timer.c 39.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers, basic process system calls
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
L
Linus Torvalds 已提交
40 41 42 43 44 45 46

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

T
Thomas Gleixner 已提交
47 48 49 50
u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58 59 60
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

61
struct tvec {
L
Linus Torvalds 已提交
62
	struct list_head vec[TVN_SIZE];
63
};
L
Linus Torvalds 已提交
64

65
struct tvec_root {
L
Linus Torvalds 已提交
66
	struct list_head vec[TVR_SIZE];
67
};
L
Linus Torvalds 已提交
68

69
struct tvec_base {
70 71
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
72
	unsigned long timer_jiffies;
73 74 75 76 77
	struct tvec_root tv1;
	struct tvec tv2;
	struct tvec tv3;
	struct tvec tv4;
	struct tvec tv5;
78
} ____cacheline_aligned;
L
Linus Torvalds 已提交
79

80
struct tvec_base boot_tvec_bases;
81
EXPORT_SYMBOL(boot_tvec_bases);
82
static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
L
Linus Torvalds 已提交
83

84
/*
85
 * Note that all tvec_bases are 2 byte aligned and lower bit of
86 87 88 89 90 91
 * base in timer_list is guaranteed to be zero. Use the LSB for
 * the new flag to indicate whether the timer is deferrable
 */
#define TBASE_DEFERRABLE_FLAG		(0x1)

/* Functions below help us manage 'deferrable' flag */
92
static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
93
{
94
	return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
95 96
}

97
static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
98
{
99
	return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
100 101 102 103
}

static inline void timer_set_deferrable(struct timer_list *timer)
{
104
	timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
105
				       TBASE_DEFERRABLE_FLAG));
106 107 108
}

static inline void
109
timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
110
{
111
	timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112
				      tbase_get_deferrable(timer->base));
113 114
}

115 116 117 118 119
/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
120
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
121 122 123 124 125 126 127 128 129 130 131 132
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
133
 * The return value is the rounded version of the @j parameter.
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
	 */
	if (rem < HZ/4) /* round down */
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

	if (j <= jiffies) /* rounding ate our timeout entirely; */
		return original;
	return j;
}
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
177
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
178 179 180 181 182 183 184 185 186 187 188 189
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
190
 * The return value is the rounded version of the @j parameter.
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
	/*
	 * In theory the following code can skip a jiffy in case jiffies
	 * increments right between the addition and the later subtraction.
	 * However since the entire point of this function is to use approximate
	 * timeouts, it's entirely ok to not handle that.
	 */
	return  __round_jiffies(j + jiffies, cpu) - jiffies;
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
208
 * round_jiffies() rounds an absolute time in the future (in jiffies)
209 210 211 212 213 214 215 216
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
217
 * The return value is the rounded version of the @j parameter.
218 219 220 221 222 223 224 225 226 227 228
 */
unsigned long round_jiffies(unsigned long j)
{
	return __round_jiffies(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
229
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
230 231 232 233 234 235 236 237
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
238
 * The return value is the rounded version of the @j parameter.
239 240 241 242 243 244 245 246
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);


247
static inline void set_running_timer(struct tvec_base *base,
L
Linus Torvalds 已提交
248 249 250
					struct timer_list *timer)
{
#ifdef CONFIG_SMP
251
	base->running_timer = timer;
L
Linus Torvalds 已提交
252 253 254
#endif
}

255
static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
L
Linus Torvalds 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
	struct list_head *vec;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
		/* If the timeout is larger than 0xffffffff on 64-bit
		 * architectures then we use the maximum timeout:
		 */
		if (idx > 0xffffffffUL) {
			idx = 0xffffffffUL;
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
	/*
	 * Timers are FIFO:
	 */
	list_add_tail(&timer->entry, vec);
}

297 298 299 300 301 302 303 304 305 306
#ifdef CONFIG_TIMER_STATS
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
307 308 309 310 311 312 313 314 315 316 317 318 319 320

static void timer_stats_account_timer(struct timer_list *timer)
{
	unsigned int flag = 0;

	if (unlikely(tbase_get_deferrable(timer->base)))
		flag |= TIMER_STATS_FLAG_DEFERRABLE;

