regcache.c 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Register cache access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/slab.h>
14
#include <linux/export.h>
15
#include <trace/events/regmap.h>
16
#include <linux/bsearch.h>
17
#include <linux/sort.h>
18 19 20 21

#include "internal.h"

static const struct regcache_ops *cache_types[] = {
22
	&regcache_indexed_ops,
23
	&regcache_rbtree_ops,
24
	&regcache_lzo_ops,
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
};

static int regcache_hw_init(struct regmap *map)
{
	int i, j;
	int ret;
	int count;
	unsigned int val;
	void *tmp_buf;

	if (!map->num_reg_defaults_raw)
		return -EINVAL;

	if (!map->reg_defaults_raw) {
		dev_warn(map->dev, "No cache defaults, reading back from HW\n");
		tmp_buf = kmalloc(map->cache_size_raw, GFP_KERNEL);
		if (!tmp_buf)
			return -EINVAL;
		ret = regmap_bulk_read(map, 0, tmp_buf,
				       map->num_reg_defaults_raw);
		if (ret < 0) {
			kfree(tmp_buf);
			return ret;
		}
		map->reg_defaults_raw = tmp_buf;
		map->cache_free = 1;
	}

	/* calculate the size of reg_defaults */
	for (count = 0, i = 0; i < map->num_reg_defaults_raw; i++) {
		val = regcache_get_val(map->reg_defaults_raw,
				       i, map->cache_word_size);
		if (!val)
			continue;
		count++;
	}

	map->reg_defaults = kmalloc(count * sizeof(struct reg_default),
				      GFP_KERNEL);
	if (!map->reg_defaults)
		return -ENOMEM;

	/* fill the reg_defaults */
	map->num_reg_defaults = count;
	for (i = 0, j = 0; i < map->num_reg_defaults_raw; i++) {
		val = regcache_get_val(map->reg_defaults_raw,
				       i, map->cache_word_size);
		if (!val)
			continue;
		map->reg_defaults[j].reg = i;
		map->reg_defaults[j].def = val;
		j++;
	}

	return 0;
}

int regcache_init(struct regmap *map)
{
	int ret;
	int i;
	void *tmp_buf;

88 89
	if (map->cache_type == REGCACHE_NONE) {
		map->cache_bypass = true;
90
		return 0;
91
	}
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

	for (i = 0; i < ARRAY_SIZE(cache_types); i++)
		if (cache_types[i]->type == map->cache_type)
			break;

	if (i == ARRAY_SIZE(cache_types)) {
		dev_err(map->dev, "Could not match compress type: %d\n",
			map->cache_type);
		return -EINVAL;
	}

	map->cache = NULL;
	map->cache_ops = cache_types[i];

	if (!map->cache_ops->read ||
	    !map->cache_ops->write ||
	    !map->cache_ops->name)
		return -EINVAL;

	/* We still need to ensure that the reg_defaults
	 * won't vanish from under us.  We'll need to make
	 * a copy of it.
	 */
	if (map->reg_defaults) {
		if (!map->num_reg_defaults)
			return -EINVAL;
		tmp_buf = kmemdup(map->reg_defaults, map->num_reg_defaults *
				  sizeof(struct reg_default), GFP_KERNEL);
		if (!tmp_buf)
			return -ENOMEM;
		map->reg_defaults = tmp_buf;
123
	} else if (map->num_reg_defaults_raw) {
M
Mark Brown 已提交
124
		/* Some devices such as PMICs don't have cache defaults,
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
		 * we cope with this by reading back the HW registers and
		 * crafting the cache defaults by hand.
		 */
		ret = regcache_hw_init(map);
		if (ret < 0)
			return ret;
	}

	if (!map->max_register)
		map->max_register = map->num_reg_defaults_raw;

	if (map->cache_ops->init) {
		dev_dbg(map->dev, "Initializing %s cache\n",
			map->cache_ops->name);
		return map->cache_ops->init(map);
	}
	return 0;
}

void regcache_exit(struct regmap *map)
{
	if (map->cache_type == REGCACHE_NONE)
		return;

