time.c 26.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time.
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
35
#include <linux/export.h>
L
Linus Torvalds 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
49 50
#include <linux/percpu.h>
#include <linux/rtc.h>
51
#include <linux/jiffies.h>
52
#include <linux/posix-timers.h>
53
#include <linux/irq.h>
54
#include <linux/delay.h>
55
#include <linux/irq_work.h>
56
#include <asm/trace.h>
L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
66 67
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
68
#include <asm/smp.h>
69
#include <asm/vdso_datapage.h>
70
#include <asm/firmware.h>
M
Michael Neuling 已提交
71
#include <asm/cputime.h>
L
Linus Torvalds 已提交
72

73 74
/* powerpc clocksource/clockevent code */

75
#include <linux/clockchips.h>
76 77
#include <linux/clocksource.h>

78
static cycle_t rtc_read(struct clocksource *);
79 80 81 82 83 84 85 86
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = rtc_read,
};

87
static cycle_t timebase_read(struct clocksource *);
88 89 90 91 92 93 94 95
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = timebase_read,
};

96 97 98 99 100 101 102
#define DECREMENTER_MAX	0x7fffffff

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev);

103
struct clock_event_device decrementer_clockevent = {
104 105 106 107 108 109
	.name           = "decrementer",
	.rating         = 200,
	.irq            = 0,
	.set_next_event = decrementer_set_next_event,
	.set_mode       = decrementer_set_mode,
	.features       = CLOCK_EVT_FEAT_ONESHOT,
110
};
111
EXPORT_SYMBOL(decrementer_clockevent);
112

113 114
DEFINE_PER_CPU(u64, decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
115

L
Linus Torvalds 已提交
116 117
#define XSEC_PER_SEC (1024*1024)

118 119 120 121 122 123 124
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
125 126 127 128
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
129
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
130

L
Linus Torvalds 已提交
131
DEFINE_SPINLOCK(rtc_lock);
132
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
133

134 135
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
136
static u64 boot_tb __read_mostly;
L
Linus Torvalds 已提交
137 138

extern struct timezone sys_tz;
139
static long timezone_offset;
L
Linus Torvalds 已提交
140

141
unsigned long ppc_proc_freq;
142
EXPORT_SYMBOL_GPL(ppc_proc_freq);
143
unsigned long ppc_tb_freq;
144
EXPORT_SYMBOL_GPL(ppc_tb_freq);
145

146 147 148
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
149
 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
150 151 152
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
153
EXPORT_SYMBOL(__cputime_jiffies_factor);
154 155
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
156
u64 __cputime_sec_factor;
157
EXPORT_SYMBOL(__cputime_sec_factor);
158
u64 __cputime_clockt_factor;
159
EXPORT_SYMBOL(__cputime_clockt_factor);
M
Michael Neuling 已提交
160 161
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
162

163 164
cputime_t cputime_one_jiffy;

165 166
void (*dtl_consumer)(struct dtl_entry *, u64);

167 168 169 170 171 172
static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
173 174
	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
	__cputime_usec_factor = res.result_low;
175 176 177 178 179 180 181
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
182 183
 * Read the SPURR on systems that have it, otherwise the PURR,
 * or if that doesn't exist return the timebase value passed in.
184
 */
185
static u64 read_spurr(u64 tb)
186
{
187 188
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
189 190
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
191
	return tb;
192 193
}

194 195
#ifdef CONFIG_PPC_SPLPAR

196
/*
197 198
 * Scan the dispatch trace log and count up the stolen time.
 * Should be called with interrupts disabled.
199
 */
200
static u64 scan_dispatch_log(u64 stop_tb)
201
{
202
	u64 i = local_paca->dtl_ridx;
203 204 205 206 207 208 209
	struct dtl_entry *dtl = local_paca->dtl_curr;
	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
	struct lppaca *vpa = local_paca->lppaca_ptr;
	u64 tb_delta;
	u64 stolen = 0;
	u64 dtb;

210 211 212
	if (!dtl)
		return 0;

213 214 215
	if (i == vpa->dtl_idx)
		return 0;
	while (i < vpa->dtl_idx) {
216 217
		if (dtl_consumer)
			dtl_consumer(dtl, i);
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
		dtb = dtl->timebase;
		tb_delta = dtl->enqueue_to_dispatch_time +
			dtl->ready_to_enqueue_time;
		barrier();
		if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
			/* buffer has overflowed */
			i = vpa->dtl_idx - N_DISPATCH_LOG;
			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
			continue;
		}
		if (dtb > stop_tb)
			break;
		stolen += tb_delta;
		++i;
		++dtl;
		if (dtl == dtl_end)
			dtl = local_paca->dispatch_log;
	}
	local_paca->dtl_ridx = i;
	local_paca->dtl_curr = dtl;
	return stolen;
239 240
}