	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, flag);
}

#else
static void timer_stats_account_timer(struct timer_list *timer) {}
321 322
#endif

323 324 325 326 327 328 329
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
330
 */
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static int timer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int timer_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The timer was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
		if (timer->entry.next == NULL &&
		    timer->entry.prev == TIMER_ENTRY_STATIC) {
			debug_object_init(timer, &timer_debug_descr);
			debug_object_activate(timer, &timer_debug_descr);
			return 0;
		} else {
			WARN_ON_ONCE(1);
		}
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int timer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr timer_debug_descr = {
	.name		= "timer_list",
	.fixup_init	= timer_fixup_init,
	.fixup_activate	= timer_fixup_activate,
	.fixup_free	= timer_fixup_free,
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

static void __init_timer(struct timer_list *timer);

void init_timer_on_stack(struct timer_list *timer)
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
	__init_timer(timer);
}
EXPORT_SYMBOL_GPL(init_timer_on_stack);

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
#endif

static void __init_timer(struct timer_list *timer)
447 448
{
	timer->entry.next = NULL;
449
	timer->base = __raw_get_cpu_var(tvec_bases);
450 451 452 453 454
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
455
}
456 457 458 459 460 461 462 463 464 465 466 467 468

/**
 * init_timer - initialize a timer.
 * @timer: the timer to be initialized
 *
 * init_timer() must be done to a timer prior calling *any* of the
 * other timer functions.
 */
void init_timer(struct timer_list *timer)
{
	debug_timer_init(timer);
	__init_timer(timer);
}
469 470
EXPORT_SYMBOL(init_timer);

471
void init_timer_deferrable(struct timer_list *timer)
472 473 474 475 476 477
{
	init_timer(timer);
	timer_set_deferrable(timer);
}
EXPORT_SYMBOL(init_timer_deferrable);

478
static inline void detach_timer(struct timer_list *timer,
479
				int clear_pending)
480 481 482
{
	struct list_head *entry = &timer->entry;

483 484
	debug_timer_deactivate(timer);

485 486 487 488 489 490 491
	__list_del(entry->prev, entry->next);
	if (clear_pending)
		entry->next = NULL;
	entry->prev = LIST_POISON2;
}

/*
492
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
493 494 495 496 497 498 499 500 501 502
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
503
static struct tvec_base *lock_timer_base(struct timer_list *timer,
504
					unsigned long *flags)
505
	__acquires(timer->base->lock)
506
{
507
	struct tvec_base *base;
508 509

	for (;;) {
510
		struct tvec_base *prelock_base = timer->base;
511
		base = tbase_get_base(prelock_base);
512 513
		if (likely(base != NULL)) {
			spin_lock_irqsave(&base->lock, *flags);
514
			if (likely(prelock_base == timer->base))
515 516 517 518 519 520 521 522
				return base;
			/* The timer has migrated to another CPU */
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

L
Linus Torvalds 已提交
523 524
int __mod_timer(struct timer_list *timer, unsigned long expires)
{
525
	struct tvec_base *base, *new_base;
L
Linus Torvalds 已提交
526 527 528
	unsigned long flags;
	int ret = 0;

529
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
530 531
	BUG_ON(!timer->function);

532 533 534 535 536 537 538
	base = lock_timer_base(timer, &flags);

	if (timer_pending(timer)) {
		detach_timer(timer, 0);
		ret = 1;
	}

539 540
	debug_timer_activate(timer);

541
	new_base = __get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
542

543
	if (base != new_base) {
L
Linus Torvalds 已提交
544
		/*
545 546 547 548 549
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
550
		 */
551
		if (likely(base->running_timer != timer)) {
552
			/* See the comment in lock_timer_base() */
553
			timer_set_base(timer, NULL);
554
			spin_unlock(&base->lock);
555 556
			base = new_base;
			spin_lock(&base->lock);
557
			timer_set_base(timer, base);
L
Linus Torvalds 已提交
558 559 560 561
		}
	}

	timer->expires = expires;
562 563
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
564 565 566 567 568 569

	return ret;
}

EXPORT_SYMBOL(__mod_timer);