	BUG_ON(!map->cache_ops);

	kfree(map->reg_defaults);
	if (map->cache_free)
		kfree(map->reg_defaults_raw);

	if (map->cache_ops->exit) {
		dev_dbg(map->dev, "Destroying %s cache\n",
			map->cache_ops->name);
		map->cache_ops->exit(map);
	}
}

/**
 * regcache_read: Fetch the value of a given register from the cache.
 *
 * @map: map to configure.
 * @reg: The register index.
 * @value: The value to be returned.
 *
 * Return a negative value on failure, 0 on success.
 */
int regcache_read(struct regmap *map,
		  unsigned int reg, unsigned int *value)
{
	if (map->cache_type == REGCACHE_NONE)
		return -ENOSYS;

	BUG_ON(!map->cache_ops);

	if (!regmap_readable(map, reg))
		return -EIO;

	if (!regmap_volatile(map, reg))
		return map->cache_ops->read(map, reg, value);

	return -EINVAL;
}
EXPORT_SYMBOL_GPL(regcache_read);

/**
 * regcache_write: Set the value of a given register in the cache.
 *
 * @map: map to configure.
 * @reg: The register index.
 * @value: The new register value.
 *
 * Return a negative value on failure, 0 on success.
 */
int regcache_write(struct regmap *map,
		   unsigned int reg, unsigned int value)
{
	if (map->cache_type == REGCACHE_NONE)
		return 0;

	BUG_ON(!map->cache_ops);

	if (!regmap_writeable(map, reg))
		return -EIO;

	if (!regmap_volatile(map, reg))
		return map->cache_ops->write(map, reg, value);

	return 0;
}
EXPORT_SYMBOL_GPL(regcache_write);

/**
 * regcache_sync: Sync the register cache with the hardware.
 *
 * @map: map to configure.
 *
 * Any registers that should not be synced should be marked as
 * volatile.  In general drivers can choose not to use the provided
 * syncing functionality if they so require.
 *
 * Return a negative value on failure, 0 on success.
 */
int regcache_sync(struct regmap *map)
{
229 230 231
	int ret = 0;
	unsigned int val;
	unsigned int i;
232
	const char *name;
233
	unsigned int bypass;
234

235 236
	BUG_ON(!map->cache_ops);

237
	mutex_lock(&map->lock);
238 239
	/* Remember the initial bypass state */
	bypass = map->cache_bypass;
240 241 242 243
	dev_dbg(map->dev, "Syncing %s cache\n",
		map->cache_ops->name);
	name = map->cache_ops->name;
	trace_regcache_sync(map->dev, name, "start");
244 245
	if (!map->cache_dirty)
		goto out;
246
	if (map->cache_ops->sync) {
247
		ret = map->cache_ops->sync(map);
248 249 250 251 252
	} else {
		for (i = 0; i < map->num_reg_defaults; i++) {
			ret = regcache_read(map, i, &val);
			if (ret < 0)
				goto out;
253
			map->cache_bypass = 1;
254
			ret = _regmap_write(map, i, val);
255
			map->cache_bypass = 0;
256 257 258 259 260 261 262
			if (ret < 0)
				goto out;
			dev_dbg(map->dev, "Synced register %#x, value %#x\n",
				map->reg_defaults[i].reg,
				map->reg_defaults[i].def);
		}

263
	}
264 265
out:
	trace_regcache_sync(map->dev, name, "stop");
266 267
	/* Restore the bypass state */
	map->cache_bypass = bypass;
268
	mutex_unlock(&map->lock);
269 270

	return ret;
271 272 273
}
EXPORT_SYMBOL_GPL(regcache_sync);

