bitops.h 11.3 KB
Newer Older
H
H. Peter Anvin 已提交
1 2
#ifndef _ASM_X86_BITOPS_H
#define _ASM_X86_BITOPS_H
3 4 5

/*
 * Copyright 1992, Linus Torvalds.
6 7 8
 *
 * Note: inlines with more than a single statement should be marked
 * __always_inline to avoid problems with older gcc's inlining heuristics.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 */

#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif

#include <linux/compiler.h>
#include <asm/alternative.h>

/*
 * These have to be done with inline assembly: that way the bit-setting
 * is guaranteed to be atomic. All bit operations return 0 if the bit
 * was cleared before the operation and != 0 if it was not.
 *
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 */

#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
/* Technically wrong, but this avoids compilation errors on some gcc
   versions. */
29
#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
30
#else
31
#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
32 33
#endif

34
#define ADDR				BITOP_ADDR(addr)
35 36 37 38 39

/*
 * We do the locked ops that don't return the old value as
 * a mask operation on a byte.
 */
40 41 42
#define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
#define CONST_MASK_ADDR(nr, addr)	BITOP_ADDR((void *)(addr) + ((nr)>>3))
#define CONST_MASK(nr)			(1 << ((nr) & 7))
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/**
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 *
 * Note: there are no guarantees that this function will not be reordered
 * on non x86 architectures, so if you are writing portable code,
 * make sure not to rely on its reordering guarantees.
 *
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
59 60
static __always_inline void
set_bit(unsigned int nr, volatile unsigned long *addr)
61
{
62 63 64
	if (IS_IMMEDIATE(nr)) {
		asm volatile(LOCK_PREFIX "orb %1,%0"
			: CONST_MASK_ADDR(nr, addr)
65
			: "iq" ((u8)CONST_MASK(nr))
66 67 68 69 70
			: "memory");
	} else {
		asm volatile(LOCK_PREFIX "bts %1,%0"
			: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
	}
71 72 73 74 75 76 77 78 79 80 81
}

/**
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
82
static inline void __set_bit(int nr, volatile unsigned long *addr)
83
{
84
	asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
85 86 87 88 89 90 91 92 93 94 95 96
}

/**
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 * in order to ensure changes are visible on other processors.
 */
97 98
static __always_inline void
clear_bit(int nr, volatile unsigned long *addr)
99
{
100 101 102
	if (IS_IMMEDIATE(nr)) {
		asm volatile(LOCK_PREFIX "andb %1,%0"
			: CONST_MASK_ADDR(nr, addr)
103
			: "iq" ((u8)~CONST_MASK(nr)));
104 105 106 107 108
	} else {
		asm volatile(LOCK_PREFIX "btr %1,%0"
			: BITOP_ADDR(addr)
			: "Ir" (nr));
	}
109 110 111 112 113 114 115 116 117 118
}

/*
 * clear_bit_unlock - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and implies release semantics before the memory
 * operation. It can be used for an unlock.
 */
119
static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
120 121 122 123 124
{
	barrier();
	clear_bit(nr, addr);
}

125
static inline void __clear_bit(int nr, volatile unsigned long *addr)
126
{
127
	asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
128 129 130 131 132 133 134 135 136 137 138 139 140 141
}

/*
 * __clear_bit_unlock - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * __clear_bit() is non-atomic and implies release semantics before the memory
 * operation. It can be used for an unlock if no other CPUs can concurrently
 * modify other bits in the word.
 *
 * No memory barrier is required here, because x86 cannot reorder stores past
 * older loads. Same principle as spin_unlock.
 */
142
static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
{
	barrier();
	__clear_bit(nr, addr);
}

#define smp_mb__before_clear_bit()	barrier()
#define smp_mb__after_clear_bit()	barrier()

/**
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to change
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
160
static inline void __change_bit(int nr, volatile unsigned long *addr)
161
{
162
	asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
163 164 165 166 167 168 169 170 171 172 173
}

/**
 * change_bit - Toggle a bit in memory
 * @nr: Bit to change
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
174
static inline void change_bit(int nr, volatile unsigned long *addr)
175
{
176 177 178 179 180 181 182 183 184
	if (IS_IMMEDIATE(nr)) {
		asm volatile(LOCK_PREFIX "xorb %1,%0"
			: CONST_MASK_ADDR(nr, addr)
			: "iq" ((u8)CONST_MASK(nr)));
	} else {
		asm volatile(LOCK_PREFIX "btc %1,%0"
			: BITOP_ADDR(addr)
			: "Ir" (nr));
	}
185 186 187 188 189 190 191 192 193 194
}

/**
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
195
static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
196 197 198 199
{
	int oldbit;

	asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
200
		     "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
201 202 203 204 205 206 207 208 209 210 211

	return oldbit;
}

/**
 * test_and_set_bit_lock - Set a bit and return its old value for lock
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This is the same as test_and_set_bit on x86.
 */
212 213
static __always_inline int
test_and_set_bit_lock(int nr, volatile unsigned long *addr)
214 215 216 217 218 219 220 221 222 223 224 225 226
{
	return test_and_set_bit(nr, addr);
}

/**
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
227
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
228 229 230
{
	int oldbit;

231 232 233 234
	asm("bts %2,%1\n\t"
	    "sbb %0,%0"
	    : "=r" (oldbit), ADDR
	    : "Ir" (nr));
235 236 237 238 239 240 241 242 243 244 245
	return oldbit;
}

/**
 * test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
246
static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
247 248 249 250 251
{
	int oldbit;

	asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
		     "sbb %0,%0"
252
		     : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
253 254 255 256 257 258 259 260 261 262 263 264 265

	return oldbit;
}

/**
 * __test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
266
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
267 268 269
{
	int oldbit;

