
			other = lookup_overlapping_address_handler
					(&address_handler_list,
					 handler->offset, handler->length);
547
		if (other != NULL) {
548
			handler->offset += other->length;
549 550 551 552 553 554 555 556 557 558 559 560 561 562
		} else {
			list_add_tail(&handler->link, &address_handler_list);
			ret = 0;
			break;
		}
	}

	spin_unlock_irqrestore(&address_handler_lock, flags);

	return ret;
}
EXPORT_SYMBOL(fw_core_add_address_handler);

/**
563
 * fw_core_remove_address_handler() - unregister an address handler
564 565 566 567 568 569 570 571 572 573 574 575 576
 */
void fw_core_remove_address_handler(struct fw_address_handler *handler)
{
	unsigned long flags;

	spin_lock_irqsave(&address_handler_lock, flags);
	list_del(&handler->link);
	spin_unlock_irqrestore(&address_handler_lock, flags);
}
EXPORT_SYMBOL(fw_core_remove_address_handler);

struct fw_request {
	struct fw_packet response;
577
	u32 request_header[4];
578 579 580 581 582
	int ack;
	u32 length;
	u32 data[0];
};

583 584
static void free_response_callback(struct fw_packet *packet,
				   struct fw_card *card, int status)
585 586 587 588 589 590 591
{
	struct fw_request *request;

	request = container_of(packet, struct fw_request, response);
	kfree(request);
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
int fw_get_response_length(struct fw_request *r)
{
	int tcode, ext_tcode, data_length;

	tcode = HEADER_GET_TCODE(r->request_header[0]);

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
		return 0;

	case TCODE_READ_QUADLET_REQUEST:
		return 4;

	case TCODE_READ_BLOCK_REQUEST:
		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
		return data_length;

	case TCODE_LOCK_REQUEST:
		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
		switch (ext_tcode) {
		case EXTCODE_FETCH_ADD:
		case EXTCODE_LITTLE_ADD:
			return data_length;
		default:
			return data_length / 2;
		}

	default:
622
		WARN(1, "wrong tcode %d", tcode);
623 624 625 626
		return 0;
	}
}

627 628
void fw_fill_response(struct fw_packet *response, u32 *request_header,
		      int rcode, void *payload, size_t length)
629 630 631
{
	int tcode, tlabel, extended_tcode, source, destination;

632 633 634 635 636
	tcode          = HEADER_GET_TCODE(request_header[0]);
	tlabel         = HEADER_GET_TLABEL(request_header[0]);
	source         = HEADER_GET_DESTINATION(request_header[0]);
	destination    = HEADER_GET_SOURCE(request_header[1]);
	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
637 638

	response->header[0] =
639 640 641
		HEADER_RETRY(RETRY_1) |
		HEADER_TLABEL(tlabel) |
		HEADER_DESTINATION(destination);
642
	response->header[1] =
643 644
		HEADER_SOURCE(source) |
		HEADER_RCODE(rcode);
645 646 647 648 649
	response->header[2] = 0;

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
650
		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
651 652 653 654 655 656
		response->header_length = 12;
		response->payload_length = 0;
		break;

	case TCODE_READ_QUADLET_REQUEST:
		response->header[0] |=
657
			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
658 659 660 661
		if (payload != NULL)
			response->header[3] = *(u32 *)payload;
		else
			response->header[3] = 0;
662 663 664 665 666 667
		response->header_length = 16;
		response->payload_length = 0;
		break;

	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_LOCK_REQUEST:
668
		response->header[0] |= HEADER_TCODE(tcode + 2);
669
		response->header[3] =
670 671
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(extended_tcode);
672
		response->header_length = 16;
673 674
		response->payload = payload;
		response->payload_length = length;
675 676 677
		break;

	default:
678
		WARN(1, "wrong tcode %d", tcode);
679
	}
680

681
	response->payload_mapped = false;
682
}
683
EXPORT_SYMBOL(fw_fill_response);
684