274 275 276 277 278 279 280 281 282 283 284 285 286 287
/**
 * regcache_cache_only: Put a register map into cache only mode
 *
 * @map: map to configure
 * @cache_only: flag if changes should be written to the hardware
 *
 * When a register map is marked as cache only writes to the register
 * map API will only update the register cache, they will not cause
 * any hardware changes.  This is useful for allowing portions of
 * drivers to act as though the device were functioning as normal when
 * it is disabled for power saving reasons.
 */
void regcache_cache_only(struct regmap *map, bool enable)
{
288
	mutex_lock(&map->lock);
289
	WARN_ON(map->cache_bypass && enable);
290
	map->cache_only = enable;
291
	mutex_unlock(&map->lock);
292 293 294
}
EXPORT_SYMBOL_GPL(regcache_cache_only);

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
/**
 * regcache_mark_dirty: Mark the register cache as dirty
 *
 * @map: map to mark
 *
 * Mark the register cache as dirty, for example due to the device
 * having been powered down for suspend.  If the cache is not marked
 * as dirty then the cache sync will be suppressed.
 */
void regcache_mark_dirty(struct regmap *map)
{
	mutex_lock(&map->lock);
	map->cache_dirty = true;
	mutex_unlock(&map->lock);
}
EXPORT_SYMBOL_GPL(regcache_mark_dirty);

312 313 314 315
/**
 * regcache_cache_bypass: Put a register map into cache bypass mode
 *
 * @map: map to configure
D
Dimitris Papastamos 已提交
316
 * @cache_bypass: flag if changes should not be written to the hardware
317 318 319 320 321 322 323 324 325
 *
 * When a register map is marked with the cache bypass option, writes
 * to the register map API will only update the hardware and not the
 * the cache directly.  This is useful when syncing the cache back to
 * the hardware.
 */
void regcache_cache_bypass(struct regmap *map, bool enable)
{
	mutex_lock(&map->lock);
326
	WARN_ON(map->cache_only && enable);
327 328 329 330 331
	map->cache_bypass = enable;
	mutex_unlock(&map->lock);
}
EXPORT_SYMBOL_GPL(regcache_cache_bypass);

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
bool regcache_set_val(void *base, unsigned int idx,
		      unsigned int val, unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		u8 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	case 2: {
		u16 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	default:
		BUG();
	}
	/* unreachable */
	return false;
}

unsigned int regcache_get_val(const void *base, unsigned int idx,
			      unsigned int word_size)
{
	if (!base)
		return -EINVAL;

	switch (word_size) {
	case 1: {
		const u8 *cache = base;
		return cache[idx];
	}
	case 2: {
		const u16 *cache = base;
		return cache[idx];
	}
	default:
		BUG();
	}
	/* unreachable */
	return -1;
}

379
static int regcache_default_cmp(const void *a, const void *b)
380 381 382 383 384 385 386
{
	const struct reg_default *_a = a;
	const struct reg_default *_b = b;

	return _a->reg - _b->reg;
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400
int regcache_lookup_reg(struct regmap *map, unsigned int reg)
{
	struct reg_default key;
	struct reg_default *r;

	key.reg = reg;
	key.def = 0;

	r = bsearch(&key, map->reg_defaults, map->num_reg_defaults,
		    sizeof(struct reg_default), regcache_default_cmp);

	if (r)
		return r - map->reg_defaults;
	else
401
		return -ENOENT;
402 403
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417
int regcache_insert_reg(struct regmap *map, unsigned int reg,
			unsigned int val)
{
	void *tmp;

	tmp = krealloc(map->reg_defaults,
		       (map->num_reg_defaults + 1) * sizeof(struct reg_default),
		       GFP_KERNEL);
	if (!tmp)
		return -ENOMEM;
	map->reg_defaults = tmp;
	map->num_reg_defaults++;
	map->reg_defaults[map->num_reg_defaults - 1].reg = reg;
	map->reg_defaults[map->num_reg_defaults - 1].def = val;
418
	sort(map->reg_defaults, map->num_reg_defaults,
419
	     sizeof(struct reg_default), regcache_default_cmp, NULL);
420 421
	return 0;
}