241 242 243 244 245 246 247 248
/*
 * Accumulate stolen time by scanning the dispatch trace log.
 * Called on entry from user mode.
 */
void accumulate_stolen_time(void)
{
	u64 sst, ust;

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	u8 save_soft_enabled = local_paca->soft_enabled;

	/* We are called early in the exception entry, before
	 * soft/hard_enabled are sync'ed to the expected state
	 * for the exception. We are hard disabled but the PACA
	 * needs to reflect that so various debug stuff doesn't
	 * complain
	 */
	local_paca->soft_enabled = 0;

	sst = scan_dispatch_log(local_paca->starttime_user);
	ust = scan_dispatch_log(local_paca->starttime);
	local_paca->system_time -= sst;
	local_paca->user_time -= ust;
	local_paca->stolen_time += ust + sst;

	local_paca->soft_enabled = save_soft_enabled;
266 267 268 269 270 271 272 273 274 275 276 277 278 279
}

static inline u64 calculate_stolen_time(u64 stop_tb)
{
	u64 stolen = 0;

	if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
		stolen = scan_dispatch_log(stop_tb);
		get_paca()->system_time -= stolen;
	}

	stolen += get_paca()->stolen_time;
	get_paca()->stolen_time = 0;
	return stolen;
280 281
}

282 283 284 285 286 287 288 289
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
	return 0;
}

#endif /* CONFIG_PPC_SPLPAR */

290 291 292 293 294 295
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
296
	u64 now, nowscaled, delta, deltascaled;
297
	unsigned long flags;
298
	u64 stolen, udelta, sys_scaled, user_scaled;
299 300

	local_irq_save(flags);
301
	now = mftb();
302
	nowscaled = read_spurr(now);
303 304
	get_paca()->system_time += now - get_paca()->starttime;
	get_paca()->starttime = now;
305 306
	deltascaled = nowscaled - get_paca()->startspurr;
	get_paca()->startspurr = nowscaled;
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

	stolen = calculate_stolen_time(now);

	delta = get_paca()->system_time;
	get_paca()->system_time = 0;
	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
	get_paca()->utime_sspurr = get_paca()->user_time;

	/*
	 * Because we don't read the SPURR on every kernel entry/exit,
	 * deltascaled includes both user and system SPURR ticks.
	 * Apportion these ticks to system SPURR ticks and user
	 * SPURR ticks in the same ratio as the system time (delta)
	 * and user time (udelta) values obtained from the timebase
	 * over the same interval.  The system ticks get accounted here;
	 * the user ticks get saved up in paca->user_time_scaled to be
	 * used by account_process_tick.
	 */
	sys_scaled = delta;
	user_scaled = udelta;
	if (deltascaled != delta + udelta) {
		if (udelta) {
			sys_scaled = deltascaled * delta / (delta + udelta);
			user_scaled = deltascaled - sys_scaled;
		} else {
			sys_scaled = deltascaled;
		}
	}
	get_paca()->user_time_scaled += user_scaled;

337
	if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
338 339 340 341 342
		account_system_time(tsk, 0, delta, sys_scaled);
		if (stolen)
			account_steal_time(stolen);
	} else {
		account_idle_time(delta + stolen);
343 344 345
	}
	local_irq_restore(flags);
}
A
Alexander Graf 已提交
346
EXPORT_SYMBOL_GPL(account_system_vtime);
347 348 349 350 351 352

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
353 354 355
 * Assumes that account_system_vtime() has been called recently
 * (i.e. since the last entry from usermode) so that
 * get_paca()->user_time_scaled is up to date.
356
 */
357
void account_process_tick(struct task_struct *tsk, int user_tick)
358
{
359
	cputime_t utime, utimescaled;
360 361

	utime = get_paca()->user_time;
362
	utimescaled = get_paca()->user_time_scaled;
363
	get_paca()->user_time = 0;
364 365
	get_paca()->user_time_scaled = 0;
	get_paca()->utime_sspurr = 0;
366
	account_user_time(tsk, utime, utimescaled);
367 368 369 370 371 372
}

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#endif

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

414
#ifdef CONFIG_IRQ_WORK
415

416 417 418 419
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
420
static inline unsigned long test_irq_work_pending(void)
421
{
422 423 424 425
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
426
		: "i" (offsetof(struct paca_struct, irq_work_pending)));
427 428 429
	return x;
}