570
/**
L
Linus Torvalds 已提交
571 572 573 574 575 576 577 578
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
579
	struct tvec_base *base = per_cpu(tvec_bases, cpu);
580
	unsigned long flags;
581

582
	timer_stats_timer_set_start_info(timer);
583
	BUG_ON(timer_pending(timer) || !timer->function);
584
	spin_lock_irqsave(&base->lock, flags);
585
	timer_set_base(timer, base);
586
	debug_timer_activate(timer);
L
Linus Torvalds 已提交
587
	internal_add_timer(base, timer);
588 589 590 591 592 593 594 595 596
	/*
	 * Check whether the other CPU is idle and needs to be
	 * triggered to reevaluate the timer wheel when nohz is
	 * active. We are protected against the other CPU fiddling
	 * with the timer by holding the timer base lock. This also
	 * makes sure that a CPU on the way to idle can not evaluate
	 * the timer wheel.
	 */
	wake_up_idle_cpu(cpu);
597
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
598 599
}

600
/**
L
Linus Torvalds 已提交
601 602
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
603
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
604
 *
605
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
	BUG_ON(!timer->function);

624
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637
	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires);
}

EXPORT_SYMBOL(mod_timer);

638
/**
L
Linus Torvalds 已提交
639 640 641 642 643 644 645 646 647 648 649 650
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
651
	struct tvec_base *base;
L
Linus Torvalds 已提交
652
	unsigned long flags;
653
	int ret = 0;
L
Linus Torvalds 已提交
654

655
	timer_stats_timer_clear_start_info(timer);
656 657 658 659 660 661
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
		if (timer_pending(timer)) {
			detach_timer(timer, 1);
			ret = 1;
		}
L
Linus Torvalds 已提交
662 663 664
		spin_unlock_irqrestore(&base->lock, flags);
	}

665
	return ret;
L
Linus Torvalds 已提交
666 667 668 669 670
}

EXPORT_SYMBOL(del_timer);

#ifdef CONFIG_SMP
671 672 673 674
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
675 676 677 678 679 680 681
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 *
 * It must not be called from interrupt contexts.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
682
	struct tvec_base *base;
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	unsigned long flags;
	int ret = -1;

	base = lock_timer_base(timer, &flags);

	if (base->running_timer == timer)
		goto out;

	ret = 0;
	if (timer_pending(timer)) {
		detach_timer(timer, 1);
		ret = 1;
	}
out:
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}

702 703
EXPORT_SYMBOL(try_to_del_timer_sync);

704
/**
L
Linus Torvalds 已提交
705 706 707 708 709 710 711
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
712
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
713 714
 * otherwise this function is meaningless. It must not be called from
 * interrupt contexts. The caller must not hold locks which would prevent
715 716 717
 * completion of the timer's handler. The timer's handler must not call
 * add_timer_on(). Upon exit the timer is not queued and the handler is
 * not running on any CPU.
L
Linus Torvalds 已提交
718 719 720 721 722
 *
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
723 724 725 726
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
727
		cpu_relax();
728
	}
L
Linus Torvalds 已提交
729 730
}

731
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
732 733
#endif

734
static int cascade(struct tvec_base *base, struct tvec *tv, int index)
L
Linus Torvalds 已提交
735 736
{
	/* cascade all the timers from tv up one level */
737 738 739 740
	struct timer_list *timer, *tmp;
	struct list_head tv_list;

	list_replace_init(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
741 742

	/*
743 744
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
745
	 */
746
	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
747
		BUG_ON(tbase_get_base(timer->base) != base);
748
		internal_add_timer(base, timer);
L
Linus Torvalds 已提交
749 750 751 752 753
	}

	return index;
}

754 755 756
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

/**
L
Linus Torvalds 已提交
757 758 759 760 761 762
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
763
static inline void __run_timers(struct tvec_base *base)
L
Linus Torvalds 已提交
764 765 766
{
	struct timer_list *timer;