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
static u32 compute_split_timeout_timestamp(struct fw_card *card,
					   u32 request_timestamp)
{
	unsigned int cycles;
	u32 timestamp;

	cycles = card->split_timeout_cycles;
	cycles += request_timestamp & 0x1fff;

	timestamp = request_timestamp & ~0x1fff;
	timestamp += (cycles / 8000) << 13;
	timestamp |= cycles % 8000;

	return timestamp;
}

static struct fw_request *allocate_request(struct fw_card *card,
					   struct fw_packet *p)
703 704 705
{
	struct fw_request *request;
	u32 *data, length;
706
	int request_tcode;
707

708
	request_tcode = HEADER_GET_TCODE(p->header[0]);
709 710
	switch (request_tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
711
		data = &p->header[3];
712 713 714 715 716
		length = 4;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_LOCK_REQUEST:
717
		data = p->payload;
718
		length = HEADER_GET_DATA_LENGTH(p->header[3]);
719 720 721 722 723 724 725 726 727
		break;

	case TCODE_READ_QUADLET_REQUEST:
		data = NULL;
		length = 4;
		break;

	case TCODE_READ_BLOCK_REQUEST:
		data = NULL;
728
		length = HEADER_GET_DATA_LENGTH(p->header[3]);
729 730 731
		break;

	default:
732 733
		fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
			 p->header[0], p->header[1], p->header[2]);
734 735 736
		return NULL;
	}

737
	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
738 739 740
	if (request == NULL)
		return NULL;

741
	request->response.speed = p->speed;
742 743
	request->response.timestamp =
			compute_split_timeout_timestamp(card, p->timestamp);
744
	request->response.generation = p->generation;
745
	request->response.ack = 0;
746
	request->response.callback = free_response_callback;
747
	request->ack = p->ack;
748
	request->length = length;
749
	if (data)
750
		memcpy(request->data, data, length);
751

752
	memcpy(request->request_header, p->header, sizeof(p->header));
753 754 755 756

	return request;
}

757 758
void fw_send_response(struct fw_card *card,
		      struct fw_request *request, int rcode)
759
{
760 761 762
	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
		return;

763 764 765
	/* unified transaction or broadcast transaction: don't respond */
	if (request->ack != ACK_PENDING ||
	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
766
		kfree(request);
767
		return;
768
	}
769

770 771
	if (rcode == RCODE_COMPLETE)
		fw_fill_response(&request->response, request->request_header,
772 773
				 rcode, request->data,
				 fw_get_response_length(request));
774 775 776
	else
		fw_fill_response(&request->response, request->request_header,
				 rcode, NULL, 0);
777 778 779 780 781

	card->driver->send_response(card, &request->response);
}
EXPORT_SYMBOL(fw_send_response);

782 783 784 785
static void handle_exclusive_region_request(struct fw_card *card,
					    struct fw_packet *p,
					    struct fw_request *request,
					    unsigned long long offset)
786 787 788
{
	struct fw_address_handler *handler;
	unsigned long flags;
789
	int tcode, destination, source;
790

791
	destination = HEADER_GET_DESTINATION(p->header[0]);
792
	source      = HEADER_GET_SOURCE(p->header[1]);
793 794 795
	tcode       = HEADER_GET_TCODE(p->header[0]);
	if (tcode == TCODE_LOCK_REQUEST)
		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
796 797 798 799 800 801

	spin_lock_irqsave(&address_handler_lock, flags);
	handler = lookup_enclosing_address_handler(&address_handler_list,
						   offset, request->length);
	spin_unlock_irqrestore(&address_handler_lock, flags);