270
	asm volatile("btr %2,%1\n\t"
271
		     "sbb %0,%0"
272 273
		     : "=r" (oldbit), ADDR
		     : "Ir" (nr));
274 275 276 277
	return oldbit;
}

/* WARNING: non atomic and it can be reordered! */
278
static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
279 280 281
{
	int oldbit;

282
	asm volatile("btc %2,%1\n\t"
283
		     "sbb %0,%0"
284 285
		     : "=r" (oldbit), ADDR
		     : "Ir" (nr) : "memory");
286 287 288 289 290 291 292 293 294 295 296 297

	return oldbit;
}

/**
 * test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
298
static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
299 300 301 302 303
{
	int oldbit;

	asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
		     "sbb %0,%0"
304
		     : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
305 306 307 308

	return oldbit;
}

309
static __always_inline int constant_test_bit(unsigned int nr, const volatile unsigned long *addr)
310
{
311
	return ((1UL << (nr % BITS_PER_LONG)) &
312
		(addr[nr / BITS_PER_LONG])) != 0;
313 314
}

315
static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
316 317 318
{
	int oldbit;

319
	asm volatile("bt %2,%1\n\t"
320 321
		     "sbb %0,%0"
		     : "=r" (oldbit)
322
		     : "m" (*(unsigned long *)addr), "Ir" (nr));
323 324 325 326 327 328 329 330 331 332 333 334 335

	return oldbit;
}

#if 0 /* Fool kernel-doc since it doesn't do macros yet */
/**
 * test_bit - Determine whether a bit is set
 * @nr: bit number to test
 * @addr: Address to start counting from
 */
static int test_bit(int nr, const volatile unsigned long *addr);
#endif

336 337 338 339
#define test_bit(nr, addr)			\
	(__builtin_constant_p((nr))		\
	 ? constant_test_bit((nr), (addr))	\
	 : variable_test_bit((nr), (addr)))
340

341 342 343 344 345 346 347 348
/**
 * __ffs - find first set bit in word
 * @word: The word to search
 *
 * Undefined if no bit exists, so code should check against 0 first.
 */
static inline unsigned long __ffs(unsigned long word)
{
349 350 351
	asm("bsf %1,%0"
		: "=r" (word)
		: "rm" (word));
352 353 354 355 356 357 358 359 360 361 362
	return word;
}

/**
 * ffz - find first zero bit in word
 * @word: The word to search
 *
 * Undefined if no zero exists, so code should check against ~0UL first.
 */
static inline unsigned long ffz(unsigned long word)
{
363 364 365
	asm("bsf %1,%0"
		: "=r" (word)
		: "r" (~word));
366 367 368 369 370 371 372
	return word;
}

/*
 * __fls: find last set bit in word
 * @word: The word to search
 *
373
 * Undefined if no set bit exists, so code should check against 0 first.
374 375 376
 */
static inline unsigned long __fls(unsigned long word)
{
377 378 379
	asm("bsr %1,%0"
	    : "=r" (word)
	    : "rm" (word));
380 381 382
	return word;
}

383 384
#undef ADDR

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
#ifdef __KERNEL__
/**
 * ffs - find first set bit in word
 * @x: the word to search
 *
 * This is defined the same way as the libc and compiler builtin ffs
 * routines, therefore differs in spirit from the other bitops.
 *
 * ffs(value) returns 0 if value is 0 or the position of the first
 * set bit if value is nonzero. The first (least significant) bit
 * is at position 1.
 */
static inline int ffs(int x)
{
	int r;
#ifdef CONFIG_X86_CMOV
401 402 403
	asm("bsfl %1,%0\n\t"
	    "cmovzl %2,%0"
	    : "=r" (r) : "rm" (x), "r" (-1));
404
#else
405 406 407 408
	asm("bsfl %1,%0\n\t"
	    "jnz 1f\n\t"
	    "movl $-1,%0\n"
	    "1:" : "=r" (r) : "rm" (x));
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
#endif
	return r + 1;
}

/**
 * fls - find last set bit in word
 * @x: the word to search
 *
 * This is defined in a similar way as the libc and compiler builtin
 * ffs, but returns the position of the most significant set bit.
 *
 * fls(value) returns 0 if value is 0 or the position of the last
 * set bit if value is nonzero. The last (most significant) bit is
 * at position 32.
 */
static inline int fls(int x)
{
	int r;
#ifdef CONFIG_X86_CMOV
428 429 430
	asm("bsrl %1,%0\n\t"
	    "cmovzl %2,%0"
	    : "=&r" (r) : "rm" (x), "rm" (-1));
431
#else
432 433 434 435
	asm("bsrl %1,%0\n\t"
	    "jnz 1f\n\t"
	    "movl $-1,%0\n"
	    "1:" : "=r" (r) : "rm" (x));
436 437 438
#endif
	return r + 1;
}
439

440 441
#include <asm-generic/bitops/find.h>

442 443 444 445
#include <asm-generic/bitops/sched.h>

#define ARCH_HAS_FAST_MULTIPLIER 1

446 447 448
#include <asm/arch_hweight.h>

#include <asm-generic/bitops/const_hweight.h>
449

450 451
#include <asm-generic/bitops/fls64.h>

452
#include <asm-generic/bitops/le.h>
453

454
#include <asm-generic/bitops/ext2-atomic-setbit.h>
455 456

#endif /* __KERNEL__ */
H
H. Peter Anvin 已提交
457
#endif /* _ASM_X86_BITOPS_H */