767
	spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
768
	while (time_after_eq(jiffies, base->timer_jiffies)) {
769
		struct list_head work_list;
L
Linus Torvalds 已提交
770
		struct list_head *head = &work_list;
771
		int index = base->timer_jiffies & TVR_MASK;
772

L
Linus Torvalds 已提交
773 774 775 776 777 778 779 780
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
781 782
		++base->timer_jiffies;
		list_replace_init(base->tv1.vec + index, &work_list);
783
		while (!list_empty(head)) {
L
Linus Torvalds 已提交
784 785 786
			void (*fn)(unsigned long);
			unsigned long data;

787
			timer = list_first_entry(head, struct timer_list,entry);
788 789
			fn = timer->function;
			data = timer->data;
L
Linus Torvalds 已提交
790

791 792
			timer_stats_account_timer(timer);

L
Linus Torvalds 已提交
793
			set_running_timer(base, timer);
794
			detach_timer(timer, 1);
795
			spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
796
			{
797
				int preempt_count = preempt_count();
L
Linus Torvalds 已提交
798 799
				fn(data);
				if (preempt_count != preempt_count()) {
P
Pavel Machek 已提交
800
					printk(KERN_ERR "huh, entered %p "
801 802 803 804
					       "with preempt_count %08x, exited"
					       " with %08x?\n",
					       fn, preempt_count,
					       preempt_count());
L
Linus Torvalds 已提交
805 806 807
					BUG();
				}
			}
808
			spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
809 810 811
		}
	}
	set_running_timer(base, NULL);
812
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
813 814
}

815
#ifdef CONFIG_NO_HZ
L
Linus Torvalds 已提交
816 817 818 819 820
/*
 * Find out when the next timer event is due to happen. This
 * is used on S/390 to stop all activity when a cpus is idle.
 * This functions needs to be called disabled.
 */
821
static unsigned long __next_timer_interrupt(struct tvec_base *base)
L
Linus Torvalds 已提交
822
{
823
	unsigned long timer_jiffies = base->timer_jiffies;
824
	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
825
	int index, slot, array, found = 0;
L
Linus Torvalds 已提交
826
	struct timer_list *nte;
827
	struct tvec *varray[4];
L
Linus Torvalds 已提交
828 829

	/* Look for timer events in tv1. */
830
	index = slot = timer_jiffies & TVR_MASK;
L
Linus Torvalds 已提交
831
	do {
832
		list_for_each_entry(nte, base->tv1.vec + slot, entry) {
833 834
			if (tbase_get_deferrable(nte->base))
				continue;
835

836
			found = 1;
L
Linus Torvalds 已提交
837
			expires = nte->expires;
838 839 840 841
			/* Look at the cascade bucket(s)? */
			if (!index || slot < index)
				goto cascade;
			return expires;
L
Linus Torvalds 已提交
842
		}
843 844 845 846 847 848 849 850
		slot = (slot + 1) & TVR_MASK;
	} while (slot != index);

cascade:
	/* Calculate the next cascade event */
	if (index)
		timer_jiffies += TVR_SIZE - index;
	timer_jiffies >>= TVR_BITS;
L
Linus Torvalds 已提交
851 852 853 854 855 856

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
857 858

	for (array = 0; array < 4; array++) {
859
		struct tvec *varp = varray[array];
860 861

		index = slot = timer_jiffies & TVN_MASK;
L
Linus Torvalds 已提交
862
		do {
863 864
			list_for_each_entry(nte, varp->vec + slot, entry) {
				found = 1;
L
Linus Torvalds 已提交
865 866
				if (time_before(nte->expires, expires))
					expires = nte->expires;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
			}
			/*
			 * Do we still search for the first timer or are
			 * we looking up the cascade buckets ?
			 */
			if (found) {
				/* Look at the cascade bucket(s)? */
				if (!index || slot < index)
					break;
				return expires;
			}
			slot = (slot + 1) & TVN_MASK;
		} while (slot != index);

		if (index)
			timer_jiffies += TVN_SIZE - index;
		timer_jiffies >>= TVN_BITS;
L
Linus Torvalds 已提交
884
	}
885 886
	return expires;
}
887