802 803
	/*
	 * FIXME: lookup the fw_node corresponding to the sender of
804 805 806
	 * this request and pass that to the address handler instead
	 * of the node ID.  We may also want to move the address
	 * allocations to fw_node so we only do this callback if the
807 808
	 * upper layers registered it for this node.
	 */
809 810 811 812 813 814

	if (handler == NULL)
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
	else
		handler->address_callback(card, request,
					  tcode, destination, source,
815
					  p->generation, offset,
816 817 818
					  request->data, request->length,
					  handler->callback_data);
}
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

static void handle_fcp_region_request(struct fw_card *card,
				      struct fw_packet *p,
				      struct fw_request *request,
				      unsigned long long offset)
{
	struct fw_address_handler *handler;
	unsigned long flags;
	int tcode, destination, source;

	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
	    request->length > 0x200) {
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);

		return;
	}

	tcode       = HEADER_GET_TCODE(p->header[0]);
	destination = HEADER_GET_DESTINATION(p->header[0]);
	source      = HEADER_GET_SOURCE(p->header[1]);

	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
		fw_send_response(card, request, RCODE_TYPE_ERROR);

		return;
	}

	spin_lock_irqsave(&address_handler_lock, flags);
	list_for_each_entry(handler, &address_handler_list, link) {
		if (is_enclosing_handler(handler, offset, request->length))
			handler->address_callback(card, NULL, tcode,
						  destination, source,
853 854
						  p->generation, offset,
						  request->data,
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
						  request->length,
						  handler->callback_data);
	}
	spin_unlock_irqrestore(&address_handler_lock, flags);

	fw_send_response(card, request, RCODE_COMPLETE);
}

void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
{
	struct fw_request *request;
	unsigned long long offset;

	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
		return;

871
	request = allocate_request(card, p);
872 873 874 875 876 877 878 879 880 881 882 883 884 885
	if (request == NULL) {
		/* FIXME: send statically allocated busy packet. */
		return;
	}

	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
		p->header[2];

	if (!is_in_fcp_region(offset, request->length))
		handle_exclusive_region_request(card, p, request, offset);
	else
		handle_fcp_region_request(card, p, request, offset);

}
886 887
EXPORT_SYMBOL(fw_core_handle_request);

888
void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
889 890 891 892 893
{
	struct fw_transaction *t;
	unsigned long flags;
	u32 *data;
	size_t data_length;
894
	int tcode, tlabel, source, rcode;
895

896 897 898 899
	tcode	= HEADER_GET_TCODE(p->header[0]);
	tlabel	= HEADER_GET_TLABEL(p->header[0]);
	source	= HEADER_GET_SOURCE(p->header[1]);
	rcode	= HEADER_GET_RCODE(p->header[1]);
900 901 902 903

	spin_lock_irqsave(&card->lock, flags);
	list_for_each_entry(t, &card->transaction_list, link) {
		if (t->node_id == source && t->tlabel == tlabel) {
904
			list_del_init(&t->link);
905
			card->tlabel_mask &= ~(1ULL << t->tlabel);
906 907 908 909 910 911
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (&t->link == &card->transaction_list) {
912 913
		fw_notify("Unsolicited response (source %x, tlabel %x)\n",
			  source, tlabel);
914 915 916
		return;
	}

917 918 919 920
	/*
	 * FIXME: sanity check packet, is length correct, does tcodes
	 * and addresses match.
	 */
921 922 923

	switch (tcode) {
	case TCODE_READ_QUADLET_RESPONSE:
924
		data = (u32 *) &p->header[3];
925 926 927 928 929 930 931 932 933 934
		data_length = 4;
		break;

	case TCODE_WRITE_RESPONSE:
		data = NULL;
		data_length = 0;
		break;

	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_RESPONSE:
935
		data = p->payload;
936
		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
937 938 939 940 941 942 943 944 945
		break;

	default:
		/* Should never happen, this is just to shut up gcc. */
		data = NULL;
		data_length = 0;
		break;
	}

946 947
	del_timer_sync(&t->split_timeout_timer);