430
static inline void set_irq_work_pending_flag(void)
431 432 433
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
434
		"i" (offsetof(struct paca_struct, irq_work_pending)));
435 436
}

437
static inline void clear_irq_work_pending(void)
438 439 440
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
441
		"i" (offsetof(struct paca_struct, irq_work_pending)));
442 443
}

444 445
#else /* 32-bit */

446
DEFINE_PER_CPU(u8, irq_work_pending);
447

448 449 450
#define set_irq_work_pending_flag()	__get_cpu_var(irq_work_pending) = 1
#define test_irq_work_pending()		__get_cpu_var(irq_work_pending)
#define clear_irq_work_pending()	__get_cpu_var(irq_work_pending) = 0
451

452 453
#endif /* 32 vs 64 bit */

454
void arch_irq_work_raise(void)
455 456
{
	preempt_disable();
457
	set_irq_work_pending_flag();
458 459 460 461
	set_dec(1);
	preempt_enable();
}

462
#else  /* CONFIG_IRQ_WORK */
463

464 465
#define test_irq_work_pending()	0
#define clear_irq_work_pending()
466

467
#endif /* CONFIG_IRQ_WORK */
468

L
Linus Torvalds 已提交
469 470 471 472
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
473
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
474
{
475
	struct pt_regs *old_regs;
476 477
	u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
	struct clock_event_device *evt = &__get_cpu_var(decrementers);
478
	u64 now;
479

480 481 482 483 484 485 486 487 488 489 490
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continue to take decrementer exceptions.
	 */
	set_dec(DECREMENTER_MAX);

	/* Some implementations of hotplug will get timer interrupts while
	 * offline, just ignore these
	 */
	if (!cpu_online(smp_processor_id()))
		return;

491 492 493 494 495
	/* Conditionally hard-enable interrupts now that the DEC has been
	 * bumped to its maximum value
	 */
	may_hard_irq_enable();

496 497
	trace_timer_interrupt_entry(regs);

498 499
	__get_cpu_var(irq_stat).timer_irqs++;

500
#if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
501 502 503
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
504

505
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
506 507
	irq_enter();

508 509 510
	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
511 512
	}

513 514 515 516 517 518 519 520 521 522
	now = get_tb_or_rtc();
	if (now >= *next_tb) {
		*next_tb = ~(u64)0;
		if (evt->event_handler)
			evt->event_handler(evt);
	} else {
		now = *next_tb - now;
		if (now <= DECREMENTER_MAX)
			set_dec((int)now);
	}
L
Linus Torvalds 已提交
523

524
#ifdef CONFIG_PPC64
525
	/* collect purr register values often, for accurate calculations */
526
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
527 528 529
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
530
#endif
L
Linus Torvalds 已提交
531 532

	irq_exit();
533
	set_irq_regs(old_regs);
534 535

	trace_timer_interrupt_exit(regs);
L
Linus Torvalds 已提交
536 537
}

538
#ifdef CONFIG_SUSPEND
539
static void generic_suspend_disable_irqs(void)
540 541 542 543 544
{
	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

545
	set_dec(DECREMENTER_MAX);
546
	local_irq_disable();
547
	set_dec(DECREMENTER_MAX);
548 549
}

550
static void generic_suspend_enable_irqs(void)
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
{
	local_irq_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

L
Linus Torvalds 已提交
572 573 574 575 576 577 578 579 580
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
581 582
	if (__USE_RTC())
		return get_rtc();
583
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
584 585
}

586
static int __init get_freq(char *name, int cells, unsigned long *val)
587 588
{
	struct device_node *cpu;
589
	const unsigned int *fp;
590
	int found = 0;
591

592
	/* The cpu node should have timebase and clock frequency properties */
593 594
	cpu = of_find_node_by_type(NULL, "cpu");

595
	if (cpu) {
596
		fp = of_get_property(cpu, name, NULL);
597
		if (fp) {
598
			found = 1;
599
			*val = of_read_ulong(fp, cells);
600
		}
601 602

		of_node_put(cpu);
603
	}
604 605 606 607

	return found;
}

608 609 610 611 612 613 614 615 616 617 618 619
/* should become __cpuinit when secondary_cpu_time_init also is */
void start_cpu_decrementer(void)
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
}

620 621 622 623 624 625 626
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

627 628
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
629
	}
630

631 632 633 634 635 636 637
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
638 639 640
	}
}

641
int update_persistent_clock(struct timespec now)
642 643 644
{
	struct rtc_time tm;

645 646 647 648 649 650 651 652 653 654
	if (!ppc_md.set_rtc_time)
		return 0;