888 889 890 891 892 893 894 895 896
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
static unsigned long cmp_next_hrtimer_event(unsigned long now,
					    unsigned long expires)
{
	ktime_t hr_delta = hrtimer_get_next_event();
	struct timespec tsdelta;
897
	unsigned long delta;
898 899 900

	if (hr_delta.tv64 == KTIME_MAX)
		return expires;
901

902 903 904 905 906
	/*
	 * Expired timer available, let it expire in the next tick
	 */
	if (hr_delta.tv64 <= 0)
		return now + 1;
907

908
	tsdelta = ktime_to_timespec(hr_delta);
909
	delta = timespec_to_jiffies(&tsdelta);
910 911 912 913 914 915 916 917

	/*
	 * Limit the delta to the max value, which is checked in
	 * tick_nohz_stop_sched_tick():
	 */
	if (delta > NEXT_TIMER_MAX_DELTA)
		delta = NEXT_TIMER_MAX_DELTA;

918 919 920 921 922 923 924 925 926
	/*
	 * Take rounding errors in to account and make sure, that it
	 * expires in the next tick. Otherwise we go into an endless
	 * ping pong due to tick_nohz_stop_sched_tick() retriggering
	 * the timer softirq
	 */
	if (delta < 1)
		delta = 1;
	now += delta;
927 928
	if (time_before(now, expires))
		return now;
L
Linus Torvalds 已提交
929 930
	return expires;
}
931 932

/**
933
 * get_next_timer_interrupt - return the jiffy of the next pending timer
934
 * @now: current time (in jiffies)
935
 */
936
unsigned long get_next_timer_interrupt(unsigned long now)
937
{
938
	struct tvec_base *base = __get_cpu_var(tvec_bases);
939
	unsigned long expires;
940 941 942 943 944 945 946 947 948 949

	spin_lock(&base->lock);
	expires = __next_timer_interrupt(base);
	spin_unlock(&base->lock);

	if (time_before_eq(expires, now))
		return now;

	return cmp_next_hrtimer_event(now, expires);
}
L
Linus Torvalds 已提交
950 951
#endif

952 953 954
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
void account_process_tick(struct task_struct *p, int user_tick)
{
M
Michael Neuling 已提交
955 956
	cputime_t one_jiffy = jiffies_to_cputime(1);

957
	if (user_tick) {
M
Michael Neuling 已提交
958 959
		account_user_time(p, one_jiffy);
		account_user_time_scaled(p, cputime_to_scaled(one_jiffy));
960
	} else {
M
Michael Neuling 已提交
961 962
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy);
		account_system_time_scaled(p, cputime_to_scaled(one_jiffy));
963 964 965 966
	}
}
#endif

L
Linus Torvalds 已提交
967
/*
D
Daniel Walker 已提交
968
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
969 970 971 972 973 974 975 976
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;
	int cpu = smp_processor_id();

	/* Note: this timer irq context must be accounted for as well. */
977
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
978 979 980
	run_local_timers();
	if (rcu_pending(cpu))
		rcu_check_callbacks(cpu, user_tick);
P
Peter Zijlstra 已提交
981
	printk_tick();
L
Linus Torvalds 已提交
982
	scheduler_tick();
983
	run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
984 985 986 987 988 989 990
}

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
991
	return nr_active() * FIXED_1;
L
Linus Torvalds 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
}

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 *
 * Requires xtime_lock to access.
 */
unsigned long avenrun[3];

EXPORT_SYMBOL(avenrun);

/*
 * calc_load - given tick count, update the avenrun load estimates.
 * This is called while holding a write_lock on xtime_lock.
 */
static inline void calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

E
Eric Dumazet 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023
	count -= ticks;
	if (unlikely(count < 0)) {
		active_tasks = count_active_tasks();
		do {
			CALC_LOAD(avenrun[0], EXP_1, active_tasks);
			CALC_LOAD(avenrun[1], EXP_5, active_tasks);
			CALC_LOAD(avenrun[2], EXP_15, active_tasks);
			count += LOAD_FREQ;
		} while (count < 0);
L
Linus Torvalds 已提交
1024 1025 1026 1027 1028 1029 1030 1031
	}
}