948 949 950 951 952 953
	/*
	 * The response handler may be executed while the request handler
	 * is still pending.  Cancel the request handler.
	 */
	card->driver->cancel_packet(card, &t->packet);

954 955 956 957
	t->callback(card, rcode, data, data_length, t->callback_data);
}
EXPORT_SYMBOL(fw_core_handle_response);

958
static const struct fw_address_region topology_map_region =
959 960
	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
961

962 963
static void handle_topology_map(struct fw_card *card, struct fw_request *request,
		int tcode, int destination, int source, int generation,
964 965
		unsigned long long offset, void *payload, size_t length,
		void *callback_data)
966
{
967
	int start;
968 969 970 971 972 973 974 975 976 977 978 979

	if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	if ((offset & 3) > 0 || (length & 3) > 0) {
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
		return;
	}

	start = (offset - topology_map_region.start) / 4;
980
	memcpy(payload, &card->topology_map[start], length);
981 982 983 984 985

	fw_send_response(card, request, RCODE_COMPLETE);
}

static struct fw_address_handler topology_map = {
986
	.length			= 0x400,
987 988 989
	.address_callback	= handle_topology_map,
};

990
static const struct fw_address_region registers_region =
991 992
	{ .start = CSR_REGISTER_BASE,
	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
static void update_split_timeout(struct fw_card *card)
{
	unsigned int cycles;

	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);

	cycles = max(cycles, 800u); /* minimum as per the spec */
	cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */

	card->split_timeout_cycles = cycles;
	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
}

1007 1008
static void handle_registers(struct fw_card *card, struct fw_request *request,
		int tcode, int destination, int source, int generation,
1009 1010
		unsigned long long offset, void *payload, size_t length,
		void *callback_data)
1011
{
1012
	int reg = offset & ~CSR_REGISTER_BASE;
1013
	__be32 *data = payload;
1014
	int rcode = RCODE_COMPLETE;
1015
	unsigned long flags;
1016 1017

	switch (reg) {
1018 1019 1020 1021 1022 1023
	case CSR_PRIORITY_BUDGET:
		if (!card->priority_budget_implemented) {
			rcode = RCODE_ADDRESS_ERROR;
			break;
		}
		/* else fall through */
1024

1025
	case CSR_NODE_IDS:
1026 1027 1028 1029
		/*
		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
		 */
1030 1031 1032 1033 1034 1035 1036
		/* fall through */

	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
	case CSR_CYCLE_TIME:
	case CSR_BUS_TIME:
	case CSR_BUSY_TIMEOUT:
1037
		if (tcode == TCODE_READ_QUADLET_REQUEST)
1038
			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1039
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1040
			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1041 1042 1043 1044
		else
			rcode = RCODE_TYPE_ERROR;
		break;

1045
	case CSR_RESET_START:
1046
		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1047 1048
			card->driver->write_csr(card, CSR_STATE_CLEAR,
						CSR_STATE_BIT_ABDICATE);
1049
		else
1050 1051 1052
			rcode = RCODE_TYPE_ERROR;
		break;

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	case CSR_SPLIT_TIMEOUT_HI:
		if (tcode == TCODE_READ_QUADLET_REQUEST) {
			*data = cpu_to_be32(card->split_timeout_hi);
		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
			spin_lock_irqsave(&card->lock, flags);
			card->split_timeout_hi = be32_to_cpu(*data) & 7;
			update_split_timeout(card);
			spin_unlock_irqrestore(&card->lock, flags);
		} else {
			rcode = RCODE_TYPE_ERROR;
		}
		break;

	case CSR_SPLIT_TIMEOUT_LO:
		if (tcode == TCODE_READ_QUADLET_REQUEST) {
			*data = cpu_to_be32(card->split_timeout_lo);
		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
			spin_lock_irqsave(&card->lock, flags);
			card->split_timeout_lo =
					be32_to_cpu(*data) & 0xfff80000;
			update_split_timeout(card);
			spin_unlock_irqrestore(&card->lock, flags);
		} else {
			rcode = RCODE_TYPE_ERROR;
		}
		break;