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

655
static void __read_persistent_clock(struct timespec *ts)
656 657 658 659
{
	struct rtc_time tm;
	static int first = 1;

660
	ts->tv_nsec = 0;
661 662 663 664 665 666 667
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
668 669 670 671 672 673 674 675
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
676
	}
677
	ppc_md.get_rtc_time(&tm);
678

679 680
	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
			    tm.tm_hour, tm.tm_min, tm.tm_sec);
681 682
}

683 684 685 686 687 688 689 690 691 692 693 694
void read_persistent_clock(struct timespec *ts)
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

695
/* clocksource code */
696
static cycle_t rtc_read(struct clocksource *cs)
697 698 699 700
{
	return (cycle_t)get_rtc();
}

701
static cycle_t timebase_read(struct clocksource *cs)
702 703 704 705
{
	return (cycle_t)get_tb();
}

706 707
void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
			struct clocksource *clock, u32 mult)
708
{
J
John Stultz 已提交
709
	u64 new_tb_to_xs, new_stamp_xsec;
710
	u32 frac_sec;
711 712 713 714 715 716 717 718

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

719 720
	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
J
John Stultz 已提交
721
	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
J
John Stultz 已提交
722
	do_div(new_stamp_xsec, 1000000000);
J
John Stultz 已提交
723
	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
J
John Stultz 已提交
724

725 726 727 728
	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
	/* this is tv_nsec / 1e9 as a 0.32 fraction */
	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;

J
John Stultz 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
	 */
	vdso_data->tb_orig_stamp = clock->cycle_last;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
743 744
	vdso_data->wtom_clock_sec = wtm->tv_sec;
	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
J
John Stultz 已提交
745
	vdso_data->stamp_xtime = *wall_time;
746
	vdso_data->stamp_sec_fraction = frac_sec;
J
John Stultz 已提交
747 748
	smp_wmb();
	++(vdso_data->tb_update_count);
749 750 751 752 753 754 755 756 757 758 759 760 761
}

void update_vsyscall_tz(void)
{
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
	smp_mb();
	++vdso_data->tb_update_count;
}

762
static void __init clocksource_init(void)
763 764 765 766 767 768 769 770
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

771
	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
772 773 774 775 776 777 778 779 780
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

781 782 783
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
784
	__get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
785 786 787 788 789 790 791 792 793 794 795 796 797
	set_dec(evt);
	return 0;
}

static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev)
{
	if (mode != CLOCK_EVT_MODE_ONESHOT)
		decrementer_set_next_event(DECREMENTER_MAX, dev);
}

static void register_decrementer_clockevent(int cpu)
{
798
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
799 800

	*dec = decrementer_clockevent;
801
	dec->cpumask = cpumask_of(cpu);
802

803 804
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
805 806 807 808

	clockevents_register_device(dec);
}

809
static void __init init_decrementer_clockevent(void)
810 811 812
{
	int cpu = smp_processor_id();

813 814
	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);

815 816
	decrementer_clockevent.max_delta_ns =
		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
817 818
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
819 820 821 822 823 824

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
825 826 827 828 829
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

830 831 832 833 834
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

835
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
836 837 838
void __init time_init(void)
{
	struct div_result res;
839
	u64 scale;
840 841
	unsigned shift;

842 843 844 845 846 847
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
848
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
849
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
850
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
851 852
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
	}
853 854

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
855
	tb_ticks_per_sec = ppc_tb_freq;
856
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
857
	calc_cputime_factors();
858
	setup_cputime_one_jiffy();
859

L
Linus Torvalds 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
878
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
879
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
880

881
	/* If platform provided a timezone (pmac), we correct the time */
882
	if (timezone_offset) {
883 884
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
885
	}
886

887 888
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
L
Linus Torvalds 已提交
889

890 891 892 893 894
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

895 896
	/* Register the clocksource */
	clocksource_init();
897

898
	init_decrementer_clockevent();
L
Linus Torvalds 已提交
899 900 901 902 903 904 905
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
906 907
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

925
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
926 927 928 929

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
930
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
931 932 933 934 935

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
936
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
937
	 */
938
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
939 940 941 942

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

943
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
985 986
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
987
{
988 989 990
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
991 992 993 994 995 996

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

997 998 999 1000 1001
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1002

1003 1004 1005 1006 1007
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1008

1009 1010
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1011 1012

}
1013

1014 1015 1016 1017 1018 1019 1020 1021 1022
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
	if (IS_ERR(pdev))
		return PTR_ERR(pdev);

	return 0;
}

module_init(rtc_init);