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
1032
	struct tvec_base *base = __get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
1033

1034
	hrtimer_run_pending();
1035

L
Linus Torvalds 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1045
	hrtimer_run_queues();
L
Linus Torvalds 已提交
1046
	raise_softirq(TIMER_SOFTIRQ);
1047
	softlockup_tick();
L
Linus Torvalds 已提交
1048 1049 1050 1051 1052 1053
}

/*
 * Called by the timer interrupt. xtime_lock must already be taken
 * by the timer IRQ!
 */
1054
static inline void update_times(unsigned long ticks)
L
Linus Torvalds 已提交
1055
{
1056
	update_wall_time();
L
Linus Torvalds 已提交
1057 1058
	calc_load(ticks);
}
1059

L
Linus Torvalds 已提交
1060 1061 1062 1063 1064 1065
/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */

1066
void do_timer(unsigned long ticks)
L
Linus Torvalds 已提交
1067
{
1068 1069
	jiffies_64 += ticks;
	update_times(ticks);
L
Linus Torvalds 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage unsigned long sys_alarm(unsigned int seconds)
{
1080
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
}

#endif

#ifndef __alpha__

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */

/**
 * sys_getpid - return the thread group id of the current process
 *
 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 * the pid are identical unless CLONE_THREAD was specified on clone() in
 * which case the tgid is the same in all threads of the same group.
 *
 * This is SMP safe as current->tgid does not change.
 */
asmlinkage long sys_getpid(void)
{
1103
	return task_tgid_vnr(current);
L
Linus Torvalds 已提交
1104 1105 1106
}

/*
1107 1108 1109 1110
 * Accessing ->real_parent is not SMP-safe, it could
 * change from under us. However, we can use a stale
 * value of ->real_parent under rcu_read_lock(), see
 * release_task()->call_rcu(delayed_put_task_struct).
L
Linus Torvalds 已提交
1111 1112 1113 1114 1115
 */
asmlinkage long sys_getppid(void)
{
	int pid;

1116
	rcu_read_lock();
1117
	pid = task_tgid_vnr(current->real_parent);
1118
	rcu_read_unlock();
L
Linus Torvalds 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	return pid;
}

asmlinkage long sys_getuid(void)
{
	/* Only we change this so SMP safe */
	return current->uid;
}

asmlinkage long sys_geteuid(void)
{
	/* Only we change this so SMP safe */
	return current->euid;
}

asmlinkage long sys_getgid(void)
{
	/* Only we change this so SMP safe */
	return current->gid;
}

asmlinkage long sys_getegid(void)
{
	/* Only we change this so SMP safe */
	return  current->egid;
}

#endif

static void process_timeout(unsigned long __data)
{
1151
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
1180
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1205
		if (timeout < 0) {
L
Linus Torvalds 已提交
1206
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1207 1208
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1209 1210 1211 1212 1213 1214 1215
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1216
	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1217
	__mod_timer(&timer, expire);
L
Linus Torvalds 已提交
1218 1219 1220
	schedule();
	del_singleshot_timer_sync(&timer);

1221 1222 1223
	/* Remove the timer from the object tracker */
	destroy_timer_on_stack(&timer);

L
Linus Torvalds 已提交
1224 1225 1226 1227 1228 1229 1230
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1231 1232 1233 1234
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1235 1236
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1237 1238
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1239 1240 1241
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1242 1243 1244 1245 1246 1247 1248
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1249 1250
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1251 1252
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1253 1254 1255
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

L
Linus Torvalds 已提交
1256 1257 1258
/* Thread ID - the internal kernel "pid" */
asmlinkage long sys_gettid(void)
{
1259
	return task_pid_vnr(current);
L
Linus Torvalds 已提交
1260 1261
}

1262
/**
1263
 * do_sysinfo - fill in sysinfo struct
1264
 * @info: pointer to buffer to fill
1265
 */
1266
int do_sysinfo(struct sysinfo *info)
L
Linus Torvalds 已提交
1267 1268 1269 1270 1271
{
	unsigned long mem_total, sav_total;
	unsigned int mem_unit, bitcount;
	unsigned long seq;