1080 1081 1082 1083 1084 1085 1086 1087 1088
	case CSR_MAINT_UTILITY:
		if (tcode == TCODE_READ_QUADLET_REQUEST)
			*data = card->maint_utility_register;
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->maint_utility_register = *data;
		else
			rcode = RCODE_TYPE_ERROR;
		break;

1089 1090 1091 1092 1093 1094 1095 1096 1097
	case CSR_BROADCAST_CHANNEL:
		if (tcode == TCODE_READ_QUADLET_REQUEST)
			*data = cpu_to_be32(card->broadcast_channel);
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->broadcast_channel =
			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
			    BROADCAST_CHANNEL_INITIAL;
		else
			rcode = RCODE_TYPE_ERROR;
1098 1099 1100 1101 1102 1103
		break;

	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
1104 1105
		/*
		 * FIXME: these are handled by the OHCI hardware and
1106 1107 1108
		 * the stack never sees these request. If we add
		 * support for a new type of controller that doesn't
		 * handle this in hardware we need to deal with these
1109 1110
		 * transactions.
		 */
1111 1112 1113 1114
		BUG();
		break;

	default:
1115
		rcode = RCODE_ADDRESS_ERROR;
1116 1117
		break;
	}
1118 1119

	fw_send_response(card, request, rcode);
1120 1121 1122 1123 1124 1125 1126
}

static struct fw_address_handler registers = {
	.length			= 0x400,
	.address_callback	= handle_registers,
};

1127 1128 1129 1130
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
MODULE_LICENSE("GPL");

1131
static const u32 vendor_textual_descriptor[] = {
1132
	/* textual descriptor leaf () */
1133
	0x00060000,
1134 1135 1136 1137 1138
	0x00000000,
	0x00000000,
	0x4c696e75,		/* L i n u */
	0x78204669,		/* x   F i */
	0x72657769,		/* r e w i */
1139
	0x72650000,		/* r e     */
1140 1141
};

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
static const u32 model_textual_descriptor[] = {
	/* model descriptor leaf () */
	0x00030000,
	0x00000000,
	0x00000000,
	0x4a756a75,		/* J u j u */
};

static struct fw_descriptor vendor_id_descriptor = {
	.length = ARRAY_SIZE(vendor_textual_descriptor),
	.immediate = 0x03d00d1e,
1153
	.key = 0x81000000,
1154 1155 1156 1157 1158 1159 1160 1161
	.data = vendor_textual_descriptor,
};

static struct fw_descriptor model_id_descriptor = {
	.length = ARRAY_SIZE(model_textual_descriptor),
	.immediate = 0x17000001,
	.key = 0x81000000,
	.data = model_textual_descriptor,
1162 1163 1164 1165
};

static int __init fw_core_init(void)
{
1166
	int ret;
1167

1168 1169 1170
	ret = bus_register(&fw_bus_type);
	if (ret < 0)
		return ret;
1171

1172 1173 1174 1175 1176 1177
	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
	if (fw_cdev_major < 0) {
		bus_unregister(&fw_bus_type);
		return fw_cdev_major;
	}

1178 1179 1180 1181
	fw_core_add_address_handler(&topology_map, &topology_map_region);
	fw_core_add_address_handler(&registers, &registers_region);
	fw_core_add_descriptor(&vendor_id_descriptor);
	fw_core_add_descriptor(&model_id_descriptor);
1182 1183 1184 1185 1186 1187

	return 0;
}

static void __exit fw_core_cleanup(void)
{
1188
	unregister_chrdev(fw_cdev_major, "firewire");
1189
	bus_unregister(&fw_bus_type);
1190
	idr_destroy(&fw_device_idr);
1191 1192 1193 1194
}

module_init(fw_core_init);
module_exit(fw_core_cleanup);