1272
	memset(info, 0, sizeof(struct sysinfo));
L
Linus Torvalds 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

	do {
		struct timespec tp;
		seq = read_seqbegin(&xtime_lock);

		/*
		 * This is annoying.  The below is the same thing
		 * posix_get_clock_monotonic() does, but it wants to
		 * take the lock which we want to cover the loads stuff
		 * too.
		 */

		getnstimeofday(&tp);
		tp.tv_sec += wall_to_monotonic.tv_sec;
		tp.tv_nsec += wall_to_monotonic.tv_nsec;
1288
		monotonic_to_bootbased(&tp);
L
Linus Torvalds 已提交
1289 1290 1291 1292
		if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
			tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
			tp.tv_sec++;
		}
1293
		info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
L
Linus Torvalds 已提交
1294

1295 1296 1297
		info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
		info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
		info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
L
Linus Torvalds 已提交
1298

1299
		info->procs = nr_threads;
L
Linus Torvalds 已提交
1300 1301
	} while (read_seqretry(&xtime_lock, seq));

1302 1303
	si_meminfo(info);
	si_swapinfo(info);
L
Linus Torvalds 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

	/*
	 * If the sum of all the available memory (i.e. ram + swap)
	 * is less than can be stored in a 32 bit unsigned long then
	 * we can be binary compatible with 2.2.x kernels.  If not,
	 * well, in that case 2.2.x was broken anyways...
	 *
	 *  -Erik Andersen <andersee@debian.org>
	 */

1314 1315
	mem_total = info->totalram + info->totalswap;
	if (mem_total < info->totalram || mem_total < info->totalswap)
L
Linus Torvalds 已提交
1316 1317
		goto out;
	bitcount = 0;
1318
	mem_unit = info->mem_unit;
L
Linus Torvalds 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	while (mem_unit > 1) {
		bitcount++;
		mem_unit >>= 1;
		sav_total = mem_total;
		mem_total <<= 1;
		if (mem_total < sav_total)
			goto out;
	}

	/*
	 * If mem_total did not overflow, multiply all memory values by
1330
	 * info->mem_unit and set it to 1.  This leaves things compatible
L
Linus Torvalds 已提交
1331 1332 1333 1334
	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
	 * kernels...
	 */

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	info->mem_unit = 1;
	info->totalram <<= bitcount;
	info->freeram <<= bitcount;
	info->sharedram <<= bitcount;
	info->bufferram <<= bitcount;
	info->totalswap <<= bitcount;
	info->freeswap <<= bitcount;
	info->totalhigh <<= bitcount;
	info->freehigh <<= bitcount;

out:
	return 0;
}

asmlinkage long sys_sysinfo(struct sysinfo __user *info)
{
	struct sysinfo val;

	do_sysinfo(&val);
L
Linus Torvalds 已提交
1354 1355 1356 1357 1358 1359 1360

	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
		return -EFAULT;

	return 0;
}

A
Adrian Bunk 已提交
1361
static int __cpuinit init_timers_cpu(int cpu)
L
Linus Torvalds 已提交
1362 1363
{
	int j;
1364
	struct tvec_base *base;
A
Adrian Bunk 已提交
1365
	static char __cpuinitdata tvec_base_done[NR_CPUS];
1366

A
Andrew Morton 已提交
1367
	if (!tvec_base_done[cpu]) {
1368 1369 1370
		static char boot_done;

		if (boot_done) {
A
Andrew Morton 已提交
1371 1372 1373
			/*
			 * The APs use this path later in boot
			 */
1374 1375
			base = kmalloc_node(sizeof(*base),
						GFP_KERNEL | __GFP_ZERO,
1376 1377 1378
						cpu_to_node(cpu));
			if (!base)
				return -ENOMEM;
1379 1380 1381 1382 1383 1384 1385

			/* Make sure that tvec_base is 2 byte aligned */
			if (tbase_get_deferrable(base)) {
				WARN_ON(1);
				kfree(base);
				return -ENOMEM;
			}
A
Andrew Morton 已提交
1386
			per_cpu(tvec_bases, cpu) = base;
1387
		} else {
A
Andrew Morton 已提交
1388 1389 1390 1391 1392 1393
			/*
			 * This is for the boot CPU - we use compile-time
			 * static initialisation because per-cpu memory isn't
			 * ready yet and because the memory allocators are not
			 * initialised either.
			 */
1394
			boot_done = 1;
A
Andrew Morton 已提交
1395
			base = &boot_tvec_bases;
1396
		}
A
Andrew Morton 已提交
1397 1398 1399
		tvec_base_done[cpu] = 1;
	} else {
		base = per_cpu(tvec_bases, cpu);
1400
	}
A
Andrew Morton 已提交
1401

1402
	spin_lock_init(&base->lock);
1403

L
Linus Torvalds 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	for (j = 0; j < TVN_SIZE; j++) {
		INIT_LIST_HEAD(base->tv5.vec + j);
		INIT_LIST_HEAD(base->tv4.vec + j);
		INIT_LIST_HEAD(base->tv3.vec + j);
		INIT_LIST_HEAD(base->tv2.vec + j);
	}
	for (j = 0; j < TVR_SIZE; j++)
		INIT_LIST_HEAD(base->tv1.vec + j);

	base->timer_jiffies = jiffies;
1414
	return 0;
L
Linus Torvalds 已提交
1415 1416 1417
}

#ifdef CONFIG_HOTPLUG_CPU
1418
static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
L
Linus Torvalds 已提交
1419 1420 1421 1422
{
	struct timer_list *timer;

	while (!list_empty(head)) {
1423
		timer = list_first_entry(head, struct timer_list, entry);
1424
		detach_timer(timer, 0);
1425
		timer_set_base(timer, new_base);
L
Linus Torvalds 已提交
1426 1427 1428 1429
		internal_add_timer(new_base, timer);
	}
}

R
Randy Dunlap 已提交
1430
static void __cpuinit migrate_timers(int cpu)
L
Linus Torvalds 已提交
1431
{
1432 1433
	struct tvec_base *old_base;
	struct tvec_base *new_base;
L
Linus Torvalds 已提交
1434 1435 1436
	int i;

	BUG_ON(cpu_online(cpu));
1437 1438
	old_base = per_cpu(tvec_bases, cpu);
	new_base = get_cpu_var(tvec_bases);
1439 1440 1441 1442 1443
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
	spin_lock_irq(&new_base->lock);
1444
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1445 1446

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1447 1448

	for (i = 0; i < TVR_SIZE; i++)
1449 1450 1451 1452 1453 1454 1455 1456
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1457
	spin_unlock(&old_base->lock);
1458
	spin_unlock_irq(&new_base->lock);
L
Linus Torvalds 已提交
1459 1460 1461 1462
	put_cpu_var(tvec_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1463
static int __cpuinit timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1464 1465 1466 1467 1468
				unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	switch(action) {
	case CPU_UP_PREPARE:
1469
	case CPU_UP_PREPARE_FROZEN:
1470 1471
		if (init_timers_cpu(cpu) < 0)
			return NOTIFY_BAD;
L
Linus Torvalds 已提交
1472 1473 1474
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1475
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484
		migrate_timers(cpu);
		break;
#endif
	default:
		break;
	}
	return NOTIFY_OK;
}

1485
static struct notifier_block __cpuinitdata timers_nb = {
L
Linus Torvalds 已提交
1486 1487 1488 1489 1490 1491
	.notifier_call	= timer_cpu_notify,
};


void __init init_timers(void)
{
1492
	int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
L
Linus Torvalds 已提交
1493
				(void *)(long)smp_processor_id());
1494

1495 1496
	init_timer_stats();

1497
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
1498
	register_cpu_notifier(&timers_nb);
1499
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1510 1511
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1512 1513 1514 1515 1516
}

EXPORT_SYMBOL(msleep);

/**
1517
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1518 1519 1520 1521 1522 1523
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1524 1525
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1526 1527 1528 1529
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);